JPS5930918B2 - A method for controlling gas capacity in a vane-type rotary compressor. - Google Patents

A method for controlling gas capacity in a vane-type rotary compressor.

Info

Publication number
JPS5930918B2
JPS5930918B2 JP50024984A JP2498475A JPS5930918B2 JP S5930918 B2 JPS5930918 B2 JP S5930918B2 JP 50024984 A JP50024984 A JP 50024984A JP 2498475 A JP2498475 A JP 2498475A JP S5930918 B2 JPS5930918 B2 JP S5930918B2
Authority
JP
Japan
Prior art keywords
vane
communication groove
rotor
cylinder
end plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50024984A
Other languages
Japanese (ja)
Other versions
JPS51100312A (en
Inventor
五郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP50024984A priority Critical patent/JPS5930918B2/en
Publication of JPS51100312A publication Critical patent/JPS51100312A/en
Publication of JPS5930918B2 publication Critical patent/JPS5930918B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 本発明はベーン型回転圧縮機の容量制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacity control device for a vane type rotary compressor.

圧縮気体の容量制御を行う装置として従来様々なものが
提案され又使用されている。
Various devices have been proposed and used in the past as devices for controlling the capacity of compressed gas.

主として空気圧縮機及び冷凍機用圧縮機等に現在用いら
れている容量制御装置は、レシプロ型に於ては各気筒の
パルプを次々に開放して段階的に容量制御を行う吸込弁
開放式容量制御装置や、スクリュー型回転圧縮機にあっ
てはスライド弁式容量制御装置即ちスライド弁を移動し
、吸入締切位置を変化させ圧縮室の吸入容積を増減し圧
縮気体の吐出容量を変化させる装置等がある。
The capacity control device currently used mainly in air compressors and refrigerator compressors is a suction valve open type capacity control device that, in the reciprocating type, releases the pulp in each cylinder one after another to control the capacity in stages. A control device or, in the case of a screw type rotary compressor, a slide valve type capacity control device, that is, a device that moves the slide valve to change the suction cut-off position, increase or decrease the suction volume of the compression chamber, and change the discharge volume of compressed gas. There is.

レシプロ型に於ける圧縮気体容量の制御は各気筒の圧縮
作用を次々に停止して行なうためその圧縮気体容量は段
階的に変化し、こまかい調節を必要とするものには用い
られない。
Control of the compressed gas capacity in the reciprocating type is performed by stopping the compression action of each cylinder one after another, so the compressed gas capacity changes step by step, and is not used in applications that require fine adjustment.

また、スクリュー型回転圧縮機に用いられているスライ
ド弁式容量制御装置は吸入締切位置をスライド弁によっ
て変化させ圧縮室の実質的な容積を連続的に変えて吐出
容量を変化させることができる。
Furthermore, a slide valve type capacity control device used in a screw type rotary compressor can change the suction cut-off position using a slide valve, continuously change the substantial volume of the compression chamber, and change the discharge capacity.

然し、この容量制御装置ではその構造が複雑な上にスラ
イド弁が回転体に接しながら移動摺動するため、高度な
精度が要求され、原価が高くつくのみならず、故障の原
因を増すことになる。
However, this capacity control device has a complicated structure and requires a high degree of precision because the slide valve moves and slides while contacting the rotating body, which not only increases the cost but also increases the cause of failure. Become.

本発明は極く一般に用いられ最も単純で安価なベーン型
回転圧縮機に於て、それほど精度を必要としない簡単な
機構を用いて気体の容量制御を行うベーン型回転圧縮機
の容量制御装置を提供することを目的とするものである
The present invention provides a capacity control device for a vane-type rotary compressor that controls gas capacity using a simple mechanism that does not require much precision in a vane-type rotary compressor that is extremely commonly used and is the simplest and cheapest. The purpose is to provide

