JPS593047B2 - Message communication system for ships using satellites - Google Patents

Message communication system for ships using satellites

Info

Publication number
JPS593047B2
JPS593047B2 JP54072305A JP7230579A JPS593047B2 JP S593047 B2 JPS593047 B2 JP S593047B2 JP 54072305 A JP54072305 A JP 54072305A JP 7230579 A JP7230579 A JP 7230579A JP S593047 B2 JPS593047 B2 JP S593047B2
Authority
JP
Japan
Prior art keywords
satellite
ship
ships
communication system
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54072305A
Other languages
Japanese (ja)
Other versions
JPS55165043A (en
Inventor
洋典 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54072305A priority Critical patent/JPS593047B2/en
Publication of JPS55165043A publication Critical patent/JPS55165043A/en
Publication of JPS593047B2 publication Critical patent/JPS593047B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/2041Spot beam multiple access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

【発明の詳細な説明】 本発明は衛星を用いる公衆通信用船舶通信方式において
、対小型船舶を含む適用性の拡大、衛星放射電力の効果
的利用・通信容量の増大、及び周波数有効利用を実現す
るメッセージ通信方式の方0 式構成に関するものであ
る。
Detailed Description of the Invention The present invention realizes expansion of applicability to include small ships, effective use of satellite radiated power, increase in communication capacity, and effective use of frequencies in a ship communication system for public communication using satellites. This article relates to the configuration of a message communication system.

従来の衛星を用いる公衆通信用海事通信システムは、電
話、50ボーテレツクス、データ通信を行うもので船舶
局装置としても直径1.2mの大きな口径のアンテナを
用いるものであわ、また音声”5 はアナログ伝送方式
、テレツクス等はデジタル伝送方式を採用した高価な構
成になつている。
The conventional maritime communication system for public communication using satellites is for telephone, 50 baud telex, and data communication, and the ship station equipment also uses a large antenna with a diameter of 1.2 m, and the voice "5" is analog. The transmission system, telex, etc., is an expensive configuration that uses a digital transmission system.

このため加入者の利用料金が高価になレ、さらに小型船
舶に対しては物理的にも船舶局装置を設置しがたいとい
う欠点があつた。また、サービスエリアフ0 海域の全
域に対して対船舶向けの衛星電波をグローバルビームで
放射する方式であるので、衛星の構成が簡単になる長所
がある反面、放射電力の効率的利用の面では難点があつ
た。同時にグローバルなシングルビームの使用のために
周波数のくりク5 返し利用は不可能であつた。本発明
はこれらの欠点を解決することを目的とし、その特徴は
、1)伝送を必要とする情報量が少なくて通信を達成で
きる、かつ伝送遅延が無視できリアルタイ30ム双方向
通話を必ずしも必要としないメッセージ通信の方式とし
、かつii)船舶向け衛星電波の効率的放射をビームス
キャン又はマルチビームの方法により行い、衛星能力の
最大利用等を図ることにある。
As a result, the subscriber's usage fee is expensive, and furthermore, it is physically difficult to install the ship station equipment on small ships. In addition, since this method radiates satellite radio waves for ships as a global beam over the entire area of the service area, it has the advantage of simplifying the configuration of the satellite. There was a problem. At the same time, repeated use of frequencies was not possible due to the use of a global single beam. The present invention aims to solve these drawbacks, and its features are as follows: 1) communication can be achieved with a small amount of information required to be transmitted, transmission delay can be ignored, and real-time 30-way two-way communication is not always possible; The purpose of the present invention is to use a method for message communication that does not require message communication, and ii) efficiently radiate satellite radio waves for ships using beam scanning or multi-beam methods, thereby maximizing the use of satellite capabilities.

35以下図面により実施例を説明する。Embodiments will be described below with reference to the drawings.

第1図は本発明によるメッセージ通信方式におけるビー
ムスキヤンニング方式の適用の1実施例であつて、1は
海岸局、2は衛星、3はサービスエリア海域、4はある
時刻に卦ける衛星ビームエリア、5はスキヤンニングビ
ームの走査線、6は船舶A、7は船舶Bを示している。
FIG. 1 shows one embodiment of the application of the beam scanning method in the message communication system according to the present invention, in which 1 is a coast station, 2 is a satellite, 3 is a service area sea area, and 4 is a satellite beam area at a certain time. , 5 shows the scanning line of the scanning beam, 6 shows the ship A, and 7 shows the ship B.

