JPS5930190Y2 - Gas turbine engine air bearing cooling structure - Google Patents

Gas turbine engine air bearing cooling structure

Info

Publication number
JPS5930190Y2
JPS5930190Y2 JP2295180U JP2295180U JPS5930190Y2 JP S5930190 Y2 JPS5930190 Y2 JP S5930190Y2 JP 2295180 U JP2295180 U JP 2295180U JP 2295180 U JP2295180 U JP 2295180U JP S5930190 Y2 JPS5930190 Y2 JP S5930190Y2
Authority
JP
Japan
Prior art keywords
temperature
chamber
air
wall
pressure air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2295180U
Other languages
Japanese (ja)
Other versions
JPS56124235U (en
Inventor
益美 浅野
光 森下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2295180U priority Critical patent/JPS5930190Y2/en
Publication of JPS56124235U publication Critical patent/JPS56124235U/ja
Application granted granted Critical
Publication of JPS5930190Y2 publication Critical patent/JPS5930190Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案はタービン主軸の後部を空気軸受で支承する遠
心式ガスタービンエンジン(以後単にガスタービンとい
う)の前記空気軸受の冷却構造に関するものである。
[Detailed Description of the Invention] This invention relates to a cooling structure for an air bearing of a centrifugal gas turbine engine (hereinafter simply referred to as a gas turbine) in which the rear part of a turbine main shaft is supported by an air bearing.

ガスタービン等に使用される動圧式空気軸受(以後単に
空気軸受という)はその雰囲気温度を過度に上昇させな
いように制御することにより耐久性を保持している。
Dynamic pressure type air bearings (hereinafter simply referred to as air bearings) used in gas turbines and the like maintain their durability by controlling the ambient temperature so as not to increase excessively.

雰囲気温度を過度に上昇させないようにするために通常
はガスタービンの圧縮機を出た低温高圧の空気を空気軸
受室内に導入している。
In order to prevent the ambient temperature from rising excessively, low-temperature, high-pressure air from the gas turbine compressor is normally introduced into the air bearing chamber.

そのためラジアルタービンの背面側からラジアルタービ
ン側に多量の空気が漏れてラジアルタービンそのもの、
さらにはガスタービンの性能を低下させている。
As a result, a large amount of air leaks from the back side of the radial turbine to the radial turbine side, causing damage to the radial turbine itself.
Furthermore, the performance of the gas turbine is reduced.

又燃焼室に多量の低温空気が流入するので燃焼効率の低
下を招く原因ともなっている。
Furthermore, a large amount of low-temperature air flows into the combustion chamber, which causes a decrease in combustion efficiency.

この考案は前記の欠点を有しない、簡単な構造を有する
空気軸受の冷却構造の提供を目的とする。
The object of this invention is to provide a cooling structure for air bearings that does not have the above-mentioned drawbacks and has a simple structure.

以下実施例を示す図面によりこの考案を説明する。This invention will be explained below with reference to drawings showing embodiments.

図に訃いて、1はタービン主軸であり、その前部には遠
心圧縮機2が取りつけられている。
In the figure, 1 is a turbine main shaft, and a centrifugal compressor 2 is attached to the front part of the turbine main shaft.

タービン主軸1の後端には後述するラジアルタービン1
4が取りつけられ、遠心圧縮機2はラジアルタービン1
4によりタービン主軸1を介して回転させられる。
At the rear end of the turbine main shaft 1 is a radial turbine 1 which will be described later.
4 is installed, and the centrifugal compressor 2 is connected to the radial turbine 1.
4 through the turbine main shaft 1.

19.20はそれぞれガスタービンのアウタケーシング
、インナケーシングであり、両ケーシング間に遠心圧縮
機2の出口に連通ずる環状の低温高圧空気通路3が設け
られている。
19 and 20 are an outer casing and an inner casing of the gas turbine, respectively, and an annular low-temperature and high-pressure air passage 3 communicating with the outlet of the centrifugal compressor 2 is provided between the two casings.

低温高圧空気通路3には遠心圧縮器2の出口の近くにデ
ィフューザ21が設けられている。
A diffuser 21 is provided in the low temperature high pressure air passage 3 near the outlet of the centrifugal compressor 2.

インナケーシング20内には内壁11a1外壁11bに
より囲筐れた環状の燃焼室11が設けられており、内、
外壁11a、l1bVCはそれぞれ多数の空気孔22が
設けられている。
An annular combustion chamber 11 surrounded by an inner wall 11a1 and an outer wall 11b is provided in the inner casing 20.
A large number of air holes 22 are provided in each of the outer walls 11a and l1bVC.

