JPS5930701A - Method for thermally cracking heavy oil - Google Patents

Method for thermally cracking heavy oil

Info

Publication number
JPS5930701A
JPS5930701A JP14059482A JP14059482A JPS5930701A JP S5930701 A JPS5930701 A JP S5930701A JP 14059482 A JP14059482 A JP 14059482A JP 14059482 A JP14059482 A JP 14059482A JP S5930701 A JPS5930701 A JP S5930701A
Authority
JP
Japan
Prior art keywords
heavy oil
steam
ratio
supply section
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14059482A
Other languages
Japanese (ja)
Other versions
JPH044961B2 (en
Inventor
Takayuki Sakamoto
隆幸 坂本
Tadayoshi Tomita
冨田 忠義
Katsutoshi Kikuchi
菊地 克俊
Toshihiro Ishida
石田 寿広
Atsushi Moriya
篤 森谷
Kenjiro Yuasa
湯浅 建二郎
Keizo Konogi
此木 恵三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Residual Oil Processing
Original Assignee
Research Association for Residual Oil Processing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Residual Oil Processing filed Critical Research Association for Residual Oil Processing
Priority to JP14059482A priority Critical patent/JPS5930701A/en
Publication of JPS5930701A publication Critical patent/JPS5930701A/en
Publication of JPH044961B2 publication Critical patent/JPH044961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To carry out the stable thermal cracking of heavy oil by dividedly feeding heavy oil to a thermal cracking pass and allowing steam to exist while keeping the ratio between the number of the molecules of steam and the number of the carbon atoms of heavy oil at a fixed value or above. CONSTITUTION:In a method for thermally cracking heavy oil contg. unvaporizable hydrocarbons with high mol.wt. in the presence of steam, the heavy oil is dividedly fed to a thermal cracking pass so as to keep the ratio between the number of the molecules of steam and the number of the carbon atoms of heavy oil (the ratio of S/C) at >= about 3.5-5.5. Heavy oil is fed from the 1st feeding section formed at the starting point of the pass, the thermal cracking of the oil in the presence of steam proceeds well in the pass, and heavy oil is fed from the 2nd feeding section formed at the downstream side of the pass. Feeding sections may be further formed at the downstream side to feed heavy oil. It is not always required to restrict the kind of the heavy oil to be supplied from the feeding sections to the same kind.

Description

【発明の詳細な説明】 本発明は重質油熱分解の方法に関する。[Detailed description of the invention] The present invention relates to a method of heavy oil pyrolysis.

重質油を水蒸気の共存下、充填物のない熱分解流路内で
熱分解する方法は、本発明者の究明によれば、好ましく
は10〜100m/秒として外部加熱を行い実施される
。この際供給される水蒸気の分子数と重質油の有する炭
素原子数の比(S10比)が、重質油種や装置条件等に
よシ異なるが、通常的3.5〜5.5程度の一定値(限
界B / ’0比)以上である必要があることも本発明
者は見出した0そうでない場合には、熱分解流路内の圧
力損失の乱れ又は増加から運転困難になシやすい。し、
かしここで消費される水蒸気は通常SlC比で0.2〜
0.3程度であり、例えば得られた生成物をそのまま接
触的水蒸気改質によシ最終的に水素と一酸化炭素に富ん
だガスとする場合にも化学量論的にはこの比は嵩高2で
よい。従ってこのままでは、水蒸気原単位が不良である
。また一般に熱分解が吸熱的であるので熱分解流路内容
物は加熱を必要とする故、過剰分の水蒸気の為に無用の
エネルギーを費消し過大の設備を要する、・′という欠
点がある。
According to the findings of the present inventors, the method of thermally decomposing heavy oil in the coexistence of steam in a thermal decomposition channel without a filler is carried out by external heating preferably at a rate of 10 to 100 m/sec. At this time, the ratio of the number of molecules of water vapor supplied to the number of carbon atoms in the heavy oil (S10 ratio) varies depending on the type of heavy oil, equipment conditions, etc., but is usually about 3.5 to 5.5. The present inventor has also found that it is necessary for the ratio to be at least a certain value (limit B/'0 ratio). If not, operation may become difficult due to turbulence or increase in pressure loss in the pyrolysis flow path. Cheap. death,
However, the water vapor consumed here usually has a SlC ratio of 0.2 to
This ratio is about 0.3, and even when the obtained product is directly subjected to catalytic steam reforming to finally produce a gas rich in hydrogen and carbon monoxide, this ratio is stoichiometrically high. 2 is fine. Therefore, as it is, the water vapor consumption rate is poor. In addition, since thermal decomposition is generally endothermic, the contents of the thermal decomposition channel require heating, which leads to the disadvantage that unnecessary energy is wasted and excessive equipment is required due to the excess steam.

