JPS5930029A - Temperature detecting device - Google Patents

Temperature detecting device

Info

Publication number
JPS5930029A
JPS5930029A JP14008582A JP14008582A JPS5930029A JP S5930029 A JPS5930029 A JP S5930029A JP 14008582 A JP14008582 A JP 14008582A JP 14008582 A JP14008582 A JP 14008582A JP S5930029 A JPS5930029 A JP S5930029A
Authority
JP
Japan
Prior art keywords
field effect
insulated gate
electrode
circuit
gate field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14008582A
Other languages
Japanese (ja)
Other versions
JPH0126493B2 (en
Inventor
Masayuki Namiki
並木 優幸
Masaaki Kamiya
昌明 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP14008582A priority Critical patent/JPS5930029A/en
Publication of JPS5930029A publication Critical patent/JPS5930029A/en
Publication of JPH0126493B2 publication Critical patent/JPH0126493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain high accuracy and to decrease costs, by making a one conducting type semiconductor substrate a common collector, specifically connecting the connecting initial stages and final stages of at least two transistors, which are connected in a Darlington mode, thereby constituting a temperature detecting part. CONSTITUTION:For example, two N-P-N transistors 14 are connected in a Darlington mode. The base of the transistor 14 in the initial stage is connected to a common collector and a first electrode is formed. The emitter of the transistor 14 in the final stage is made to be a second electrode. Thus a temperature detecting part is constituted. A constant current circuit 8 is connected to the second electrode. Then a temperature sensor part A of the N-P-N transistor is formed by a collector electrode 23, a base electrode 17, and an emitter electrode 18. In this case, a P<+> diffused layer 20, which is to become a base region, can be manufactured together with a substrate region 27 of an N channel transistor B. An N<+> emitter region 22 can be manufactured together with a source 26 and the like of the transistor B.

Description

【発明の詳細な説明】 本発明は、半導体基板を共通のコレクタとじて2個以上
のバイポーラトランジスタをダーリントン@続してなる
高感度温度センサとこれに定電流を供給する定電流回路
を同一基板上に作製した温度検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a highly sensitive temperature sensor formed by connecting two or more bipolar transistors using a common collector on a semiconductor substrate, and a constant current circuit that supplies a constant current to the sensor on the same substrate. The present invention relates to the temperature detection device manufactured above.

従来、温度を検出する素子及びシステムは、例えば第1
図に示すような回路構成を用いる。
Conventionally, elements and systems for detecting temperature, for example,
A circuit configuration as shown in the figure is used.

その動作原理は、サーミスタ1の温度による抵抗値の変
化を抵抗値検出回路2により検出し、制御出力端子6か
らの信号によってトランジスタ4をon−offl、、
ヒーター50発熱をコア 1− 。
Its operating principle is that a resistance value detection circuit 2 detects a change in resistance value due to temperature of the thermistor 1, and a signal from a control output terminal 6 turns the transistor 4 on and off.
Heater 50 heat generation core 1-.

−ルする方式を採用してきた。この方式の欠点としては
、サーミスタの劣化が著しく、信頼性が余りないこと。
- We have adopted the method of The disadvantage of this method is that the thermistor deteriorates significantly and is not very reliable.

サーミスタの特性のバラツキが太きく素子毎に調整抵抗
6によシ所定の温度で検出されるよう調整する必要があ
ること。更に、部品点数が多くコスト高でるると同時に
信頼性が低く、広いスペースを必要とする。などの欠点
がある。
The characteristics of the thermistors vary widely, and it is necessary to adjust each element using the adjustment resistor 6 so that it is detected at a predetermined temperature. Furthermore, the number of parts is large, the cost is high, the reliability is low, and a large space is required. There are drawbacks such as.