燃焼室11は環状の燃焼ガス通路23に連通し、燃焼室
11及び燃焼ガス通路23とインナケーシング20との
間の空間は高温高圧空気通路24となっている。
The combustion chamber 11 communicates with an annular combustion gas passage 23 , and a space between the combustion chamber 11 and the combustion gas passage 23 and the inner casing 20 forms a high-temperature, high-pressure air passage 24 .

高温高圧空気通路24は図示しない熱交換器を介して低
温高圧空気通路3に連通ずる。
The high temperature and high pressure air passage 24 communicates with the low temperature and high pressure air passage 3 via a heat exchanger (not shown).

燃焼室11の内壁11aの後方に訃いて隙間10をへだ
てて対向する内壁7aと外壁7bとからなる湾曲円盤状
の隔壁7がインナケーシング20に取りつけられている
A curved disk-shaped partition wall 7 is attached to the inner casing 20, extending behind the inner wall 11a of the combustion chamber 11 and consisting of an inner wall 7a and an outer wall 7b facing each other with a gap 10 in between.

隔壁1により燃焼室11の内壁11aより後方の空室は
内壁11aK隣接する高温高圧空気室17と空気軸受室
5とに区画されている。
The space behind the inner wall 11a of the combustion chamber 11 is divided by the partition wall 1 into a high-temperature, high-pressure air chamber 17 and an air bearing chamber 5, which are adjacent to the inner wall 11aK.

隔壁1の内壁1aは空気軸受室5側に位置しその最大半
径部には多数の通気孔8が設けられていて隔壁1の隙間
10と空気軸受室5とを連通している。
The inner wall 1a of the partition wall 1 is located on the side of the air bearing chamber 5, and a large number of ventilation holes 8 are provided in the largest radius part thereof, so that the gap 10 of the partition wall 1 and the air bearing chamber 5 are communicated with each other.

隙間10は隔壁7の最小半径位置において流出口9によ
り高温高圧空気室11と連通している。
The gap 10 communicates with a high-temperature, high-pressure air chamber 11 through an outlet 9 at the minimum radius position of the partition wall 7 .

燃焼ガス通路23には複数個の円筒形の空気流入口25
が設けられ、この空気流入口25内を貫通して低温高圧
空気通路3と空気軸受室5とを連通ずるパイプ状の空気
通路4がインナケーシング20と隔壁7とにより支持さ
れている。
The combustion gas passage 23 has a plurality of cylindrical air inlets 25.
A pipe-shaped air passage 4 passing through the air inlet 25 and communicating between the low temperature and high pressure air passage 3 and the air bearing chamber 5 is supported by the inner casing 20 and the partition wall 7.

空気軸受室5内には空気軸受6がインナケーシング20
の一部に取りつけられている。
An air bearing 6 is disposed in the inner casing 20 in the air bearing chamber 5.
attached to a part of.

13はタービンノズルで燃焼ガス通路23に連通してい
る。
A turbine nozzle 13 communicates with the combustion gas passage 23.

タービンノズル13はラジアルタービン14に連通して
いる。
Turbine nozzle 13 communicates with radial turbine 14 .

15は空気軸受6とラジアルタービン14との間に設け
たリングラビリンスであり、16はインナケーシング2
0の一部とタービン主軸1との間ニ設ケたラビリンスシ
ールである。
15 is a ring labyrinth provided between the air bearing 6 and the radial turbine 14; 16 is the inner casing 2;
This is a labyrinth seal installed between a part of the turbine shaft 1 and the turbine main shaft 1.

タービン主軸IKは燃焼室11に連通ずる燃料噴出口1
2が設けられている。
The turbine main shaft IK has a fuel injection port 1 communicating with the combustion chamber 11.
2 is provided.

なお、タービン主軸1の軸心には小径の燃料通路1aが
設けられ、その後端には燃料供給室1bが接続する。
A small-diameter fuel passage 1a is provided at the axial center of the turbine main shaft 1, and a fuel supply chamber 1b is connected to the rear end thereof.

上記の構成にお゛いて、遠心圧縮機2を出た低温の加圧
空気はディフューザ21により減速、昇圧されて低温高
圧空気となり低温高圧空気通路3を通り図示しない熱交
換器により加熱され高温高圧空気となって高温高圧通路
24及び高温高圧空気室17から燃焼室11の外壁11
b、、内壁11aの通気孔22から燃焼室11に入る。
In the above configuration, the low-temperature pressurized air that exits the centrifugal compressor 2 is decelerated and pressurized by the diffuser 21 to become low-temperature and high-pressure air, passes through the low-temperature and high-pressure air passage 3, and is heated by a heat exchanger (not shown) to produce high-temperature and high-pressure air. The air flows from the high-temperature, high-pressure passage 24 and the high-temperature, high-pressure air chamber 17 to the outer wall 11 of the combustion chamber 11.
b. It enters the combustion chamber 11 through the vent hole 22 in the inner wall 11a.