この欠点を解消すべく本発明者は検討を行い、本発明が
完成された。即ち、本発明は蒸発気化し得ない高分子量
炭化水素類を含有する重質油を水蒸気の存在下熱−分解
流路内で熱分解する方法に於て、重質油の該流路への供
給が、該流路起点に設けられる第1供給部及びそれより
も下流に設けられる少なくとも1つの後続供給部から、
分割してなされることを特徴とする重質油熱分解の方法
である0 本発明でいう重質油とは、常温又は若干の加温下流動性
を有するが、加熱によっては実質的に気化し得ない高分
子量炭化水素を主要成分として含有する物質であり、代
表的には常圧蒸留残渣油、減圧蒸留残渣油、タール、ピ
ッチ、原油、特に例えばカナダ、ベネズエラ、中国等に
産する重質原油、各地のタールサンドやオイルシェール
等から得られる重質原油等がある0上記の様に従来SZ
C比を前記一定値即ち限界S / a比以上とじないを
熱分解流路中で圧力損失の乱れや増大が生じ、運転が継
続できなくなる理由は明らかでないが、固体状又は高粘
性炭素質の析出・沈着によるものではないことを本発明
者は確認した。恐らく熱分解流路内での流動状態の動的
バランスが失われてかかる問題が生ずるものと推測され
る0 本発明の方法に於ては上述の如く運転上の要請゛から過
剰に供給せざるを得ない水蒸気の利用度を同上させる為
、熱分解流路起点に設けられる第1供給部から供給され
た重質油の水蒸気との共存下での熱分解が実質的に充分
進行した熱分解流路中の下流の置所付近に設けられた第
2供給部から、前記の如き運転困難を発生させない程度
の量(即ち供給速度)の重質油を供給し。
In order to eliminate this drawback, the present inventor conducted studies and completed the present invention. That is, the present invention provides a method for thermally decomposing heavy oil containing high molecular weight hydrocarbons that cannot be evaporated in a heat-decomposition channel in the presence of steam. The supply is from a first supply section provided at the starting point of the flow path and at least one subsequent supply section provided downstream therefrom,
This is a method of pyrolysis of heavy oil, which is characterized in that it is carried out in parts. 0 Heavy oil as used in the present invention has fluidity at room temperature or under slight heating, but when heated, it becomes substantially vaporized. It is a substance that contains as a main component high molecular weight hydrocarbons that cannot be oxidized, and typically includes atmospheric distillation residue oil, vacuum distillation residue oil, tar, pitch, crude oil, especially heavy oil produced in Canada, Venezuela, China, etc. As mentioned above, conventional SZ
If the C ratio is not kept above the above-mentioned constant value, that is, the limit S/a ratio, pressure loss will be disturbed or increased in the pyrolysis flow path, and the reason why operation cannot be continued is unclear, but solid or highly viscous carbonaceous The inventor has confirmed that this is not due to precipitation/deposition. It is presumed that this problem probably occurs due to the loss of dynamic balance of the fluid state within the pyrolysis channel. In the method of the present invention, excessive supply is avoided due to operational requirements as described above. In order to increase the degree of utilization of steam that is not obtained, the thermal decomposition of the heavy oil supplied from the first supply section provided at the starting point of the thermal decomposition channel in the coexistence with steam has substantially progressed sufficiently. Heavy oil is supplied from a second supply section provided near a downstream location in the flow path in an amount (i.e., at a supply rate) that does not cause operational difficulties as described above.

更に必要に応じ同様に第5供給部以降の供給部を下流に
設けて重質油を供給するものである。
Furthermore, if necessary, a fifth supply section and subsequent supply sections are similarly provided downstream to supply heavy oil.

各供給部よυ供給される重質油種は必ずしも同一である
必要はなく、又夫々供給に適した流動性を与えるより一
般には200〜300℃以下、萬くても500℃以下の
温度に加温がなされる。
The heavy oil type supplied from each supply section does not necessarily have to be the same, and in order to provide fluidity suitable for each supply, it is generally kept at a temperature of 200 to 300℃ or less, or at most 500℃ or less. Warming is performed.

