JPS5930934B2 - Rotating body - Google Patents

Rotating body

Info

Publication number
JPS5930934B2
JPS5930934B2 JP13438876A JP13438876A JPS5930934B2 JP S5930934 B2 JPS5930934 B2 JP S5930934B2 JP 13438876 A JP13438876 A JP 13438876A JP 13438876 A JP13438876 A JP 13438876A JP S5930934 B2 JPS5930934 B2 JP S5930934B2
Authority
JP
Japan
Prior art keywords
rotor
rotating body
rim
stress
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13438876A
Other languages
Japanese (ja)
Other versions
JPS5359175A (en
Inventor
広 河野
孝典 松岡
興二 竹下
宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP13438876A priority Critical patent/JPS5930934B2/en
Publication of JPS5359175A publication Critical patent/JPS5359175A/en
Publication of JPS5930934B2 publication Critical patent/JPS5930934B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/305Flywheels made of plastics, e.g. fibre-reinforced plastics [FRP], i.e. characterised by their special construction from such materials

Description

【発明の詳細な説明】 本発明は揚水発電、鉛蓄電池等の電力貯蔵シス5 テム
と異なる電力貯蔵用システム等に利用できる回転体に関
するもので、詳しくは金属製の軸に強化プラスチック材
からなる環状のロータを遊挿し、同軸の外周とロータの
内周との間を接続部材で接続して形成された回転体に於
いて、前記接続部材10は内周が前記軸の外周に嵌合さ
れる環状のボス部材と、外周が前記ロータの内周に嵌合
または接着されるリム部材と、中間が半径方向に伸びる
放射状部材と、環状、ブリッジ状、輪状等に形成され、
同放射状部材に半径方向変形可能な状態で連結さ15れ
た可撓性部材とよりなり、前記ボス部材とリム部材とを
接続するアーム部材とを具えてなるものである。
[Detailed Description of the Invention] The present invention relates to a rotating body that can be used in power storage systems different from pumped storage power generation, lead storage batteries, etc. In a rotating body formed by loosely inserting an annular rotor and connecting the coaxial outer periphery and the inner periphery of the rotor with a connecting member, the inner periphery of the connecting member 10 is fitted to the outer periphery of the shaft. a rim member whose outer periphery is fitted or bonded to the inner periphery of the rotor; a radial member whose intermediate portion extends in the radial direction;
It comprises a flexible member 15 connected to the radial member in a radially deformable state, and an arm member connecting the boss member and the rim member.

以下図面の実施例について説明すると、第1図は本発明
の原理を示す回転体1の平面図、第2図20は同側断面
図で、回転体1は金属製の軸2に強化プラスチック材(
例えば繊維強化プラスチック)からなる環状のロータ3
を遊挿し、前記軸2の外周とロータ3の内周との間を接
続部材4で接続して形成されている。
Embodiments of the drawings will be described below. FIG. 1 is a plan view of a rotating body 1 showing the principle of the present invention, and FIG. 2 20 is a sectional view of the same side. (
An annular rotor 3 made of (for example, fiber reinforced plastic)
is loosely inserted, and the outer periphery of the shaft 2 and the inner periphery of the rotor 3 are connected by a connecting member 4.