本発明の特徴は、ベーン型回転圧縮機に於て、ロータ軸
方向両端もしくは片端に回動自在の端板な設け、該端板
に、シリンダ内面に設けた吸気口とは別に、隣接するベ
ーン、シリンダ内面、ロータ外周および端板で囲まれる
圧縮室に開口する連絡溝を設け、該連絡溝を吸気室に連
通し、容量制御時前記連絡溝が圧縮室を介して吐出口に
直通しない範囲内で、吸気口との連通を遮断後吐出口に
連通ずるまでその容積を減少する圧縮室に前記連絡溝を
開口するように、前記回動自在の端板を回動する装置を
設けたことにある。
A feature of the present invention is that, in a vane-type rotary compressor, a rotatable end plate is provided at both ends or one end in the axial direction of the rotor, and the end plate is provided with an adjacent vane in addition to an intake port provided on the inner surface of the cylinder. A communication groove is provided that opens into a compression chamber surrounded by the inner surface of the cylinder, the outer periphery of the rotor, and the end plate, and the communication groove is communicated with the intake chamber, so that the communication groove does not directly communicate with the discharge port via the compression chamber during capacity control. A device is provided for rotating the rotatable end plate so as to open the communication groove into the compression chamber whose volume is reduced until it communicates with the discharge port after cutting off communication with the intake port. It is in.

本発明の装置を図面によって説明すると、第1図、第2
図、第3図において、円筒形シリンダ10円筒をなす内
面2の円の中心3に対し、偏心した中心4を中心として
ベアリング16,17を介して矢印の方向に回転するロ
ータ5を有し、そのロータ5に設けた複数個のベーン溝
6に嵌って摺動するベーン7を備え、シリンダ10両端
にロータ5の中心4を中心として回動自在な端板18゜
19を設け、ベアリング16,17を収納するケーシン
グ20.21をもって端板18,19を覆いシリンダ1
の両端に固定する。
The device of the present invention will be explained with reference to the drawings.
In FIG. 3, a cylindrical cylinder 10 has a rotor 5 which rotates in the direction of the arrow through bearings 16 and 17 about a center 4 eccentric to the center 3 of a circle of an inner surface 2 forming a cylinder, The rotor 5 is equipped with vanes 7 that fit into and slide in a plurality of vane grooves 6, and end plates 18 and 19 that are rotatable about the center 4 of the rotor 5 are provided at both ends of the cylinder 10, and bearings 16, The end plates 18 and 19 are covered with a casing 20 and 21 that accommodates the cylinder 1.
be fixed at both ends of the

ロータ5の軸端22にカップリングにて電動機および内
燃機関等の原動機と連結して(何れも図示せず)ロータ
5に回転を与えることにより、シリンダ内面2どベーン
7とロータ外周8および端板18,19によって形成さ
れる圧縮室9の容積を、回転の進むに従って減少させて
気体を吸入、圧縮、吐出するものである。
By connecting the shaft end 22 of the rotor 5 with a prime mover such as an electric motor and an internal combustion engine (none of which are shown) through a coupling, and giving rotation to the rotor 5, the cylinder inner surface 2, vanes 7, rotor outer periphery 8, and The volume of the compression chamber 9 formed by the plates 18 and 19 is reduced as the rotation progresses to suck in, compress, and discharge gas.

シリンダ1の外周上部に開口10を有する吸気室11を
、シリンダ1の圧縮室9を形成するシリンダ内面2の外
周に設ける。
An intake chamber 11 having an opening 10 at the upper part of the outer circumference of the cylinder 1 is provided on the outer circumference of the cylinder inner surface 2 forming the compression chamber 9 of the cylinder 1 .

シリンダ内面2の上部には、吸気口12を設け、ロータ
外周8とシリンダ内面2とが接近する圧縮室9の最小と
なる区間に吐出口13を設けて、ロータ5の回転に従っ
て圧縮気体を吐出室14に送り出し、さらに連通口15
より圧力槽(図示せず)などに排出する。
An intake port 12 is provided in the upper part of the cylinder inner surface 2, and a discharge port 13 is provided in the smallest section of the compression chamber 9 where the rotor outer periphery 8 and the cylinder inner surface 2 approach each other, and compressed gas is discharged as the rotor 5 rotates. It is sent to the chamber 14, and further to the communication port 15.
and discharge into a pressure tank (not shown).

端板18,19には圧縮室9に開口する連絡溝23と吸
気室11に開口する連絡溝24を設けて、この連絡溝2
3,24は第1図、第2図、第3図に示すように端板1
8,19の圧縮室9に対応する円周上と、吸気室11に
対応する円周上とに、シリンダ内面2に設けられた吸気
口12と略同−の開口角度の位置に夫々設ける。
The end plates 18 and 19 are provided with a communication groove 23 that opens into the compression chamber 9 and a communication groove 24 that opens into the intake chamber 11.
3 and 24 are the end plates 1 as shown in FIGS. 1, 2, and 3.
8 and 19 are provided on the circumference corresponding to the compression chamber 9 and on the circumference corresponding to the intake chamber 11 at positions having substantially the same opening angle as the intake port 12 provided on the cylinder inner surface 2, respectively.