各供給部からの重質油の熱分解流路への供給は、該流路
内を流れる水蒸気を含む流動体に、熱分解反応が隣接す
る次の供給部又は該流路出口までの間に所望の程度まで
進行するように、適宜の供給速度で、水蒸気その他の駆
動気体を利用する霧化器に代表される分散供給器、又は
熱分解の良好な進行を阻害しない他の供給器によ多なさ
れればよい。
The supply of heavy oil from each supply section to the pyrolysis flow path is such that the pyrolysis reaction occurs in the fluid containing water vapor flowing in the flow path until the next adjacent supply section or the exit of the flow path. In order to ensure that the thermal decomposition progresses to the desired degree, the thermal decomposition is carried out at an appropriate supply rate using a distributed feeder such as an atomizer that uses steam or other driving gas, or other feeders that do not inhibit the good progress of thermal decomposition. The more you do, the better.

本発明の方法に於ては第1供給部又はそれよシも上流か
ら、通常は過熱された700〜1000℃の水蒸気が熱
分解流路に流入させられる。この水蒸気を以下主水蒸気
という。第1供給部からの場合は、第1供給部に用いる
重質油の供給器をアトマイザ−などに代表される霧化器
としその駆動気体として主水蒸気を利用することができ
る。重質油を一般に霧化器等に比して小型となる非分散
型供給器から重質油自体の圧力又は水蒸気その他適宜の
駆出気体の圧力を利用して熱分解流路内に供給すること
は、第1供給部に比して空間的に制約されることの多い
第2供給部以降の供給部では特に実用的であるが、その
際該流路内での圧力損失の乱れや急昇により運転の継続
が困難となることがあ゛るので、これを防ぐ為に該流路
内の流動体の流速を10m/秒以上、好ましくは25m
/秒以上、更に好ましくは5or11/秒以上とすると
よく、また該非分散型供給器からの重質油又はこれと駆
出気体の噴出速度は、上記した流動体の流速付近又はそ
れ以上である方がよい。重質油が分散型供給器から供給
される場合も流動体の流速は上i己範囲内にある方が、
重質油の分散状態の調整を精密にしなくて済むので好ま
しい。なお流速の実用上の上限は圧力損失の過大化によ
る不経済をなくす意味から1oom/秒、好ましくはq
dm/秒以下である方がよい。
In the process of the present invention, superheated steam, typically at a temperature of 700 DEG to 1000 DEG C., is introduced into the pyrolysis channel from the first feed section or from upstream thereof. This water vapor is hereinafter referred to as main water vapor. In the case of supplying heavy oil from the first supply section, the heavy oil supply device used in the first supply section can be an atomizer such as an atomizer, and main steam can be used as the driving gas. Heavy oil is fed into the pyrolysis channel from a non-dispersion type feeder, which is generally smaller than an atomizer, using the pressure of the heavy oil itself or the pressure of steam or other appropriate ejected gas. This is particularly practical for supply sections after the second supply section, which are often spatially restricted compared to the first supply section; In order to prevent this, the flow rate of the fluid in the flow path should be set to 10 m/sec or more, preferably 25 m/sec.
/second or more, more preferably 5 or 11/second or more, and the jetting speed of the heavy oil or the ejection gas from the non-dispersed type feeder is around or higher than the flow rate of the fluid described above. Good. Even when heavy oil is supplied from a distributed feeder, it is better to keep the flow rate of the fluid within the upper range.
This is preferable because it does not require precise adjustment of the dispersion state of heavy oil. Note that the practical upper limit of the flow rate is 1 oom/sec, preferably q
dm/sec or less is better.

熱分解器内の温度・圧力は熱分解器出口で温度800〜
1050℃、圧力1〜40気圧程度(なるよう運転すれ
ば、安定且つ好ましい反応−/J(行なわれる。熱分解
流路の、互に隣接する重質油供給部間又は最下流の供給
部と該流路出口1司の長さは、最終的・に所望の生成−
が得゛られる程度であればよいが、夫々の区間の滞留時
間力≦0.2秒以上4秒以下、好ましくは0.4秒以上
2秒以下とすればその間に通常充分な熱分解力;進行す
る。0.2秒未満では離反応が不充分なこと力;多く、
4妙趣では通常反応速度が遅くなり格別著しい効果は得
られず、また設備の過大化を招くので不利である。
The temperature and pressure inside the pyrolyzer is 800~ at the exit of the pyrolyzer.
If the operation is carried out at 1050°C and the pressure is about 1 to 40 atm, a stable and preferable reaction will occur. The length of the flow path outlet 1 is determined to achieve the desired final production.
However, if the residence time force in each section is ≦0.2 seconds or more and 4 seconds or less, preferably 0.4 seconds or more and 2 seconds or less, sufficient thermal decomposition power is usually obtained during that time; proceed. If it is less than 0.2 seconds, the dissociation reaction is insufficient.
The 4-method method is disadvantageous because the reaction rate is usually slow and no particularly significant effect can be obtained, and the equipment becomes too large.