そしてこの接続部材4はその25内周が前記軸2の外周
に嵌合される環状のボス部材5と、その外周が前記ロー
タ3の内周に嵌合又は接着されるリム部材6と、中間が
前記ボス部材5とリム部材6とを接続するアーム部材T
とにより構成されている。前記接続部材4の本発明に於
30ける夫々異なる実施例を第5図〜第12図に示す。
又第13図は第5図のA部詳細図で、第5図〜第12図
の全てに適用可能な他の実施例を示す円周方向辷り可能
断面入りリム部材6の説明図である。さて回転体の回転
エネルギー貯蔵量は一般に下35記の1式で表わされる
。PocKs×〜×W ・・・・・・・・・1ρ但し
P:貯蔵エネルギー Ks:形状係数(完全な平等強さのとき Ks二1.0となる) σ:材料の許容応力 ρ:材料の密度 σ 一:γ比強度 ρ W:重量 従つてエネルギー貯蔵用回転体としては、比強度が大き
い材料を用いると同じ重量で大きなエネルギーを蓄積で
きることが分る。
The connecting member 4 includes an annular boss member 5 whose inner periphery is fitted to the outer periphery of the shaft 2, a rim member 6 whose outer periphery is fitted or bonded to the inner periphery of the rotor 3, and an intermediate member 5. is an arm member T that connects the boss member 5 and the rim member 6.
It is composed of. Thirty different embodiments of the connecting member 4 according to the present invention are shown in FIGS. 5 to 12.
FIG. 13 is a detailed view of part A in FIG. 5, and is an explanatory diagram of a rim member 6 with a cross section that can be slid in the circumferential direction, showing another embodiment that is applicable to all of FIGS. 5 to 12. Now, the amount of rotational energy stored in a rotating body is generally expressed by the following equation. PocKs×〜×W ・・・・・・・・・1ρHowever
P: Storage energy Ks: Shape factor (Ks2 is 1.0 when the strength is completely equal) σ: Allowable stress of the material ρ: Density of the material σ 1: γ specific strength ρ W: Weight, therefore for energy storage It can be seen that if a material with high specific strength is used for the rotating body, a large amount of energy can be stored with the same weight.

比強度の大きい材料,としては繊維強化プラスチツクが
あり、前記回転体1ではロータ3にこの繊維強化プラス
チツクが用いられる。−方前記1式に於いて単位重量当
りの貯蔵エネルギーを大きくするには、形状係数Ksを
大きくするとよい。
A material with high specific strength is fiber-reinforced plastic, and this fiber-reinforced plastic is used for the rotor 3 of the rotating body 1. - Method In order to increase the stored energy per unit weight in the above equation 1, it is preferable to increase the shape factor Ks.

又このKsはロータ3全体の応力が一様になつたときK
s=1.0となる。金属製ロータではロータの形状から
平等強さにする方法がとられるが、繊維強化プラスチツ
ク製ロータ3では理論的な形状にするために、補強材の
繊維を切断しなければならなかつたりするため余り好ま
しくない。むしろロータ3の形状としては加工法も含め
て第3図及び第4図に示すような円筒形が望ましい。一
般に円筒形ロータ3の応力は、中実円筒では第3図イに
示すように中心部の応力が最も大きく、この点では半径
方向の応力σ,と周方向の応力σtが等しい。一応中空
円筒では内周面で半径方向の応力σ,が雰になる代りに
、周方向の応力σtが第4図イの如く大きくなる。とこ
ろが繊,維強化プラスチツクは補強材である繊維の方向
によつて強度、縦弾性率が異なつており、均質に作るこ
とはむづかしい。むしろ意識的に異方性のあるロータ3
を作る方が容易である。異方性のある繊維強化プラスチ
ツクでロータ3を作つた場合の(応力は、例えば半径方
向の縦弾性率E,<l!:周方向Eの縦弾性率Etの比
jを0.1〜0.3にすると、Etσtがかなり均一化
されることが分つている。
Also, this Ks is K when the stress of the entire rotor 3 becomes uniform.
s=1.0. For metal rotors, a method is used to make the rotor uniform in strength based on the shape of the rotor, but in the case of a fiber-reinforced plastic rotor 3, reinforcing fibers must be cut to achieve the theoretical shape. Undesirable. Rather, it is preferable that the shape of the rotor 3 is cylindrical as shown in FIGS. 3 and 4, including the processing method. In general, the stress in the cylindrical rotor 3 is greatest in the center of a solid cylinder, as shown in FIG. 3A, and at this point the radial stress σ and the circumferential stress σt are equal. In a hollow cylinder, the stress σt in the circumferential direction becomes large as shown in FIG. 4A, instead of the stress σt in the radial direction becoming large on the inner circumferential surface. However, the strength and modulus of longitudinal elasticity of fibers and fiber-reinforced plastics vary depending on the direction of the reinforcing fibers, making it difficult to make them uniformly. Rather, the rotor 3 is intentionally anisotropic.
It is easier to make When the rotor 3 is made of anisotropic fiber-reinforced plastic, the stress is, for example, the ratio j of the longitudinal elastic modulus E in the radial direction, <l!: the longitudinal elastic modulus Et in the circumferential direction E, from 0.1 to 0. It has been found that when the value is set to .3, Etσt becomes considerably uniform.

