JPS5930026B2 - Manufacturing method for small motor rotor - Google Patents

Manufacturing method for small motor rotor

Info

Publication number
JPS5930026B2
JPS5930026B2 JP6926777A JP6926777A JPS5930026B2 JP S5930026 B2 JPS5930026 B2 JP S5930026B2 JP 6926777 A JP6926777 A JP 6926777A JP 6926777 A JP6926777 A JP 6926777A JP S5930026 B2 JPS5930026 B2 JP S5930026B2
Authority
JP
Japan
Prior art keywords
cutting
iron core
core
resin
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6926777A
Other languages
Japanese (ja)
Other versions
JPS534802A (en
Inventor
猛 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP6926777A priority Critical patent/JPS5930026B2/en
Publication of JPS534802A publication Critical patent/JPS534802A/en
Publication of JPS5930026B2 publication Critical patent/JPS5930026B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は小型モーターの回転子の製造方法の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method of manufacturing a rotor for a small motor.

従来周知の小型モーターの回転子の製造方法を第1図に
ついて説明すると、鉄心1をシャフト6に対してコンミ
テータ−1共々嵌着し、前記鉄心1外周の各スロット部
4内に所要数の導体3を装填し、溶剤型等いわゆる常温
で液状の絶縁ワニスで絶縁処理すると同時に、遠心力特
性を要求される製品には導体3の端部を絶縁材料12を
介してピアノ線10で強く巻き、巻き終り部を半田付け
11によって固定するか、直接導体3に麻糸等で結んで
絶縁処理を施していた。
A conventionally known method for manufacturing a rotor for a small motor will be explained with reference to FIG. 1. An iron core 1 is fitted onto a shaft 6 together with a commutator 1, and a required number of conductors are inserted into each slot portion 4 on the outer periphery of the iron core 1. At the same time, for products that require centrifugal force characteristics, the end of the conductor 3 is wrapped tightly with piano wire 10 through an insulating material 12, and the conductor 3 is insulated with a solvent-based insulating varnish that is liquid at room temperature. The end of the winding is either fixed by soldering 11 or tied directly to the conductor 3 with hemp thread or the like to insulate it.

そして、上記の回転子製造過程において、前述絶縁処理
時に絶縁ワニスが意に反して回転子の最外径部に付着す
ることとなるため、回転子外周面が固定子内周面と干渉
するのを防止するべく、一般には鉄心1の最外径部をバ
イト等で切削する工程をとっていた。
In the above-mentioned rotor manufacturing process, the insulating varnish unexpectedly adheres to the outermost diameter part of the rotor during the above-mentioned insulation treatment, so the outer peripheral surface of the rotor may interfere with the inner peripheral surface of the stator. In order to prevent this, generally a step is taken in which the outermost diameter part of the iron core 1 is cut with a cutting tool or the like.

この切削工程も比較的生産量の少ない場合は、切削機回
転数、切削スピードを遅くとれるため異常は生じないけ
れども生産量が多くなってくると切削機回転数、切削ス
ピードを極度に高くして、生産性を上げると切削加工時
に鉄心1の最外径部に切削パリが生じ、その時の切削パ
リが製品として残ると作動中に線間短絡等の電気的故障
の原因につながる大きな問題があった。
In this cutting process, when the production volume is relatively low, the cutting machine rotation speed and cutting speed can be kept low, so no abnormalities will occur. However, when the production volume increases, the cutting machine rotation speed and cutting speed may be extremely high. When productivity is increased, cutting burrs occur on the outermost diameter part of the iron core 1 during cutting, and if the cutting burrs remain in the product, there is a major problem that can lead to electrical failures such as short circuits between lines during operation. Ta.

本発明者は前記の切削パリを如何にして発生しないよう
にすることができるかにつき、種々な実験、研究を重ね
た結果、驚くべき事実を見いだすに至った。
The inventors of the present invention have conducted various experiments and research on how to prevent the occurrence of cutting burrs, and as a result, they have discovered a surprising fact.

それは、絶縁含浸固着材料を鉄心外周面にまで鉄心の外
周全体にわたって積極的かつ厚く付着させ、この付着絶
縁材料共々鉄心の外周面を切削すると、驚くことには鉄
心の外周面とスロットとの境界部分に切削パリがほとん
ど発生しなかったのである。
In this process, an insulating impregnated fixing material is aggressively and thickly adhered to the entire outer circumference of the core, and when the outer circumferential surface of the core is cut together with this adhered insulating material, surprisingly, the boundary between the outer circumferential surface of the core and the slot is removed. There were almost no cutting burrs in the area.

しかも、鉄心外周面にまで積極的にかつ厚く絶縁含浸固
着材料を付着させるためには、絶縁含浸固着材料として
、従前のごとき常温で液状の絶縁ワニス(例えば液状エ
ポキシ樹脂)では満足されず、特に、常温で粉末状の熱
硬化性樹脂を用いる必要があることをも突き止めたので
ある。
Moreover, in order to actively and thickly adhere the insulation impregnating fixing material to the outer peripheral surface of the core, the conventional insulation varnish that is liquid at room temperature (e.g. liquid epoxy resin) is not satisfactory as the insulation impregnating fixing material. They also discovered that it was necessary to use a thermosetting resin that was in powder form at room temperature.

そこで、本発明は上記の実験研究結果に基づき、鉄心外
周切削時に切削パリがほとんど発生しない小型モーター
の回転子の製造方法を提供することを目的とするもので
ある。
Therefore, the present invention is based on the above-mentioned experimental research results and aims to provide a method for manufacturing a rotor for a small motor in which almost no cutting burr occurs when cutting the outer periphery of an iron core.