本発明の方法で熱分解された重質油は、水素、−酸化炭
素、二酸化炭素、低級炭化水素など、と−なシ、各種用
途に利用することができる。最も代表的な用途として酸
水素と一酸化炭素を主要成分として含有するガスを製造
する接触的水蒸気改質の原料があシ、この場合一般的に
は熱分解流路出口からの流出物を必要に応じ適宜の導管
を介して接触的水蒸気改質器に直接導き改質に供する。
The heavy oil thermally decomposed by the method of the present invention can be used for various purposes such as hydrogen, carbon oxide, carbon dioxide, and lower hydrocarbons. The most typical application is as a raw material for catalytic steam reforming to produce gases containing oxyhydrogen and carbon monoxide as main components, in which case the effluent from the pyrolysis channel outlet is generally required. Depending on the situation, it is directly led to a catalytic steam reformer via an appropriate conduit and subjected to reforming.

該改質器にはこの種の改質に用いられる通常の触媒を、
重質γ田の性状その他に応じ組成、形状1寸法等を選択
して用いる〇一般に重質油類には窒素・硫黄・酸素など
を含む化合物や無機化合物等の不純分が炭化水素以外に
含まれていることが多いので、重質油種によってはこれ
らに由来する被挿に耐える触媒を選択する。例えば改質
器内前段には改質効果は多少劣っても被毒に強い触媒を
、又後段には改質効果に重点を置いた触媒を選択して充
填するなど、様々な目的で異種の触媒を多層に充填して
用いることができる0 本発明の方法では重質油の分割供給により水蒸気の有効
利用を図ることが出来る力;、tArkる分割供給の他
の効果が以下に説明され、る。
The reformer contains a normal catalyst used for this type of reforming.
The composition, shape, and dimensions are selected and used depending on the properties of the heavy γ field. In general, heavy oils contain impurities such as compounds containing nitrogen, sulfur, oxygen, etc., and inorganic compounds in addition to hydrocarbons. Therefore, depending on the type of heavy oil, select a catalyst that can withstand the insertion caused by these. For example, the front stage of the reformer is filled with a catalyst that is resistant to poisoning even if its reforming effect is somewhat inferior, and the latter stage is filled with a catalyst that focuses on the reforming effect. In the method of the present invention, it is possible to use the catalyst packed in multiple layers.Other effects of the divided supply of heavy oil are explained below. Ru.

即ち、重質油を熱分解流路起点で全量供給する従来の方
法では、吸熱反応である熱分解力;該起点直後付近で急
激に行なわれて温度の低下刃工著しくこの為反応速度が
低下するO外部力日熱温度を上げてこの温度低下を補う
ことは、エネルギー面及び熱分解流路の材料の耐熱性の
見tm −i−ら適当でないので、結局長い滞留時間v
狭し効率が劣る。
In other words, in the conventional method of supplying the entire amount of heavy oil at the starting point of the pyrolysis channel, thermal decomposition, which is an endothermic reaction, occurs immediately near the starting point and the temperature drops significantly, resulting in a decrease in the reaction rate. Compensating for this temperature drop by increasing the external force solar temperature is not appropriate in terms of energy and heat resistance of the material of the pyrolysis channel, so it will eventually lead to a long residence time.
Narrowing efficiency is poor.

これに対し、本発明の方法では、重質油オニ分割供給さ
れるので各供給部直後付近での吸熱撞が減じ、温度低下
の幅が小さくなシ、且り流路゛全体にわたる温度分布も
均一化される結果、全体的な反応の”効率が向上する。
On the other hand, in the method of the present invention, the heavy oil is supplied separately, so the endothermic stress in the vicinity immediately after each supply section is reduced, the width of the temperature drop is small, and the temperature distribution throughout the flow path is also improved. As a result of homogenization, the overall efficiency of the reaction is improved.

従ってその分反応流路を短縮し、又は流速を上げること
も可會しである。換言すれば、従来と同程度の反応結果
がよシ短い滞留時間で得られる。
Therefore, it is possible to shorten the reaction channel or increase the flow rate accordingly. In other words, reaction results comparable to conventional methods can be obtained with a shorter residence time.

重質油の各供給部への分配程度は、熱分解流路中の温度
分布や重質−泊の滞留時間に直接影響するので、以下の
事項を勘案し慎重に決定すべきである。
The degree of distribution of heavy oil to each supply section directly affects the temperature distribution in the pyrolysis flow path and the residence time of the heavy oil, so it should be carefully determined in consideration of the following matters.