海土船舶通信は、陸上の自動車、人等の移動体を対象と
する移動通信と比較して、サービスエリア内の単位面積
当りの移動体数つまり単位面積当りのトラヒツク密度は
非常に低いという特質を持つている。たとえば日本国籍
外航船舶(漁船含む)はせいぜい4000隻どまりであ
る。このためサービスエリア全域に均等かつ同時に衛星
電波を放射する従来の方式においては衛星電波の利用勃
率が極めて悪い。第1図においてはせまいエリアに集中
して強力な電波を放射するものであり、各船舶は自分の
位置がビームにより照射されたときに通信を行うもので
ある。2Kb/Sのパケツト形式のメツセージ伝送の場
合の所要伝送時間はわずか0.5秒程度であるので衛星
のビーム走査速度を適当に選定することにより各船舶は
自分が照射されている間に通信を完了することができる
Compared to mobile communications that target moving objects such as cars and people on land, sea-land-ship communications have a characteristic that the number of moving objects per unit area within the service area, that is, the traffic density per unit area, is extremely low. have. For example, there are no more than 4,000 Japanese-flagged international vessels (including fishing boats). For this reason, in the conventional method of emitting satellite radio waves evenly and simultaneously throughout the service area, the usage rate of satellite radio waves is extremely low. In FIG. 1, powerful radio waves are concentrated in a narrow area and each ship communicates when its position is illuminated by the beam. The required transmission time for message transmission in 2Kb/S packet format is only about 0.5 seconds, so by appropriately selecting the beam scanning speed of the satellite, each ship can communicate while it is being irradiated. can be completed.

ビームの走査は衛星アンテナ装置においてフエイズドア
レイ等による電子的方法、又は機械的方法によつて実現
できる。更に船舶密度の高い海域ではビーム幅を広く(
ビーム幅可変式ビームスキヤニング方式)、あるいは走
査速度を遅く調整(可変スキヤン速度式ビームスキヤニ
ング)するなどの方法をとることにより一層の効率化を
図ることが可能である。ここでサービスエリア3の面積
とビーム4の面積との比は本発明の通信能力増大利得で
あり、この分だけ船舶局設備(アンテナ・送信機能力等
)の小型化小電力化等を図ることができる。次に船→陸
,船→船メツセージ伝送の場合について説明する。
Beam scanning can be realized in a satellite antenna device by an electronic method using a phased array or the like, or by a mechanical method. Furthermore, in areas with high ship density, the beam width should be widened (
Further efficiency can be achieved by adopting a method such as a variable beam width beam scanning method) or a slow adjustment of the scanning speed (variable scan speed beam scanning). Here, the ratio of the area of the service area 3 to the area of the beam 4 is the communication capacity increase gain of the present invention, and the ship station equipment (antenna, transmitting function, etc.) can be made smaller and have lower power consumption by this amount. I can do it. Next, the case of message transmission from ship to land and ship to ship will be explained.

船舶Aは自分の海域にビームがきたことをビーコン波の
受信等の方法によつて検出してメツセージ信号をパケツ
ト形式で衛星経由で陸側に伝送する。また、船舶A→船
舶Bのメツセージも、同様の方法及び衛星又は海岸局等
にメモリ機能を持たせることによつて、衛星又は海岸局
等経由で伝送することができる。本発明による通信能力
増大利得は、たとえば、日本近海を含む太平洋域をサー
ビスエリアとする場合直径数100&1のビームでスキ
ヤンする場合おおよそ100倍のオーダとなるので、上
記のようにこの能力を船舶局の小型化等に当てることに
より大幅な低料金化が可能となる。第2図は、対船舶に
対してマルチビームを用いかつ周波数をくり返し使用し
て、周波数の有幼利用と通信容量の増大を図る場合の実
施例であつて、10は衛星、11はサービスエリア、1
2はサービスエリア内をマルチビームで分割するビーム
照射域を示している。
Ship A detects that the beam has arrived in its own sea area by receiving beacon waves or other methods, and transmits a message signal in packet format to the land side via a satellite. Furthermore, a message from ship A to ship B can also be transmitted via a satellite or coast station, etc. by using the same method and by providing the satellite or coast station with a memory function. For example, when the service area is the Pacific Ocean region including the sea near Japan, the communication capability increase gain by the present invention is on the order of 100 times when scanning with a beam of several hundred and one diameter. By focusing on downsizing, etc., it will be possible to significantly reduce charges. Figure 2 shows an example of using multi-beams and repeating frequencies for ships in order to make early use of frequencies and increase communication capacity, where 10 is a satellite and 11 is a service area. ,1
2 indicates a beam irradiation area in which the service area is divided into multiple beams.