又E中実円筒は中心部では−L=1.0になつてしまE
tうため、中心部の応力σt(=σγ)を小さくするこ
とはできない。
Also, in the center of a solid cylinder, -L=1.0.
Therefore, the stress σt (=σγ) at the center cannot be reduced.

しかし内径(Rin)と外径(ROut)の比Rin/
ROutが0.2より大きいときは、第4図帽こ示すよ
うにσtをほぼ均一にすることができる。しかし繊維強
化プラスチツク製中空円筒形のロータ3では、繊維強化
プラスチツクの縦弾性率Etが低いため内径(Rin)
に於ける材料の伸びが大きく、金属の軸で直接連結する
と金属軸の半径方向の伸びが小さいため、繊維強化プラ
スチツク製ロータと金属軸の間で剥離してしまう。次に
第5図〜第12図により接続部材4の各実施例を説明す
ると、これらは何れもボス部材5と、リム部材6と、ア
ーム部材7により構成され、ボス部材5は軸2に接着又
は圧入されている。
However, the ratio of the inner diameter (Rin) to the outer diameter (ROut) is Rin/
When ROut is larger than 0.2, σt can be made almost uniform as shown in FIG. However, in the hollow cylindrical rotor 3 made of fiber-reinforced plastic, the inner diameter (Rin)
The elongation of the material in the fiber-reinforced plastic rotor is large, and if the material is directly connected with a metal shaft, the elongation of the metal shaft in the radial direction is small, resulting in separation between the fiber-reinforced plastic rotor and the metal shaft. Next, each embodiment of the connecting member 4 will be explained with reference to FIGS. Or it is press-fitted.

又接着面積を増し、回転トルクの伝達を確実にするため
、必要に応じて軸2の表面に第6図に示すように軸の長
手方向に溝8を設け、同溝8内にボス部材5の突起を嵌
入させてもよい。又リム部材6は周方向の縦弾性率Et
がロータ3の材料の縦弾性率Etとほぼ等しいか、又は
小さい材料で作られ、高速回転時の周方向の応力が大き
くならないようにしてロータ3と接着されるか、ロータ
3と一体に製作する。リム部材6とボス部材5はアーム
部材7によつて連結されるが、ロータ3の内周面の半径
(R1n)は高速回転中は遠心力によつて大きくなるた
め、アーム部材7はこのとき大きく延ばされる。そこで
アーム部材7は半径方向に引張つたときその方向に大き
な変位が得られるように、ボス部材5に接して設けられ
た可撓性のあるブリツジ状部材(第5図、第6図)、ア
ーム部材の中間点に設けられた管状の可撓性部材(第7
図、第8図)、千鳥状にアームで連結された1個或は複
数個のリング状の可撓性部材(第9図、第10図)、ボ
ス部材5に取付けられたアームと連結し、かつリム部材
6に接合されたブリツジ状可撓性部材(第11図)、そ
の両端にアームが取付けられた環状部材を円周複数個に
分割した可撓性部材(第12図)等を有している。又第
13図に示すようにリム部材6を周方向に分割すること
によつてリム部材6の周方向の応力を軽減することがで
きる。
In addition, in order to increase the adhesive area and ensure the transmission of rotational torque, a groove 8 is provided in the longitudinal direction of the shaft 2 on the surface of the shaft 2 as shown in FIG. The protrusion may be inserted. Further, the rim member 6 has a longitudinal elastic modulus Et in the circumferential direction.
is made of a material that is approximately equal to or smaller than the longitudinal elastic modulus Et of the material of the rotor 3, and is bonded to the rotor 3 or manufactured integrally with the rotor 3 in a manner that prevents stress in the circumferential direction from increasing during high-speed rotation. do. The rim member 6 and the boss member 5 are connected by the arm member 7, but since the radius (R1n) of the inner peripheral surface of the rotor 3 increases due to centrifugal force during high-speed rotation, the arm member 7 greatly extended. Therefore, the arm member 7 includes a flexible bridge-like member (Figs. 5 and 6) provided in contact with the boss member 5 so that a large displacement can be obtained in that direction when the arm member 7 is pulled in the radial direction. A tubular flexible member (seventh member) provided at the midpoint of the member
8), one or more ring-shaped flexible members connected by arms in a staggered manner (FIGS. 9 and 10), and one or more ring-shaped flexible members connected to the arms attached to the boss member 5. , and a bridge-shaped flexible member (Fig. 11) joined to the rim member 6, a flexible member (Fig. 12) obtained by dividing an annular member with arms attached to both ends into a plurality of circumferential parts, etc. have. Further, by dividing the rim member 6 in the circumferential direction as shown in FIG. 13, the stress in the circumferential direction of the rim member 6 can be reduced.