また、他の温度検出素子としては、第2図に示したよう
なP N接合ダイオード7に定電流を供給し、出力電圧
9の温度変化を測定する回路がある。しかしこの温度セ
ンサは通常ダイオード1段で2mv/’Cの出力電圧し
か得られないため、A/D変換して1℃の精度を得るた
めには、後段の回路を精度よくつくらなければならなか
った。市販のPN接合ダイオード温度センサとしては、
第3図のようにNPN)ランシフタのペース、コレクタ
を接続した回路が用いられており、通常、数100μA
から数mAの電流を外部供給源から供給する必要があり
、この程度の電流は、自己加熱の原因になり、測定誤差
を増加させていた。なお、第3図で、10はコレクタ、
11はベース、12はエミッタである。従来用いられて
いた温度センサは上記のような欠点があり、安定且つ高
精度、低価格で製作できる温度検出装置が待望されてい
た。
Further, as another temperature detection element, there is a circuit as shown in FIG. 2 which supplies a constant current to a PN junction diode 7 and measures the temperature change in the output voltage 9. However, this temperature sensor normally only provides an output voltage of 2 mv/'C with a single diode stage, so in order to achieve an accuracy of 1°C through A/D conversion, the subsequent circuit must be made with high precision. Ta. Commercially available PN junction diode temperature sensors include:
As shown in Figure 3, a circuit is used in which the pace and collector of an NPN) run shifter are connected, and the current is usually several 100 μA.
It is necessary to supply a current of several mA from an external source, and this current causes self-heating and increases measurement errors. In addition, in Fig. 3, 10 is the collector,
11 is a base, and 12 is an emitter. Conventionally used temperature sensors have the above-mentioned drawbacks, and there has been a long-awaited temperature detection device that is stable, highly accurate, and can be manufactured at low cost.

本発明は、前記従来の欠点を除去し、全く新しい方式に
よυ低コスト、高倍軸度の温度検出装置を提供するもの
である。本発明の要点は、N P Nトランジスタを2
個以上ダーリントン接続した高感度温度センサと、これ
に一定電流全供給する定電流回路とを同一基板上にC!
MO8fA造プロセスで同時に作成するもので、温度セ
ンサをつくりこむための特別な工程を必要としないこと
。温度センサと定電流回路とを含め7’(基板面積が極
めて小ζ〈てすむこと。0MO8定電流回路によって供
給する定電流値が従来の’Aooo程度であり、自己加
熱による誤差が小さいことなどにより、従来の欠点を除
去したものである。
The present invention eliminates the above-mentioned drawbacks of the conventional technology and provides a low-cost, high-axis temperature detection device using a completely new system. The main point of the present invention is to use two N P N transistors.
A high-sensitivity temperature sensor connected to Darlington and a constant current circuit that supplies a constant current to it are all mounted on the same board.
It is created at the same time as the MO8fA manufacturing process, so there is no need for a special process to incorporate the temperature sensor. Including the temperature sensor and constant current circuit, the board area is extremely small.The constant current value supplied by the 0MO8 constant current circuit is about Aooo compared to the conventional one, and the error due to self-heating is small. This eliminates the drawbacks of the conventional method.

以下、図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第4図は、本発明で使用するNPN)ランシフタを2つ
ダーリントン接続した回路と定電流回路8を接続した回
路図である。NPN )ランシフタ2つで6mv/℃、
  第4図を改善した第5図において3つトランジスタ
で11mv/℃ の温度感度をもっている。15は出力
端子である。0MO8に内蔵したこの新しい温度センサ
を、仮にH工TEI(旦igh  Elenoitiv
e  工ntegrated 工e−mperatur
e 旦ensor)と呼ぶ。8は後述するCMO8定電
流回路で、0,2μAの定電流をH工TEに供給するた
めの回路であり、この回路をH工TSとともにC!MO
81チップに内蔵することができたことが、本発明の要
点である。
FIG. 4 is a circuit diagram in which a constant current circuit 8 is connected to a circuit in which two NPN run shifters used in the present invention are connected in Darlington. NPN) 6mv/℃ with two run shifters,
In FIG. 5, which is an improved version of FIG. 4, three transistors have a temperature sensitivity of 11 mV/°C. 15 is an output terminal. This new temperature sensor built into 0MO8 will be temporarily installed at H Engineering TEI.
e-emperature
It is called dansensor). 8 is a CMO8 constant current circuit to be described later, which is a circuit for supplying a constant current of 0.2 μA to the H engineering TE, and this circuit is connected to the H engineering TS together with the C! M.O.
The key point of the present invention is that it can be incorporated into the 81 chip.