簡単の為にどの供給部からも同質の重質油が供給され、
且つ各供給部と相隣る供給部との間隔及び最下流の供給
部と熱分解流路出口との間隔が全て同一として考えれば
、流路中の温度分布の均一化という面から見ると1重質
油の分配は各供給部間で均等゛又は下流に向って漸増さ
せるのがよいが、滞留時間の短縮の為にはよシ上流側へ
の分配が高い方がよい。従って、実際的には供給される
重質油の合計量を供給部の数で除した値の0.5〜1.
5倍、好ましくは0.6〜1.4倍、更に好ましくは0
゛、7〜1.3倍の量が個々−の供給部に分配され!よ
うな分配が諸条件のバランス上好ましい。
For simplicity, heavy oil of the same quality is supplied from every supply section,
In addition, assuming that the distance between each supply section and the adjacent supply section and the distance between the most downstream supply section and the outlet of the pyrolysis channel are all the same, from the point of view of making the temperature distribution in the flow channel uniform, 1. It is preferable that the distribution of heavy oil be equal between each supply section or gradually increase toward the downstream, but in order to shorten the residence time, it is better to have a higher distribution toward the upstream side. Therefore, in practice, the total amount of heavy oil to be supplied divided by the number of supply sections is 0.5 to 1.
5 times, preferably 0.6 to 1.4 times, more preferably 0
゛, 7 to 1.3 times the amount is distributed to the individual supply sections! Such a distribution is preferable in terms of the balance of various conditions.

また供給部の数はその数を増すほどS / C比を全体
的に下げることができて好都合であるが、相隣る供給部
間の間隔は、実際に反応が行なわれる為には極端に短く
する訳にはいかないので、余)に供給部の数を増すと分
解流路の長さ−ひいては熱分解器が大きくなる上、熱分
解器の構造が複雑とな夛、且つその操作上の困難が大き
くなるので、実用上は2〜5個、特に3〜4個が適当で
ある。
In addition, increasing the number of supply sections is advantageous because it is possible to lower the S/C ratio overall, but the spacing between adjacent supply sections must be extremely large for the reaction to actually take place. Since it cannot be shortened, increasing the number of supply sections will increase the length of the decomposition flow path and thus the size of the pyrolyzer, as well as complicate the structure of the pyrolyzer and increase its operational efficiency. Since this increases the difficulty, 2 to 5 pieces, especially 3 to 4 pieces is suitable in practice.

相隣る2個の供給部間の間隔は、上流側の供給部から供
給された分の重質油が実用的に所望の程度まで分解され
るに足る長さ又はそれ以上であればよい。
The interval between two adjacent feed sections may be long enough or longer to allow the heavy oil supplied from the upstream feed section to be decomposed to a practically desired degree.

以下実施例等によυ本発明を説明するが、以下の実施例
は本発明の典型的な具体例を示すものにすぎず、本発明
はこれらによって限定されるものではない〇 実施例1〜4及び比較例1〜4 熱分解器として約1100℃の加熱輻射炉内を5往復し
て蛇行する内径30關、長さ27mの改良EP(AST
M−A297で規定されているHPの耐熱性を更に改良
した材料)製流路を用い、その人口に第1供給部、その
4.5m下流に第1温度測定点、入口から9.0m下流
に第2供給部、入口から15.5m下流に第2温度測定
点、入口から18m下流に第3供給部、入口から22.
5m下流に第3温度測定点を設けたものを用いた。比較
例に於ては上記の同様の熱分解器で上記第2及び第3供
給部のない点だけ異なるものを用いた0 供給機構としては、各側の第1供給部では主水蒸気流で
重質油の霧化を行なうアトマイザ−ノズル、各実施例の
第2〜S供給部では、丁字形管路の横方向管路を水蒸気
が通シ、この管路に向って縦方向管路から重質油が圧送
され、水蒸気の出口側が両者の噴出側となる形式のノズ
ルを用い、水蒸気は圧力25〜/an2の飽和水煮”気
を利用した。またノズルからの噴中混合物の噴出速度(
実際上は水蒸気の噴出速度と等しいと仮定する)が該混
合物が供給される相手の水蒸気流(但しよシ上流の供給
部から供給された重質油又はその分解物を含む)の流速
よシ小さくはない様にし、またその噴出方向は核相手の
の反応圧力は15 Kg/(32G  とした。
The present invention will be explained below with reference to examples, but the following examples merely show typical specific examples of the present invention, and the present invention is not limited thereto.〇Example 1 to 4 and Comparative Examples 1 to 4 An improved EP (AST
Using a flow path made of a material that further improves the heat resistance of HP specified in M-A297, there is a first supply section in the population, a first temperature measurement point 4.5 m downstream from the first supply section, and a first temperature measurement point 9.0 m downstream from the inlet. A second supply section at 15.5 m downstream from the inlet, a second temperature measurement point 18 m downstream from the inlet, a third supply section 22.5 m downstream from the inlet.
A device with a third temperature measurement point 5 m downstream was used. In the comparative example, a similar pyrolyzer as described above was used, except that it did not have the second and third supply sections.As for the supply mechanism, the first supply section on each side was In the atomizer nozzle that atomizes quality oil, in the second to S supply sections of each embodiment, water vapor passes through the horizontal pipe of the T-shaped pipe, and heavy steam flows toward this pipe from the vertical pipe. A nozzle was used in which quality oil was fed under pressure, and the outlet side of the steam was the jetting side of both, and the steam was saturated at a pressure of 25 to 1/an2. Also, the jetting speed of the mixture being jetted from the nozzle (
In practice, it is assumed that the jetting velocity of the steam is equal to the velocity of the steam stream to which the mixture is fed (but may contain heavy oil or its decomposed products fed from an upstream feed). The ejection direction was set so that the reaction pressure of the nuclear partner was 15 Kg/(32G).