ケーシング20.21にシリンダ1の吸気室11と対応
する位置に夫々連絡通路25.26を設けて、常に連絡
溝23.24と連通せしめる。
Communication passages 25, 26 are provided in the casing 20, 21 at positions corresponding to the intake chambers 11 of the cylinder 1, respectively, so as to constantly communicate with the communication grooves 23, 24.

端板18,19の外周に回動角度に応じた、かみ合い歯
27を設け、ピニオン28とかみ合わせ、ピニオン28
は軸29を介してモータあるいは油田調節器(何れも図
示せず)などにより回転を与える。
Engaging teeth 27 are provided on the outer peripheries of the end plates 18 and 19 in accordance with the rotation angle, and mesh with the pinion 28.
Rotation is applied via a shaft 29 by a motor or oil field regulator (none of which is shown).

気体の容量を変化させる事が必要となった場合、吐出圧
力或は吐出気体温度等の変化を感知し、これを電気的或
は油圧、空圧等に変換し、モータ、あるいは油圧調節器
などを作動せしめ、軸29を介してピニオン28を回転
し、端板18゜19を回動変位し、それによって気体の
容量を変化せしめるものである。
When it is necessary to change the volume of gas, the change in discharge pressure or temperature of the discharged gas is sensed, and this is converted into electrical, hydraulic, pneumatic, etc., and is applied to a motor, hydraulic pressure regulator, etc. , the pinion 28 is rotated via the shaft 29, and the end plates 18 and 19 are rotationally displaced, thereby changing the gas capacity.

本実施例では端板18,19を歯車にて回動せしめる方
法を図示したが、端板18,19を回動せしめる方法は
本実施例に限定するものではなく、その他レバーにまり
回動せしめる等の他のすべての方法を包含するものであ
る。
In this embodiment, a method of rotating the end plates 18 and 19 using gears is illustrated, but the method of rotating the end plates 18 and 19 is not limited to this embodiment. This includes all other methods such as.

第1図は端板18,19の連絡溝23.24がシリンダ
内面2の吸気口12と同角i位置にあり、通常圧縮運転
する場合の状態を示し、従来公知のベーン型回転圧縮機
の作動と全く同じである。
Fig. 1 shows a state in which the communication grooves 23 and 24 of the end plates 18 and 19 are at the same angle i position as the intake port 12 of the cylinder inner surface 2, and normal compression operation is performed. The operation is exactly the same.

即ちこの状態ではベーン7aは吸気口12の締切位置に
あり、ベーン7cが吐出口13の吐出管に位置しており
、圧縮室9の気体はロータ5の回転によりその容積を段
々と圧縮室9a 、9b迄圧縮され、吐出口13より吐
出される。
That is, in this state, the vane 7a is in the closed position of the intake port 12, the vane 7c is located in the discharge pipe of the discharge port 13, and the gas in the compression chamber 9 gradually increases its volume by the rotation of the rotor 5. , 9b, and is discharged from the discharge port 13.

第2図は気体容量の制御が必要となり、端板18,19
が右に約90°回動した時の図を示す。
In Figure 2, it is necessary to control the gas capacity, and the end plates 18, 19
The figure shows when the is rotated approximately 90 degrees to the right.

この場合、端板18,19の連絡溝23 、24が圧縮
室9,9aの位置にあり圧縮室9,9aは連絡溝24、
連絡通路25.26(第3図参照)連絡溝23を経て吸
気室11に連通しており圧縮室9,9aの気体は圧縮室
の容積の減少につれて吸気室11に返送され圧縮作用を
受けていない。
In this case, the communication grooves 23 and 24 of the end plates 18 and 19 are located at the compression chambers 9 and 9a, and the compression chambers 9 and 9a are located at the communication grooves 24 and 24, respectively.
Communication passages 25 and 26 (see Figure 3) communicate with the intake chamber 11 via the communication groove 23, and as the volume of the compression chambers decreases, the gas in the compression chambers 9, 9a is returned to the intake chamber 11 and is subjected to compression. do not have.

吸入締切はベー77bによって始めて行なわれ、吸入気
体容積は圧縮室9bの容積となり、圧縮気体容量の制御
がなされている。
The suction is first shut off by the bay 77b, and the suction gas volume becomes the volume of the compression chamber 9b, so that the compressed gas volume is controlled.