第4図、第51文、第6図は、本発明に使用する同−C
MOSチップ上に作製した温度検出装置の回路図の例で
ある。第4図はNPN)ランシフタ14の2段接続、第
5図は3段接続、第6図は3段接続で、かつ2段目以後
のN P N )ランシフタ16のペース領域内に第2
のコレクタ領域を設け   ゛電流増幅率βを低減化し
て、出力電圧yy、  出力端子15のばらつきを小さ
く、且つ、外堀ノイズに対して安定した出力を得られる
構造を施したものである。第7図は、本発明に使用する
ワンチップ温度検出装置が、同一のC!MOSプロセス
で作製できることを示した構造断面図である。図中、領
域AがNPN)ランシフタ、領域BがNチャネルトラン
ジスタ、領域CがPチャネルトランジスタの構造断面図
である。図中、20idNPN)ランシフタのベース領
域となるP+拡散層で、これはNチャネルトランジスタ
のPウェル、すなわち基板領域27を形成する際、同時
に作製できる。
Figure 4, sentence 51, and Figure 6 are the same-C used in the present invention.
This is an example of a circuit diagram of a temperature detection device fabricated on a MOS chip. 4 shows a two-stage connection of the NPN) run shifter 14, FIG. 5 shows a three-stage connection, and FIG. 6 shows a three-stage connection.
A structure is provided in which the current amplification factor β is reduced to reduce variations in the output voltage yy and the output terminal 15, and to obtain a stable output against external noise. FIG. 7 shows that the one-chip temperature detection device used in the present invention has the same C! FIG. 3 is a cross-sectional view of the structure showing that it can be manufactured using a MOS process. In the figure, region A is a structural cross-sectional view of an NPN run shifter, region B is an N-channel transistor, and region C is a P-channel transistor. In the figure, 20idNPN) is a P+ diffusion layer which becomes the base region of the run shifter, and can be formed at the same time as forming the P well of the N-channel transistor, that is, the substrate region 27.

ま’fc、s N+エミッタ領域22は、Nチャネルト
ランシフタのソース26.ドレイン25のNJ散層を平
反する際に、同時に作製することができる。
The N+ emitter region 22 is the source 26 of the N-channel transferer. When the NJ diffusion layer of the drain 25 is reversed, it can be manufactured at the same time.

21にベースコンタクトP+領域、41はコレクタコン
タクトN+領域である。ここで23はコレクタ電極、1
7は3−ス電極、18はエミッタ電極である。こわでm
閣センサ部Aが形成さ力、る。
21 is a base contact P+ region, and 41 is a collector contact N+ region. Here, 23 is a collector electrode, 1
7 is a 3-sence electrode, and 18 is an emitter electrode. I'm scared
The power sensor part A is formed.

同、Nチャネルトランジスタ部Bで、39はケート絶縁
膜、2′4は戸チャネルカット、25はN+ドレイン、
26はN+ソースでおる。また、35はドレイン電極、
65はソース電極である。Pチャネルトランジスタ部C
で、29はN+チャネルカット、30はN+ ドレイン
、31はN+ソース、39がゲート絶縁膜、であり、3
6はドレイ/電極、37はゲート電極、38はソース電
極である。
In the same N-channel transistor part B, 39 is a gate insulating film, 2'4 is a door channel cut, 25 is an N+ drain,
26 is N+ sauce. Further, 35 is a drain electrode,
65 is a source electrode. P channel transistor section C
29 is an N+ channel cut, 30 is an N+ drain, 31 is an N+ source, 39 is a gate insulating film, and 3
6 is a drain/electrode, 37 is a gate electrode, and 38 is a source electrode.