用いた原料油は重量比でアラビアンライト系48〜.5
0チ、カフジ系48〜50%、イラニアンヘビイ1〜4
チの組成を有する同一の原油から得られた常圧残渣油で
、 比重       0.944 炭素/水素重量比  7.Re (0:85.Owt%tH:12,0wt%)動粘度(
50℃)  67.3cT 総発熱量     10440 K cal /に4の
ものを用いた。
The raw material oil used was an Arabian light type oil with a weight ratio of 48~. 5
0chi, Khafuji type 48-50%, Iranian snake 1-4
Atmospheric residue oil obtained from the same crude oil having a composition of 0.944 and a carbon/hydrogen weight ratio of 7. Re (0:85.Owt%tH:12,0wt%) Kinematic viscosity (
50°C) 67.3 cT Total calorific value 10440 K cal / 4 was used.

また金側に於て、上記熱分解器からの生成物流は、その
まま外側に断熱保温層及び鋼製外装を施した耐熱鋼製導
管を介し、触媒が充填された耐熱耐火レンガ製管路で外
側に断熱保温層及び鋼製外装を施した直径400gg、
長さ3mの改質器に流入させ、接触的水蒸気改質を行な
わせた。触媒としてはOaO/ MaOsの重量比52
/48の混合物を成形焼成して得た直径10關の球を前
段に長さ1.5m分(約171 Kg)充填し、後段に
はCaO/ A、/、20. / Ni Oノ重ji比
32151/15の混合物を成形焼成して得た直径10
11の球を後段に長さ1.5m分(約190 Kf)充
填して用いた。なお改質器の最上流部の上記入口に添加
ガス入口を設け、適当な量の空気を流入させて被接触反
応物の一部を燃焼させ、発生する燃焼熱で接触反応の吸
熱に伴う温度低下を補゛うようにした。
On the gold side, the product stream from the pyrolysis device is passed through a heat-resistant steel conduit with a heat-insulating layer and a steel exterior, and is then passed through a heat-resistant refractory brick conduit filled with catalyst to the outside. 400gg in diameter with a heat insulation layer and steel exterior,
It was flowed into a 3 m long reformer to perform catalytic steam reforming. As a catalyst, the weight ratio of OaO/MaOs is 52.
The former stage was filled with 1.5 m long balls (approximately 171 kg) of 10 diameter balls obtained by molding and firing a mixture of CaO/A, /, 20. A diameter of 10 obtained by molding and firing a mixture of NiO/NiO with a weight ji ratio of 32151/15
No. 11 balls were used by filling the rear stage with a length of 1.5 m (approximately 190 Kf). In addition, an additive gas inlet is provided at the above-mentioned inlet at the most upstream part of the reformer, and an appropriate amount of air is introduced to combust a part of the reactants to be contacted, and the generated combustion heat lowers the temperature associated with the endothermic reaction of the contact reaction. I tried to compensate for the decline.