図中のA,B,C,Dは使用周波数別を示すものでくり
返し使用されることを示す。ビーム数が多い程、周波数
利用率は高くなる。図の場合船舶局はA,B,C,Dの
4つの周波数の通信チヤンネルを持つているならば、サ
ービスエリア内のどの海域にいてもチヤンネルを切替使
用して通信を行うことができる。この場合においても、
サービスエリア面積対各ビームの面積の比に応じた利得
を得ることができる。この利得は第1図の実施例の場合
と同様に船舶局の小型・経済化等に当てることができる
。第1図に示した実施例の発明に訃いては、メツセージ
通信の特質(原則として許容される遅延時間内で片方向
伝達のメツセージ(100文字程度)の文を0.5秒程
度の短時間内で伝送すればよい)と、走査式スポツトビ
ーム方式の特長(せまいエリアに放射エネルギが集中す
るので通信に訃ける電波エネルギ利用幼率がきわめて高
い、すなわちこの分だけ衛星送信機出力の減少及び船舶
局のアンテナ・送信機の小型・小電力、経済化が図れる
)を統合したものであり、船一陸間、船一船間の通信手
段として、極めて低料金の公衆通信用の船舶用通信方式
を実現できる。
A, B, C, and D in the figure indicate the different frequencies used and indicate that they are used repeatedly. The greater the number of beams, the higher the frequency utilization rate. In the case shown in the figure, if the ship station has four communication channels of frequencies A, B, C, and D, it can communicate by switching channels no matter where it is in the sea area within its service area. Even in this case,
A gain can be obtained depending on the ratio of the service area area to the area of each beam. This gain can be used to make the ship station more compact and economical, as in the case of the embodiment shown in FIG. The invention of the embodiment shown in FIG. ) and the features of the scanning spot beam method (radiation energy is concentrated in a small area, so the rate of use of radio wave energy that impedes communication is extremely high; in other words, the satellite transmitter output is reduced and It integrates the antenna and transmitter of the ship station (small, low power, and economical), and is an extremely low-cost ship communication method for public communications as a means of communication between ships and land, and between ships. method can be realized.

たとえば面積比1/100のスポツトビームの場合、従
来のグローバルビームによる場合の1/100の送信機
電力でよい。第2図の実施例においても船舶側(利用者
負担)から見て、衛星アンテナ利得の増大に逆比例して
船舶局装置を簡易にできるという幼果が得られる。図面
の簡申な説明 第1図は本発明のビームスキヤンニングによる船舶用メ
ツセージ通信方式の一実施例、第2図はマルチビーム照
射による船舶用メツセージ通信方式の一実施例である。
For example, in the case of a spot beam with an area ratio of 1/100, the transmitter power may be 1/100 of that of a conventional global beam. The embodiment shown in FIG. 2 also has the benefit of simplifying the ship's station equipment in inverse proportion to the increase in satellite antenna gain from the perspective of the ship (at the expense of the user). Brief Description of the Drawings FIG. 1 shows an embodiment of a message communication system for ships using beam scanning according to the present invention, and FIG. 2 shows an example of a message communication system for ships using multi-beam irradiation.

1・・・・・・海岸局、2・・・・・・衛星、3・・・
・・・サービスエリア海域、4・・・・・・ある時刻に
}けるスキヤンニングビーム、5・・・・・・スキヤン
ニングビームの走査線、6・・・・・・船舶A、7・・
・・・・船舶B、10・・・・・・衛星、11・・・・
・・サービスエリア海域、12・・・・・・スポツトビ
ーム中の1つのビーム。
1...Coast station, 2...Satellite, 3...
... Service area sea area, 4 ... Scanning beam at a certain time, 5 ... Scanning line of scanning beam, 6 ... Vessel A, 7 ...
...Ship B, 10...Satellite, 11...
...Service area sea area, 12...One beam in the spot beam.

Claims (1)