上述のように、H工TEI温度センサは、通常のCM 
OSプロセスで他の(3MO8回路と同時に作成でき、
初雑な工程を必要とせず、微小電流を供給するcuoe
定電流回路と同一チップに構成できるのが大きな特徴で
ある。
As mentioned above, the H-TEI temperature sensor is a normal CM
It can be created at the same time as other (3MO8) circuits in the OS process.
cuoe that supplies minute current without requiring complicated processes
A major feature is that it can be configured on the same chip as the constant current circuit.

次に、本発明の温度検出装置に用いているCMOB定電
流回路について説明する。第8図にその回路図を示す。
Next, the CMOB constant current circuit used in the temperature detection device of the present invention will be explained. FIG. 8 shows the circuit diagram.

この回路の原理詳細についてはここでは省略するが、通
常定電流回路とじ−C用いられる、コンパレータ、定電
圧回路を含んでいない、、ため回路が簡単であり、低消
費電流化に適した回路である。この回路の定電流値は、
次式で決定される。
The details of the principle of this circuit are omitted here, but the circuit is simple and suitable for reducing current consumption because it does not include a comparator or constant voltage circuit, which are normally used in constant current circuits. be. The constant current value of this circuit is
It is determined by the following formula.

Ir5f=K(1(VTpH−VTPL)”ここで、K
oはトランジスタ45のKM(コンダクタンス定数〕で
あり、VTPII  fi )ランシフタ42の閾値、
vTPT−はトランジスタ41の閾値で、イオン打ち込
みなどにより閾値を下げている。すなわちこの回路ハ、
トランジスタ45のコンダクタンス定数と、2つの閾値
電圧の差との積で定電流値が決まるのソ、バラツキの少
ない定電流が得られる。第8図中、46はH工TS温度
センサ等の負荷である。44.43は閾値とコンダクタ
ンス定数の等しいNチャネルトランジスタ、45はその
コンダクタンス定数によって定電流値を決定するトラン
ジスタである。47は電源である。
Ir5f=K(1(VTpH-VTPL)"where, K
o is KM (conductance constant) of the transistor 45, VTPII fi ) is the threshold of the run shifter 42,
vTPT- is the threshold value of the transistor 41, which is lowered by ion implantation or the like. In other words, this circuit C,
Since the constant current value is determined by the product of the conductance constant of the transistor 45 and the difference between the two threshold voltages, a constant current with little variation can be obtained. In FIG. 8, 46 is a load such as the H engineering TS temperature sensor. 44 and 43 are N-channel transistors whose threshold value and conductance constant are equal, and 45 is a transistor whose constant current value is determined by its conductance constant. 47 is a power source.

第9図は、この定電流回路によって得られた、定電流値
の電源電圧依存性のグラフである。第10@は、)1’
1TEl温度センサと0M0B定電流回路を同一チップ
に集積した本発明の第一の実施例の回路図である。48
の枠内が定電流回路で、501)Z HI T S !
fl−+ 7”j” T:ある。51はV’DD 。
FIG. 9 is a graph of the power supply voltage dependence of the constant current value obtained by this constant current circuit. The 10th @ is )1'
FIG. 1 is a circuit diagram of a first embodiment of the present invention in which a 1TEL temperature sensor and a 0M0B constant current circuit are integrated on the same chip. 48
The area within the frame is the constant current circuit, and 501) Z HI T S!
fl-+ 7”j” T: Yes. 51 is V'DD.

55はyssであり、52は出力電圧端子7Fである。55 is yss, and 52 is the output voltage terminal 7F.