一方燃料はタービン主軸1の燃料通路1as燃料供給室
1bを経て燃料噴出口12から燃焼室11に供給されて
空気と混合し、図示しない点火プラグで点火され燃焼す
る。
On the other hand, fuel is supplied to the combustion chamber 11 from the fuel jet port 12 through the fuel passage 1as and the fuel supply chamber 1b of the turbine main shaft 1, mixes with air, and is ignited by a spark plug (not shown) to be combusted.

燃焼ガスは燃焼ガス通路23を経てタービンノズル13
に入り、ラジアルタービン14を経て膨張し、高温低圧
状態で熱交換器を通り、低温低圧状態で大気中に排出さ
れる。
The combustion gas passes through the combustion gas passage 23 to the turbine nozzle 13.
It expands through the radial turbine 14, passes through a heat exchanger at high temperature and low pressure, and is discharged into the atmosphere at low temperature and low pressure.

一方、低温高圧空気通路3内の低温高圧空気の一部は空
気通路4を経て空気軸受室5に流入し空気軸受6を冷却
しつつ隔壁7の内壁7aの通気孔8から隙間10内に流
入し、隙間10を通って流出口9から高温高圧空気室1
1に入り、さらに通気孔22から燃焼室11に流入する
On the other hand, a part of the low-temperature high-pressure air in the low-temperature high-pressure air passage 3 flows into the air bearing chamber 5 through the air passage 4, cools the air bearing 6, and flows into the gap 10 through the ventilation hole 8 of the inner wall 7a of the partition wall 7. The high temperature and high pressure air chamber 1 flows from the outlet 9 through the gap 10.
1 and further flows into the combustion chamber 11 through the ventilation hole 22.

(圧力は空気軸受室5の方が高温高圧空気室17より高
い)この考案の隔壁1は隙間10をへだてで対向する、
空気軸受室5側の内壁7aと高温高圧空気室17側の外
壁7bとからなる二重壁であること及び内壁7aに多数
の通気孔8が設けられて隙間10が空気軸受室5から高
温高圧空気室17への低温高圧空気の通路となっている
ことから燃焼室11で発生した高温燃焼ガスの輻射熱を
遮断し空気軸受室5の温度上昇を少なくする。
(The pressure is higher in the air bearing chamber 5 than in the high-temperature, high-pressure air chamber 17.) The partition walls 1 of this invention face each other across the gap 10,
It is a double wall consisting of an inner wall 7a on the side of the air bearing chamber 5 and an outer wall 7b on the side of the high temperature and high pressure air chamber 17, and a large number of ventilation holes 8 are provided in the inner wall 7a so that a gap 10 is formed so that the high temperature and high pressure can be removed from the air bearing chamber 5. Since it serves as a path for low-temperature, high-pressure air to the air chamber 17, it blocks the radiant heat of the high-temperature combustion gas generated in the combustion chamber 11 and reduces the temperature rise in the air bearing chamber 5.

空気の熱伝導率は金属などに較べて格段に低いから隙間
10を低温の空気が絶えず流れているということは燃焼
室11からの熱輻射の遮断に対し特に大きな効果を発揮
する。
Since the thermal conductivity of air is much lower than that of metals, the constant flow of low-temperature air through the gap 10 is particularly effective in blocking heat radiation from the combustion chamber 11.

従って圧縮機3から供給される空気軸受6の冷却に必要
な低温高圧空気の量を減らすことができるのでタービン
効率は良くなる。
Therefore, the amount of low-temperature, high-pressure air required for cooling the air bearing 6 supplied from the compressor 3 can be reduced, resulting in improved turbine efficiency.