特にリム部材6の材料として縦弾性率Etの大きいもの
を用いる必要があるときは、応力が大きくなるためこの
方法は有効である。なお、前記各実施例で示した接続部
材4の構造は図面のもののみに限定されるものではなく
、本発明の要旨を逸脱しない範囲で他の構造のものとし
てもよいことは云うまでもない。以上詳細に説明した如
く本発明はボス部材とリム部材とを接続し、回転体の半
径方向に可撓性を有するアーム部材を設け、リム部材、
アーム部材、ボス部材の間で半径方向の剛性を低くした
ので、ロータとボス部材又は軸で応力や力の干渉がなく
、第4図口に示すような理論に近い回転体のロータとす
ることができるものである。なお、本発明はエネルギー
貯蔵用フライホイール、一般のフライホイール等に応用
することができる。
This method is particularly effective when it is necessary to use a material with a large modulus of longitudinal elasticity Et as the material for the rim member 6, since the stress will be large. It should be noted that the structure of the connecting member 4 shown in each of the above embodiments is not limited to that shown in the drawings, and it goes without saying that other structures may be used without departing from the gist of the present invention. . As explained in detail above, the present invention connects a boss member and a rim member, provides an arm member having flexibility in the radial direction of a rotating body, and connects a boss member and a rim member.
Since the rigidity in the radial direction is lowered between the arm member and the boss member, there is no stress or force interference between the rotor and the boss member or the shaft, making the rotor a rotating body close to the theory shown in the opening of Figure 4. It is something that can be done. Note that the present invention can be applied to energy storage flywheels, general flywheels, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を説明する回転体の平面図、第2
図は同側断面図、第3図イ,口は中実円筒に於ける半径
方向と周方向の応力を示す線図、第4図イ,口は中空円
筒の半径方向と周方向の応力を示す線図、第5図、第6
図、第7図、第8図、第9図、第10図、第11図及び
第12図は夫々本発明の実施例を示す接続部材の平面図
、第13図は第5図のA部詳細図で、第5図〜第12図
の全てに適用可能な他の実施例を示すリム部材の説明図
である。 図の主要部分の説明、1・・・・・・回転体、2・・・
・・・金属製の軸、3・・・・・・ロータ、4・・・・
・・接続部材、5・・・・・・ボス部材、6・・・・・
・リム部材、7・・・・・・アーム部材。
Figure 1 is a plan view of a rotating body explaining the principle of the present invention, Figure 2
The figure is a sectional view of the same side, Figure 3 A is a diagram showing the stress in the radial direction and circumferential direction in a solid cylinder, and Figure 4 A is a diagram showing the stress in the radial direction and circumferential direction in a hollow cylinder. Diagrams shown, Figures 5 and 6
7, FIG. 8, FIG. 9, FIG. 10, FIG. 11, and FIG. 12 are plan views of connecting members showing embodiments of the present invention, respectively, and FIG. 13 is a section A in FIG. 5. FIG. 12 is a detailed diagram illustrating a rim member showing another embodiment that is applicable to all of FIGS. 5 to 12; Explanation of the main parts of the figure, 1...Rotating body, 2...
...Metal shaft, 3... Rotor, 4...
... Connection member, 5 ... Boss member, 6 ...
- Rim member, 7...Arm member.