以上のように端板18,19の回転角度を0゜から順次
回動せしめる間に吸入気体容量を順次減少せしめる事に
なり、必要なだけの量の気体を吸入、圧縮する事が出来
るので動力も大きく節減することができ、その効果大で
ある。
As described above, while the rotation angle of the end plates 18 and 19 is sequentially rotated from 0 degrees, the suction gas capacity is gradually reduced, and the required amount of gas can be sucked and compressed, so the power It is also possible to save a lot of money, which is very effective.

これまでの説明は端板18,19の両方に連絡溝23.
24を設けた実施例について行ったが、端板18,19
の何れか一方のみに連絡溝23゜24を設けた場合も全
く同様な作動をなし、同一効果を奏するもので、当然本
願発明の要旨に包含されるものである。
In the explanation so far, both the end plates 18 and 19 have communication grooves 23.
24, but the end plates 18, 19
Even if the communication grooves 23 and 24 are provided in only one of the two, the same operation and effect can be obtained, and this is naturally included in the gist of the present invention.

従来、ベーン形回転圧縮機の無段階的な容量制御は吸気
口を順次閉じながら行なういわゆる吸気閉塞式容量制御
であるため、吸入気体の減少に従って圧縮室吸入側圧力
の負圧が増大するため、吸入気体減少に従って圧縮比が
高くなり、容量制御を行なっても消費動力があまり減少
しなかったが、前述の本発明の装置によれば圧縮気体の
減少に応じて消費動力が大巾に減少しながら、無段階的
な圧縮気体の容量制御が、端板の回動角度調整によって
行われるので、構造簡易でしかも安価に効率よく行なう
事ができる。
Conventionally, stepless capacity control of vane type rotary compressors is so-called intake closing type capacity control, which is performed while sequentially closing the intake ports, so as the intake gas decreases, the negative pressure on the suction side of the compression chamber increases. As the intake gas decreases, the compression ratio increases, and even if capacity control is performed, the power consumption does not decrease much. However, with the device of the present invention described above, the power consumption decreases significantly as the compressed gas decreases. However, since stepless control of the compressed gas capacity is performed by adjusting the rotation angle of the end plate, the structure can be simple, inexpensive, and efficient.

また第3図において、シリンダ20に連絡通路25.2
6を設けたものを図示したが、連絡通路25.26を設
けず、端板18,19の連絡溝23.24を連通せしめ
るようにしても、同一効果が得られ、本発明に含まれる
ことは論するまでもない。
In addition, in FIG. 3, the cylinder 20 is connected to the communication passage 25.2.
6 is shown in the figure, the same effect can be obtained even if the communication passages 25 and 26 are not provided and the communication grooves 23 and 24 of the end plates 18 and 19 are made to communicate with each other, and this is included in the present invention. There is no need to discuss it.

以上、現在迄知られている実用的な無段階の気体容量制
御装置はスクリュ型回転圧縮機に於けるスライドバルブ
式だけであるが、その種の機械は機構が複雑で原価が高
(、使用者側から見れば極めて不利なものであった。
As mentioned above, the only practical stepless gas capacity control device known to date is the slide valve type for screw type rotary compressors, but this type of machine has a complicated mechanism and is expensive (and From a personal standpoint, this was extremely disadvantageous.

本発明によれば原価の安いベーン型回転圧縮機を用いて
而も安価で簡単な方法で圧縮気体容量の調整をなし得て
、無段階容量調整の利用範囲を一層床める結果となるも
のである。
According to the present invention, the compressed gas capacity can be adjusted in an inexpensive and simple manner using a low-cost vane-type rotary compressor, resulting in a further expansion of the scope of use of stepless capacity adjustment. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示し、端板の連絡溝が、通
常圧縮運転を行う状態の位置にあるベーン型回転圧縮機
の横断面図。 第2図は端板の連絡溝が、吸入締切位置を調整した状態
にあり、本発明の容量制御の実施例を示すベーン型回転
圧縮機の横断面図。 第3図は第1図のI−I線に沿った断面を示す縦断面図
である。 1・・・・・・シリンダ、5・・・・・・ロータ、7・
・・・・・ベーン、9・・・・・・圧縮室、11・・・
・・・吸気室、18,19・・・・・・端板、23,2
4・・・・・・連絡溝。
FIG. 1 is a cross-sectional view of a vane-type rotary compressor according to an embodiment of the present invention, in which the communication groove of the end plate is in a position for normal compression operation. FIG. 2 is a cross-sectional view of a vane-type rotary compressor in which the suction cut-off position of the communication groove of the end plate is adjusted, showing an embodiment of the capacity control of the present invention. FIG. 3 is a longitudinal sectional view showing a cross section taken along the line II in FIG. 1. 1...Cylinder, 5...Rotor, 7.
...Vane, 9...Compression chamber, 11...
... Intake chamber, 18, 19 ... End plate, 23, 2
4... Communication groove.