本発明の第二の実施例である第11図は、第10図の回
路に更に電圧比較回路と、出力/(ソファを同一チップ
に集積した回路図である。図中、59Fi電圧比較回路
、58は出力)(ソファ、53は入力電圧端子で、54
は出力端子である。我々はこのワンチップICを11f
i角に集積化した。
FIG. 11, which is a second embodiment of the present invention, is a circuit diagram in which the circuit of FIG. 10 is further integrated with a voltage comparison circuit and an output/(sofa) on the same chip. In the figure, a 59Fi voltage comparison circuit, 58 is the output) (sofa, 53 is the input voltage terminal, 54
is the output terminal. We are using this one-chip IC as 11f.
It was integrated into the i corner.

第12図は、横軸に温度、たて軸に出力電圧vyをとり
、センサー出力の温度変化を示したグラフである。
FIG. 12 is a graph showing temperature changes in the sensor output, with temperature on the horizontal axis and output voltage vy on the vertical axis.

以上、詳述したように本発明によれば、温度感411m
v/℃ を得られ、ン(ラツキの櫂めて小さな温度セン
サHITSと、これに0.2μA程度の微小定電流を供
給する0MO8定電流回路と、電圧比較回路、出力バッ
ファ回路などを通常のCMOSプロセスで、特殊な工程
を必要としないで同一チップ化できるもので、高感度、
低消費電力、バラツキ小、安定性大、チップコスト小な
る特徴をもつ温度検出装置である。この温度検出装置!
h上記の特徴から、従来のサーミスタ、バイポーラ温度
センサにかわる温度検出装置として使用できるものであ
る。
As described above in detail, according to the present invention, the temperature sensation is 411 m
v/℃, and a very small temperature sensor (HITS), a 0MO8 constant current circuit that supplies a minute constant current of about 0.2 μA, a voltage comparison circuit, an output buffer circuit, etc. Using CMOS process, it can be integrated into the same chip without requiring any special process, and has high sensitivity,
This temperature detection device has the features of low power consumption, small variation, high stability, and low chip cost. This temperature detection device!
h Due to the above characteristics, it can be used as a temperature detection device in place of conventional thermistors and bipolar temperature sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はM米のサーミスタを用いた温度検出システムの
一例の回路面。 第2図、第3図に、それぞれ従来のダイオード温度セン
サ及びNPN )ランシフタ温度センサの回路図。 第4図は本発明に使用する2段ダーリントン接続センサ
回路図、 第5図は本発明に使用する3段ダーリントン接続センサ
回路図。 第6図は本発明に使用するマルチコレクタ構造の6段ダ
ーリントン接続センサの回路図。 第7図は本発明に使用するH工TS温度センサ。 Nチャネルトランジスタ、Pチャネルトランジスタの構
造断面図。 第8図は本発明に使用するCMO8定電流回路回路図。 第9図は第8図の回路の定電流特性を示すグラフ。 第10図は本発明の第一実施例の同一チップ化゛温度検
出装置の回路図。 第11図に本発明の第二実施例の回路図である。 第12図は本発明の温度検出装置によって得られた出力
電圧端子である。 48・・・・・・定電流回路 50・・・・・・H工TEI温度センサ51 ・・・・
・・ VT)D 55 ・・・・・・yes 52・・・・・・出力電圧端子 59・・・・・・電圧比較回路 58・・・・・・出力バッファ 55・・・・・・入力電圧端子 54・・・・・・出力端子 以   上 出願人 株式会社 第二精工台 第1図 第2図 第4図 w43図 第9図 第1O図
Figure 1 shows the circuit diagram of an example of a temperature detection system using a M type thermistor. 2 and 3 are circuit diagrams of a conventional diode temperature sensor and an NPN) run shifter temperature sensor, respectively. FIG. 4 is a circuit diagram of a two-stage Darlington connection sensor used in the present invention, and FIG. 5 is a circuit diagram of a three-stage Darlington connection sensor used in the invention. FIG. 6 is a circuit diagram of a six-stage Darlington connection sensor with a multi-collector structure used in the present invention. Figure 7 shows the H-TS temperature sensor used in the present invention. Structural cross-sectional views of an N-channel transistor and a P-channel transistor. FIG. 8 is a circuit diagram of a CMO8 constant current circuit used in the present invention. FIG. 9 is a graph showing the constant current characteristics of the circuit shown in FIG. 8. FIG. 10 is a circuit diagram of the same chip temperature detection device according to the first embodiment of the present invention. FIG. 11 is a circuit diagram of a second embodiment of the present invention. FIG. 12 shows the output voltage terminal obtained by the temperature detection device of the present invention. 48... Constant current circuit 50... H engineering TEI temperature sensor 51...
...VT)D 55...yes 52...Output voltage terminal 59...Voltage comparison circuit 58...Output buffer 55...Input Voltage terminal 54... Output terminal or higher Applicant Daini Seikodai Co., Ltd. Figure 1 Figure 2 Figure 4 w43 Figure 9 Figure 1O Figure