Claims (1)

【特許請求の範囲】[Claims] 1 金属製の軸に強化プラスチック材からなる環状のロ
ータを遊挿し、同軸の外周とロータの内周との間を接続
部材で接続して形成された回転体に於いて、前記接続部
材は内周が前記軸の外周に嵌合される環状のボス部材と
、外周が前記ロータの内周に嵌合または接着されるリム
部材と、中間が半径方向に伸びる放射状部材と、環状、
ブリッジ状、輪状等に形成され、同放射状部材に半径方
向変形可能な状態で連結された可撓性部材とよりなり、
前記ボス部材とリム部材とを接続するアーム部材とを具
えたことを特徴とする回転体。
1 In a rotating body formed by loosely inserting an annular rotor made of reinforced plastic material into a metal shaft and connecting the outer periphery of the coaxial and the inner periphery of the rotor with a connecting member, the connecting member is connected to the inner periphery of the rotor. an annular boss member whose periphery is fitted to the outer periphery of the shaft; a rim member whose outer periphery is fitted or bonded to the inner periphery of the rotor; a radial member whose intermediate portion extends in the radial direction;
Consisting of a flexible member formed in a bridge shape, ring shape, etc. and connected to the same radial member in a radially deformable state,
A rotating body comprising an arm member connecting the boss member and the rim member.
JP13438876A 1976-11-09 1976-11-09 Rotating body Expired JPS5930934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13438876A JPS5930934B2 (en) 1976-11-09 1976-11-09 Rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13438876A JPS5930934B2 (en) 1976-11-09 1976-11-09 Rotating body

Publications (2)

Publication Number Publication Date
JPS5359175A JPS5359175A (en) 1978-05-27
JPS5930934B2 true JPS5930934B2 (en) 1984-07-30

Family

ID=15127223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13438876A Expired JPS5930934B2 (en) 1976-11-09 1976-11-09 Rotating body

Country Status (1)

Country Link
JP (1) JPS5930934B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268608A (en) * 1991-01-11 1993-12-07 American Flywheel Systems, Inc. Flywheel-based energy storage and apparatus
US5124605A (en) * 1991-01-11 1992-06-23 American Flywheel Systems, Inc. Flywheel-based energy storage methods and apparatus
EP2034213A1 (en) * 2007-09-07 2009-03-11 Euro-Diesel S.A. Rotating bearing for a drum of a kinetic energy accumulator
CN107420438A (en) * 2017-09-20 2017-12-01 大连派思透平动力科技有限公司 A kind of elastic shaft bearing
JP2023070559A (en) * 2021-11-09 2023-05-19 ネクスファイ・テクノロジー株式会社 Orthotropic hollow disc rotor of flywheel for flywheel power storage device and determination method for optimum diameter ratio thereof

Also Published As

Publication number Publication date
JPS5359175A (en) 1978-05-27

Similar Documents

Publication Publication Date Title
US5566588A (en) Flywheel rotor with conical hub and methods of manufacture therefor
EP0065621A1 (en) Fiber composite flywheel rim
JP2001500950A (en) Composite flywheel rim and hub made of composite material
EP1060337B1 (en) Flywheel with self-expanding hub
US5167582A (en) Torque transmitting flexible coupling with helical spring element
JPH08510706A (en) Flexbeam for helicopter bearingless main rotor assembly
US6149163A (en) Ring seal assembly
JPS5930934B2 (en) Rotating body
JPS62147125A (en) Elastic shaft coupling
EP0066040A1 (en) Flywheel shell construction
EP3022461B1 (en) Flywheels for energy storage and methods of manufacture thereof
WO2006098254A1 (en) Blade and fan having the same
EP1110007B1 (en) Tearing configuration for flexible element of elastomeric coupling
KR100598846B1 (en) Flywheel of energy storage system
JPS612917A (en) Elastic shearing shaft coupling
US6688191B2 (en) Fly wheel for storing rotational energy
JP6345117B2 (en) Inertia wheel and manufacturing method thereof
JP3361116B2 (en) Hollow cylindrical component made of fiber reinforced plastic
CN111836972B (en) Power transmission shaft
JP2000352398A (en) Shank portion structure of rotary vane made of composite material
JP2002061565A (en) Flywheel rotor
JPH0231623Y2 (en)
CN212637015U (en) Mecanum wheel and power driving system
JPS58217842A (en) Fly wheel manufacturing method
US20230118484A1 (en) Rotor, electric motor, and rotor production method