Claims (1)

【特許請求の範囲】[Claims] 1 ベーン型回転圧縮機において、ロータ軸方向両端も
しくは片端に回動自在の端板を設け、該端板に、シリン
ダ内面に設けた吸気口とは別に、隣接するベーン、シリ
ンダ内面、ロータ外周および端板で囲まれる圧縮室に開
口する連絡溝を設け、該連絡溝を吸気室に連通し、容量
制御時前記連絡溝が圧縮室を介して吐出口に直通しない
範囲内で、吸気口との連通を遮断後吐出口に連通ずるま
でその容積を減少する圧縮室に前記連絡溝を開口するよ
うに、前記回動自在の端板を回動する装置を設けたこと
を特徴とするベーン型回転圧縮機の容量制御装置。
1. In a vane-type rotary compressor, a rotatable end plate is provided at both ends or one end in the axial direction of the rotor, and the end plate is provided with an air intake port provided on the inner surface of the cylinder, and adjacent vanes, the inner surface of the cylinder, the outer periphery of the rotor, and the inner surface of the rotor. A communication groove that opens into the compression chamber surrounded by the end plate is provided, the communication groove is communicated with the intake chamber, and the communication groove is connected to the intake port within the range where the communication groove does not directly communicate with the discharge port via the compression chamber during capacity control. A vane-type rotating device characterized in that a device is provided for rotating the rotatable end plate so as to open the communication groove into a compression chamber whose volume is reduced until it communicates with the discharge port after communication is cut off. Compressor capacity control device.
JP50024984A 1975-03-03 1975-03-03 A method for controlling gas capacity in a vane-type rotary compressor. Expired JPS5930918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50024984A JPS5930918B2 (en) 1975-03-03 1975-03-03 A method for controlling gas capacity in a vane-type rotary compressor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50024984A JPS5930918B2 (en) 1975-03-03 1975-03-03 A method for controlling gas capacity in a vane-type rotary compressor.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6586084A Division JPS59196991A (en) 1984-04-04 1984-04-04 Control device for volumes of liquid and gas of vane type rotary compressor

Publications (2)

Publication Number Publication Date
JPS51100312A JPS51100312A (en) 1976-09-04
JPS5930918B2 true JPS5930918B2 (en) 1984-07-30

Family

ID=12153233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50024984A Expired JPS5930918B2 (en) 1975-03-03 1975-03-03 A method for controlling gas capacity in a vane-type rotary compressor.

Country Status (1)

Country Link
JP (1) JPS5930918B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550328Y2 (en) * 1977-05-26 1980-11-22

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852004A (en) * 1971-11-01 1973-07-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852004A (en) * 1971-11-01 1973-07-21

Also Published As

Publication number Publication date
JPS51100312A (en) 1976-09-04

Similar Documents

Publication Publication Date Title
KR890003272B1 (en) Variable capacity vane compressor
JPH0249994A (en) Rotary compressor
US4118157A (en) Rotary compressor
US3451614A (en) Capacity control means for rotary compressors
JPS62129593A (en) Vane type compressor
US2411707A (en) Compressor
JPS5930918B2 (en) A method for controlling gas capacity in a vane-type rotary compressor.
JPS623318B2 (en)
US5944499A (en) Rotor-type pump having a communication passage interconnecting working-fluid chambers
US6176695B1 (en) Control of a lobed rotor machine
JPH0148396B2 (en)
JPS6149189A (en) Variable displacement type rotary compressor
JPS623319B2 (en)
JPH08158841A (en) Oil pump device
JPS61232397A (en) Vane type compressor
GB2077857A (en) Rotary Positive-displacement Fluid-machines
JPH0320556Y2 (en)
CN2263215Y (en) Wheel valve compressor
US2655309A (en) Dual rotor compressor
JPH0229265Y2 (en)
JPS59113289A (en) Rotary compressor
JPH0258479B2 (en)
JPH0729271Y2 (en) Variable capacity vane rotary compressor
JPS6316186A (en) Vane type compressor
JPS63131890A (en) Vane type rotary compressor of variable delivery