上記した以外の各種条件及び結果等を表1にまとめて示
した。なお、比較例2及び4では圧力損失が実験開始後
間もなく大きく乱れ、遂に夫々2時間及び1.5時間後
に圧力損失の過大の為運転不能となった。従ってこれら
ではガス分析等を省略すると共に添加空気量の表記を省
いた。
Various conditions and results other than those described above are summarized in Table 1. In Comparative Examples 2 and 4, the pressure loss was greatly disturbed soon after the start of the experiment, and finally, after 2 hours and 1.5 hours, respectively, the pressure loss became too large and operation became impossible. Therefore, in these, gas analysis etc. were omitted and the description of the amount of added air was also omitted.

また第2及び第6供給部で用いた飽和水蒸気の量は夫々
側れも高々主水蒸気流の2〜3多程度であるので、主水
蒸気量に含め表示した。
Furthermore, since the amounts of saturated steam used in the second and sixth supply sections were at most two to three times the amount of the main steam flow, they were included in the main steam flow and displayed.

ガス組成の分析はガスの乾燥後、ガスクロマトグラフ法
によった。
The gas composition was analyzed by gas chromatography after drying the gas.

熱分解器ガス出口ガス化率は供給された重質油の含有す
る炭素原子の量に対する熱分解器出口から得られたガス
の含有する炭素原子の割合である。
The pyrolyzer gas outlet gasification rate is the ratio of carbon atoms contained in the gas obtained from the pyrolyzer outlet to the amount of carbon atoms contained in the supplied heavy oil.

比較例1と2並びに比較例5と4の比較から、上記熱分
解器と重質油の組合せに於ては、限界S / O比が5
.5付近にあると見られる。上記の如く、比較例2及び
4ではS10比を5.0付近にしただけで圧力損失°の
過大化により1.5〜2時間で運転不能となったが、実
施例1〜3ではS / Oが合計で4.0付近まで下げ
られたにもかかわらず、充分長い時間の運転が可能であ
った。
From the comparison of Comparative Examples 1 and 2 and Comparative Examples 5 and 4, in the combination of the above pyrolyzer and heavy oil, the limit S/O ratio is 5.
.. It appears to be around 5. As mentioned above, in Comparative Examples 2 and 4, even if the S10 ratio was set to around 5.0, operation became impossible in 1.5 to 2 hours due to excessive pressure loss, but in Examples 1 to 3, S/ Even though the total O was lowered to around 4.0, it was possible to operate for a sufficiently long time.

また実施例4の合計s7cは比較例1のS/○と同一で
あるが、熱分解器出口ガス化率が比較例1の場合よ〕も
5%も高く、本発明の方法の有効さを示している。
Furthermore, the total s7c in Example 4 is the same as S/○ in Comparative Example 1, but the gasification rate at the pyrolyzer outlet is 5% higher than in Comparative Example 1, which indicates the effectiveness of the method of the present invention. It shows.

また比較例は全て第1測定点の温度が実施例に比して著
しく低いので、全体としての効率が下っていると考えら
れる。
Furthermore, in all of the comparative examples, the temperature at the first measurement point was significantly lower than in the examples, so it is thought that the efficiency as a whole was lowered.

本発明の結果を実施例1を代表的に取シ上げて詳細に説
明すると、重質油は1つの予熱槽で200〜300℃に
加熱されて良好な流動性を与えられ、保温配管によシ分
流されて第1〜第3供給部に送られる。第1供給部直後
の流路内では水蒸気400 KII/Hr s重質油3
2Kf/Hrの割合で供給されるので、S10は約9.
75である。第2供給部までに消費された水蒸気量を差
引いた水蒸気に対して第2供給部から24.4〜/ H
r  で重質油が供給されるので第2供給部直後のS/
Cは約12.5である。同様にして第3供給部直後のS
 / Oは14.7である。この様に本発明の方法では
反応流路中の各供給部属後のB / OをBZC比の最
少倍率よシも充分大きくとシ、且つ蒸気量中のH20分
子数と供給される全重質油中の炭素原子数の比(合計S
/C)は限界S / C比よシも充分小さくすることが
できて既述の諸効果が得られる。
The results of the present invention will be explained in detail by taking Example 1 as a representative example. Heavy oil is heated to 200 to 300°C in one preheating tank and given good fluidity, and is It is divided into two streams and sent to the first to third supply sections. Steam 400 KII/Hr s heavy oil 3 in the flow path immediately after the first supply section
Since it is supplied at a rate of 2Kf/Hr, S10 is approximately 9.
It is 75. 24.4~/H from the second supply section for the water vapor after subtracting the amount of water vapor consumed up to the second supply section
Since heavy oil is supplied at r, S/ immediately after the second supply section
C is approximately 12.5. Similarly, S immediately after the third supply section
/O is 14.7. As described above, in the method of the present invention, the B/O after each supply section in the reaction flow path must be sufficiently larger than the minimum magnification of the BZC ratio, and the number of H20 molecules in the amount of vapor and the total weight of the supplied Ratio of carbon atoms in oil (total S
/C) can be made sufficiently smaller than the limit S/C ratio, and the above-mentioned effects can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 蒸発気化し得ない高分子量炭化水素類を含有する重質油
を水蒸気の存在下熱分解流路内で熱分解する方法に於て
、重質油の該流路への供給が、該流路起点に設けられる
第1供給部及びそれよシも下流に設けられる少くとも1
つの後続供給部から、分割してなされることを特徴とす
る重質油熱分解の方法。
In a method of thermally decomposing heavy oil containing high molecular weight hydrocarbons that cannot be evaporated in a pyrolysis channel in the presence of water vapor, supplying the heavy oil to the channel a first supply section provided at the starting point and at least one supply section also provided downstream;
A method of pyrolysis of heavy oil, characterized in that it is carried out in parts from two subsequent feed sections.
JP14059482A 1982-08-13 1982-08-13 Method for thermally cracking heavy oil Granted JPS5930701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14059482A JPS5930701A (en) 1982-08-13 1982-08-13 Method for thermally cracking heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14059482A JPS5930701A (en) 1982-08-13 1982-08-13 Method for thermally cracking heavy oil