【特許請求の範囲】 1 衛星を介した船舶と陸上又は船舶相互間のメッセー
ジ通信方式において、衛星のビーム面積が地球上のサー
ビスエリア面積より狭く、衛星ビームがサービスエリア
を船舶密度に従つて走査速度が制御される可変スキャン
速度ビームスキャニング方式により順次走査し、伝送さ
れるメッセージはパケット形式で、衛星ビームにより船
舶が走査される際に衛星を介して伝送されることを特徴
とする衛星を用いる船舶用メッセージ通信方式。 2 衛星を介した船舶と陸上又は船舶相互間のメッセー
ジ通信方式において、衛星のビーム面積が地球上のサー
ビスエリア面積より狭く、衛星ビームがサービスエリア
を船舶密度に従つてビーム幅が制御されるビーム幅可変
式ビームスキャニング方式により順次走査し、伝送され
るメッセージはパケット形式で、衛星ビームにより船舶
が走査される際に衛星を介して伝送されることを特徴と
する衛星を用いる船舶用メッセージ通信方式。 3 衛星を介した船舶と陸上又は船舶相互間のメッセー
ジ通信方式において、サービスエリアを照射する衛星ビ
ームがマルチスポットビーム方式のビームであり、複数
のビームにおいて同一周波数がくり返し用いられ、伝送
されるメッセージはパケット形式で行なわれることを特
徴とする衛星を用いる船舶用メッセージ通信方式。
[Claims] 1. In a message communication system between a ship and land or between ships via a satellite, the beam area of the satellite is narrower than the service area area on earth, and the satellite beam scans the service area according to the density of ships. Using a satellite, which scans sequentially using a variable scanning speed beam scanning method in which the speed is controlled, and the messages transmitted are in the form of packets, which are transmitted via the satellite as the ship is scanned by the satellite beam. Ship message communication system. 2. In a message communication system between a ship and land or between ships via a satellite, the beam area of the satellite is narrower than the service area area on Earth, and the beam width of the satellite beam is controlled according to the density of ships in the service area. A message communication system for ships using a satellite, which is characterized in that sequential scanning is performed using a variable width beam scanning method, and the transmitted messages are in packet format, and are transmitted via the satellite when the ship is scanned by the satellite beam. . 3. In a message communication system between a ship and land or between ships via satellite, the satellite beam that illuminates the service area is a multi-spot beam, and the same frequency is used repeatedly in multiple beams to transmit messages. is a message communication system for ships using satellites, which is characterized by being carried out in packet format.
JP54072305A 1979-06-11 1979-06-11 Message communication system for ships using satellites Expired JPS593047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54072305A JPS593047B2 (en) 1979-06-11 1979-06-11 Message communication system for ships using satellites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54072305A JPS593047B2 (en) 1979-06-11 1979-06-11 Message communication system for ships using satellites

Publications (2)

Publication Number Publication Date
JPS55165043A JPS55165043A (en) 1980-12-23
JPS593047B2 true JPS593047B2 (en) 1984-01-21

Family

ID=13485412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54072305A Expired JPS593047B2 (en) 1979-06-11 1979-06-11 Message communication system for ships using satellites

Country Status (1)

Country Link
JP (1) JPS593047B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424862A (en) * 1994-04-28 1995-06-13 Glynn; Thomas W. High capacity communications satellite
US5680240A (en) * 1994-04-28 1997-10-21 Glynn; Thomas W. High capacity communications satellite

Also Published As

Publication number Publication date
JPS55165043A (en) 1980-12-23

Similar Documents

Publication Publication Date Title
CN1640162B (en) Mobile network for remote service areas using mobile stations
TW535372B (en) Wireless communication system with base station beam sweeping
EP0580756B1 (en) Global satellite communication system with geographic protocol conversion
US3340531A (en) Satellite communication system
EP0611500B1 (en) Satellite communication system
EP0510789B1 (en) Cellular telephone satellite system
CN1178409C (en) Apparatus and method for paging
JPH09500512A (en) TDMA / FDMA / CDMA hybrid radio access method
CN1370354A (en) Feeder link spatial multiplexing in satellite communication system
US6642894B1 (en) Smart antenna for airborne cellular system
US6456610B1 (en) TDM/TDMA wireless telecommunication system with electronic scanning antenna
US3987444A (en) Interference rejection system for multi-beam antenna having single control loop
WO2023098493A1 (en) Broadcast beam scanning method and communication apparatus
JP2839274B2 (en) Antenna system
Wozniak et al. Broadband communication solutions for maritime ITSs: Wider and faster deployment of new e-navigation services
WO2001020719A1 (en) Smart antenna for airborne cellular system
JPS593047B2 (en) Message communication system for ships using satellites
CN111614368B (en) Maritime multipurpose communication terminal
Reudink Communications: Spot beams promise satellite communication breakthrough: Focused antenna beams with frequencies accessed by time division can mean higher uplink power and more powerful communication service
WO1997024884A2 (en) Time compressing transponder
EP0929120A3 (en) Double-stacked hourglass log periodic dipole antenna
JPH07506945A (en) bent lens antenna
Rafferty et al. NASA's mobile satellite development program
CN1072299A (en) Integrated cellular communications system
RU2786187C1 (en) Information exchange radio network for the northern sea route