Claims (2)

【特許請求の範囲】[Claims] (1)−導電型の半導体基板を共通のコレクタとし、ダ
ーリントン接続された少な(とも2個以上のトランジス
タから成り、ダーリントン接続初段のトランジスタのベ
ースを上記共通コレクタに接続して第1の電極となし、
ダーリントン接続終段のトランジスタのエミッタを第2
の電極とした温度検出部と、前記第2の電極に定電流回
路を接続し、一定電流を供給したことを特徴とする温度
検出装置。
(1) - A conductive type semiconductor substrate is used as a common collector, and the base of the transistor in the first stage of Darlington connection is connected to the common collector, and the first electrode and none,
Connect the emitter of the final stage transistor to the second Darlington connection.
1. A temperature detection device comprising: a temperature detection section having an electrode; and a constant current circuit connected to the second electrode to supply a constant current.
(2)第1の導伝型を有する第1の絶縁ゲート電界効果
型トランジスタに第2の導伝凰を有する第2の絶縁ゲー
ト電界効果型トランジスタを直列に接続した回路と、前
記第1の絶縁ゲート電界効果型トランジスタと閾値電圧
が異なる第1導伝型の第6の絶縁ゲート電界効果型トラ
ンジスタに前記第2の絶縁ゲート電界効果型トランジス
タと閾値電圧が等しい第2の導伝型第4の絶縁ゲート電
界効果型トランジスタを直列に接続した回路とを電源に
対して各々並列に接続すると共に、前記第1と第5の絶
縁ゲート電界効果型トランジスタのゲート電極を前記第
6と第4の絶縁ゲート電界効果型トランジスタの接続点
に接続し、前記第2と第4の絶縁ゲート電界効果型トラ
ンジスタのゲート電極を前記第1と第2の絶縁ゲート電
界効果型トランジスタの接続点に接続して定電圧回路を
構成し、更に、負荷に第5の絶縁ゲート電界効果型トラ
ンジスタを直列に接続した回路を電源に対して並列に接
続し、前記第5の絶縁ゲート電界効果型トランジスタの
ゲート電極を前記定電圧回路の定電圧出力に接続した定
電圧回路によって一定電流を供給したことを特徴とする
特許請求の範囲第1項記載の温度検出装置。
(2) a circuit in which a first insulated gate field effect transistor having a first conductivity type and a second insulated gate field effect transistor having a second conduction type are connected in series; a sixth insulated gate field effect transistor of a first conductivity type whose threshold voltage is different from that of the insulated gate field effect transistor; and a fourth insulated gate field effect transistor of a second conductivity type whose threshold voltage is equal to that of the second insulated gate field effect transistor. A circuit in which two insulated gate field effect transistors are connected in series are connected in parallel to a power supply, and the gate electrodes of the first and fifth insulated gate field effect transistors are connected to the sixth and fourth insulated gate field effect transistors. connecting the gate electrodes of the second and fourth insulated gate field effect transistors to the junction of the first and second insulated gate field effect transistors; A constant voltage circuit is configured, and a circuit in which a fifth insulated gate field effect transistor is connected in series to the load is connected in parallel to the power supply, and the gate electrode of the fifth insulated gate field effect transistor is connected in parallel to the power supply. 2. The temperature detection device according to claim 1, wherein a constant current is supplied by a constant voltage circuit connected to a constant voltage output of said constant voltage circuit.
JP14008582A 1982-08-12 1982-08-12 Temperature detecting device Granted JPS5930029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14008582A JPS5930029A (en) 1982-08-12 1982-08-12 Temperature detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14008582A JPS5930029A (en) 1982-08-12 1982-08-12 Temperature detecting device