Publications (2)

Publication Number Publication Date
JPS5930701A true JPS5930701A (en) 1984-02-18
JPH044961B2 JPH044961B2 (en) 1992-01-30

Family

ID=15272320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14059482A Granted JPS5930701A (en) 1982-08-13 1982-08-13 Method for thermally cracking heavy oil

Country Status (1)

Country Link
JP (1) JPS5930701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616604C1 (en) * 2016-02-10 2017-04-18 Самир Энвер оглы Мамедов Method for hydrocarbon pyrolysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032106A (en) * 1973-07-25 1975-03-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032106A (en) * 1973-07-25 1975-03-28

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2616604C1 (en) * 2016-02-10 2017-04-18 Самир Энвер оглы Мамедов Method for hydrocarbon pyrolysis
WO2017138845A1 (en) * 2016-02-10 2017-08-17 Самир Энвер оглы МАМЕДОВ Hydrocarbon pyrolysis method

Also Published As

Publication number Publication date
JPH044961B2 (en) 1992-01-30

Similar Documents

Publication Publication Date Title
AU701537B2 (en) A process for the manufacture of synthesis gas by partial oxidation of a gaseous hydrocarbon-containing fuel using a multi-orifice co-annular burner
US4740290A (en) Process for thermal cracking of heavy oil
US2809104A (en) Gasification of liquid fuels
JP2640979B2 (en) Method for partial oxidation of liquid or solid and / or gaseous hydrocarbon-containing fuel
EP0178853B1 (en) Conversion process
FI68075C (en) SAETTING OVER ANORDING FOR FRAMSTAELLNING AV EN HUVUDSAKLIGEN COOKS OCH VAETGAS INNEHAOLLANDE GAS UR KOL- OCH / ELLER KOLV AEEHALTIGT UTGAONGSMATERIAL
US4952743A (en) Process and apparatus for the conversion of hydrocarbons
US20090100752A1 (en) Device for converting carbonaceous matter into synthesis gas and associated methods
CN85104091A (en) Method for transformation
JPS60219292A (en) Selective production of petrochemicals
EA030771B1 (en) Process for the production of liquid hydrocarbons from a hydrocarbon feedstock
EP0163385B1 (en) Process for producing synthesis gas by partial combustion of hydrocarbons
US10927007B2 (en) Method and plant for the production of synthesis gas
CN1043028C (en) Process for manufacture of synthesis gas by partial oxidation of liquid hydrocarbon-containing fuel using multi-orifice (coannular) burner
JP4185776B2 (en) Apparatus and method for improving spraying of raw materials
US20140103259A1 (en) Multi-tubular steam reformer and process for catalytic steam reforming of a hydrocarbonaceous feedstock
CN101260313A (en) Process to prepare a sweet crude
JPS5930701A (en) Method for thermally cracking heavy oil
EP0059772B1 (en) Crude oil cracking using partial combustion gases
US3992165A (en) Fuel reformation system
JPS5930704A (en) Method for thermally cracking heavy oil
KR100942790B1 (en) Process for the gasification of heavy oil
JPS58223602A (en) Steam reforming of heavy oil
JPS5930703A (en) Method for thermally cracking heavy oil
JPS62502343A (en) Thermal decomposition of hydrocarbons