又、空気軸受室5を冷却した空気を隔壁7の隙間10お
よび高温高圧空気室17を経て燃焼室11に導入できる
ので、タービン主軸1背而のリングラビリンス15の隙
間釦よび燃焼器ラビリンスレール16とタービン主軸1
との隙間を小さくしてタービン主軸1背面を通ってラジ
アルタービン14に流れる空気量釦よび燃焼室ラビリン
スシール16から燃焼室11に流れる空気量を少なくす
ることができるから、ガスタービンの出力が向上し、燃
費がよくなる。
In addition, since the air that has cooled the air bearing chamber 5 can be introduced into the combustion chamber 11 through the gap 10 in the partition wall 7 and the high-temperature and high-pressure air chamber 17, the air that has cooled the air bearing chamber 5 can be introduced into the combustion chamber 11 through the gap 10 in the partition wall 7 and the high-temperature and high-pressure air chamber 17. and turbine main shaft 1
The amount of air flowing from the combustion chamber labyrinth seal 16 to the combustion chamber 11 through the air volume button and the combustion chamber labyrinth seal 16 through the back surface of the turbine main shaft 1 can be reduced by reducing the gap between the combustion chamber and the radial turbine 14, thereby improving the output of the gas turbine. and improves fuel efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図はガスタービンにトけるこの考案の一実施例の断面図
である。 2・・・・・・遠心圧縮機、3・・・・・・低温高圧空
気通路、5・・・・・・空気軸受室、7・・・・・・隔
壁、7a・・・・・・内壁、7b・・・・・・外壁、8
・・・・・・通気孔、10・・・・・・隙間、11・・
・・・・燃焼室、17・・・・・・高温高圧空気室。
The figure is a sectional view of one embodiment of this invention in a gas turbine. 2... Centrifugal compressor, 3... Low temperature high pressure air passage, 5... Air bearing chamber, 7... Bulkhead, 7a... Inner wall, 7b... Outer wall, 8
...Vent, 10...Gap, 11...
... Combustion chamber, 17... High temperature and high pressure air chamber.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機出口に低温高圧空気通路を介して連通ずる空気軸
受室が燃焼室の後方に位置する高温高圧空気室と湾曲円
盤状の隔壁により区画され、高温高圧空気室の後方に配
置されているガスタービンエンジンに訃いて、前記隔壁
は空気排出路を形成する隙間をへだでて対向する空気軸
受室側の内壁と高温高圧空気室側の外壁とにより構成さ
れ、内壁は多数の通気孔を有し、前記隙間は隔壁の最小
半径の位置に釦いて高温高圧空気室と連通していること
を特徴とする空気軸受冷却構造。
The air bearing chamber, which communicates with the compressor outlet via a low-temperature, high-pressure air passage, is divided by a high-temperature, high-pressure air chamber located at the rear of the combustion chamber, and a curved disk-shaped bulkhead, and the gas bearing chamber is located at the rear of the high-temperature, high-pressure air chamber. In a turbine engine, the partition wall is composed of an inner wall on the side of the air bearing chamber and an outer wall on the side of the high-temperature and high-pressure air chamber, which face each other across a gap forming an air exhaust path, and the inner wall has a large number of ventilation holes. The air bearing cooling structure is characterized in that the gap is buttoned at a position of the minimum radius of the partition wall and communicates with a high temperature and high pressure air chamber.
JP2295180U 1980-02-23 1980-02-23 Gas turbine engine air bearing cooling structure Expired JPS5930190Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2295180U JPS5930190Y2 (en) 1980-02-23 1980-02-23 Gas turbine engine air bearing cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295180U JPS5930190Y2 (en) 1980-02-23 1980-02-23 Gas turbine engine air bearing cooling structure

Publications (2)

Publication Number Publication Date
JPS56124235U JPS56124235U (en) 1981-09-21
JPS5930190Y2 true JPS5930190Y2 (en) 1984-08-29

Family

ID=29619064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295180U Expired JPS5930190Y2 (en) 1980-02-23 1980-02-23 Gas turbine engine air bearing cooling structure

Country Status (1)

Country Link
JP (1) JPS5930190Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020217576A1 (en) * 2019-04-25 2020-10-29

Also Published As

Publication number Publication date
JPS56124235U (en) 1981-09-21

Similar Documents

Publication Publication Date Title
US3898793A (en) Bearing system for gas turbine engine
US3963368A (en) Turbine cooling
US8079802B2 (en) Gas turbine
CN113864819A (en) Afterburner with air cooling structure
JPH02218821A (en) Turbine engine and cooling method
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
JPH0474532B2 (en)
US3730644A (en) Gas turbine engine
JP2014181701A (en) Flow sleeve assembly for combustion module of gas turbine combustor
GB1150147A (en) Improvements in Combinations of Gas Turbine Engines and Electric Generators
JPH0421054B2 (en)
JPH0474533B2 (en)
CA2429425C (en) Combustor turbine successive dual cooling
US3907457A (en) Labyrinth structure for air outlet of gas turbine engine bearing chamber
US3304713A (en) Annular combustion chambers for gas turbine engines
CA2936582A1 (en) Turbine vane rear insert scheme
JPH045895B2 (en)
JP2005037122A (en) Method and device for cooling combustor for gas turbine engine
US5224819A (en) Cooling air pick up
JP2011241824A (en) System for cooling turbine combustor transition piece
JPS5930190Y2 (en) Gas turbine engine air bearing cooling structure
US11149557B2 (en) Turbine vane, ring segment, and gas turbine including the same
JP4746499B2 (en) Atmospheric pressure combustion turbine system with improved shaft cooling structure
US10787965B1 (en) Advanced gas turbine engine
JP4987427B2 (en) Atmospheric pressure combustion turbine system with cooling structure for working gas inlet