Publications (2)

Publication Number Publication Date
JPS5930029A true JPS5930029A (en) 1984-02-17
JPH0126493B2 JPH0126493B2 (en) 1989-05-24

Family

ID=15260605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14008582A Granted JPS5930029A (en) 1982-08-12 1982-08-12 Temperature detecting device

Country Status (1)

Country Link
JP (1) JPS5930029A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233330A (en) * 1985-04-09 1986-10-17 Nec Corp Temperature sensor circuit
US7400208B2 (en) 2005-07-15 2008-07-15 Ricoh Company, Ltd. Temperature detector circuit and oscillation frequency compensation device using the same
US20130266042A1 (en) * 2012-04-10 2013-10-10 Jay P. John Temperature sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799789A (en) * 1980-12-12 1982-06-21 Seiko Instr & Electronics Ltd Semiconductor thermo-sensitive element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799789A (en) * 1980-12-12 1982-06-21 Seiko Instr & Electronics Ltd Semiconductor thermo-sensitive element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61233330A (en) * 1985-04-09 1986-10-17 Nec Corp Temperature sensor circuit
JPH0456935B2 (en) * 1985-04-09 1992-09-10 Nippon Electric Co
US7400208B2 (en) 2005-07-15 2008-07-15 Ricoh Company, Ltd. Temperature detector circuit and oscillation frequency compensation device using the same
US7741925B2 (en) 2005-07-15 2010-06-22 Ricoh Company, Ltd. Temperature detector circuit and oscillation frequency compensation device using the same
US20130266042A1 (en) * 2012-04-10 2013-10-10 Jay P. John Temperature sensor
US9004756B2 (en) * 2012-04-10 2015-04-14 Freescale Semiconductor, Inc. Temperature sensor

Also Published As

Publication number Publication date
JPH0126493B2 (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US4395139A (en) Temperature detecting device
JP3110096B2 (en) Temperature detection circuit
JP2628359B2 (en) Fuse state detection circuit
JP4276812B2 (en) Temperature detection circuit
US4658159A (en) Sense amplifier circuit for semiconductor memory device
US6400213B2 (en) Level detection by voltage addition/subtraction
JPH05175801A (en) Voltage level detecting circuit
US20100111137A1 (en) Temperature sensing circuit using cmos switch-capacitor
US4507572A (en) Voltage sensing circuit
US7852144B1 (en) Current reference system and method
JP4023991B2 (en) Reference voltage generation circuit and power supply device
CN111366259B (en) Reconfigurable all-digital temperature sensor and temperature measurement method
JPS5930029A (en) Temperature detecting device
JP2794880B2 (en) Power IC overheat detection circuit and its structure
JPH0774318A (en) Semiconductor integrated circuit
JPH03171309A (en) Reference potential generating circuit
US20060229839A1 (en) Temperature sensing and monitoring technique for integrated circuit devices
JPH09243467A (en) Temperature detection circuit and test method therefor
US4839633A (en) Asymmetric voltage monitor for series supplies
US4158782A (en) I2 L interface with external inputs and method thereof
JP2528091B2 (en) Integrated circuit
JPH04323863A (en) Semiconductor device
US20030030128A1 (en) Transistor configuration for a bandgap circuit
JPH05198846A (en) Temperature sensor and temperature sensing circuit using said sensor
US6417553B1 (en) Semiconductor wafer with sensors for detecting radiation on the semiconductor wafer