以下図に示す実施例について本発明の回転子の製造方法
を説明する。
The method for manufacturing a rotor of the present invention will be explained below with reference to the embodiments shown in the figures.

まず、本発明を説明する以前に本発明の基本的方法を説
明する。
First, before explaining the present invention, the basic method of the present invention will be explained.

第2図に示す回転子が、本発明の基本的方法によって得
た小型モーター回転子であって、鉄心1の各スロット部
4内に装填した導体3を絶縁含浸処理に際して、絶縁含
浸固着材料として常温で粉末状のエポキシ樹脂、例えば
エピクロルヒドリン型エポキシ樹脂を用い、この樹脂で
鉄心1の最外径部より厚く鉄心1外周面全体をも含めて
スロット部4に絶縁含浸固着層2を形成しく第4図参照
)、鉄心1の外周面をここに付着させた前述樹脂共々切
削加工し、これにより、鉄心1の最外径部と絶縁含浸固
着層2の最外径部とが切削加工後鉄心1の最外径部を基
準に同一もしくは鉄心1の最外径部よりプラス0、03
2mm−マイナス0.055mmの範囲に絶縁含浸固着
層2を加工するわけである。
The rotor shown in FIG. 2 is a small motor rotor obtained by the basic method of the present invention, and the conductor 3 loaded in each slot portion 4 of the iron core 1 is used as an insulation impregnation fixing material during insulation impregnation treatment. Using an epoxy resin that is powdery at room temperature, for example, an epichlorohydrin type epoxy resin, the insulating impregnated fixing layer 2 is formed in the slot portion 4 to be thicker than the outermost diameter part of the iron core 1 and covers the entire outer circumferential surface of the iron core 1. 4), the outer circumferential surface of the iron core 1 is cut together with the resin adhered thereto, so that the outermost diameter part of the iron core 1 and the outermost diameter part of the insulating impregnated fixing layer 2 are cut into the core after cutting. Same as the outermost diameter of core 1 or plus 0,03 from the outermost diameter of core 1
The insulating impregnated fixing layer 2 is processed within the range of 2 mm - minus 0.055 mm.

即ち、切削加工直後は鉄心1の最外径部と絶縁含浸固着
層2の最外径部とが鉄心1の最外径部と同一になるが、
一般的に粉体樹脂の場合0.3〜0.8%の水分を含有
しており、完全乾燥状態と飽和水分吸収状態とでは樹脂
の膨張と収縮作用により、また鉄心の膨張係数と樹脂の
膨張係数との差により、切削加工後の絶縁含浸固着層2
の最外径部は、実験によれば、鉄心1の最外径部よりプ
ラス0.0321n71L〜マイナス0.055mmの
範囲で変動差を生じる。
That is, immediately after cutting, the outermost diameter part of the iron core 1 and the outermost diameter part of the insulating impregnated fixed layer 2 are the same as the outermost diameter part of the iron core 1, but
In general, powdered resin contains 0.3 to 0.8% water, and in a completely dry state and a saturated water absorption state, the expansion and contraction of the resin and the expansion coefficient of the iron core and the resin's Due to the difference in expansion coefficient, the insulation impregnated fixed layer 2 after cutting
According to experiments, the outermost diameter part of the iron core 1 fluctuates within a range of +0.0321n71L to -0.055mm from the outermost diameter part of the iron core 1.

第3図は鉄心1の最外径部と絶縁含浸固着層2とが同一
になった場合、第5図は樹脂の膨張により鉄心1の最外
径部より絶縁含浸固着層2の方が0.032朋厚くなっ
た場合、第6図は樹脂の収縮により鉄心1の最外径部よ
り絶縁含浸固着層2の方が0.055m1うすい場合を
それぞれ示しである。
Figure 3 shows that when the outermost diameter part of the iron core 1 and the insulating impregnated fixing layer 2 are the same, Figure 5 shows that the insulation impregnated fixing layer 2 has a lower diameter than the outermost diameter part of the iron core 1 due to expansion of the resin. Figure 6 shows the case where the insulation impregnated fixing layer 2 is 0.055 m1 thinner than the outermost diameter part of the iron core 1 due to resin contraction.

なお、第3図乃至第6図において、5はスロットル表面
絶縁層である。
In addition, in FIGS. 3 to 6, 5 is a throttle surface insulating layer.

しかして、本発明方法の主腰部は第7図に示す通りであ
る。
Accordingly, the main waist portion of the method of the present invention is as shown in FIG.

第1図は鉄心1と絶縁含浸固着層2*との関係が第3図
、第5図、第6図に比較して特に深い部分を示しており
、更に詳記すれば粉体樹脂の使用量が少なく鉄心1の最
外径部とスロットル部4内の絶縁含浸固着層2の最小外
径部との間隙Bが樹脂の収縮による寸法である0、05
5mmより大きく形成される場合であって、この場合に
は、鉄心1のスロット部4から外周面に至る絶縁含浸固
着層2において、切削刃の投入面A及び切りぬけ面A′
が少なくとも0.2朋以上の厚みで存在する場合に限り
優れた外周切削効果が得られる。
Figure 1 shows that the relationship between the iron core 1 and the insulating impregnated fixing layer 2* is particularly deep compared to Figures 3, 5, and 6. The amount is small and the gap B between the outermost diameter part of the iron core 1 and the smallest outer diameter part of the insulating impregnated fixing layer 2 in the throttle part 4 is 0.05, which is the dimension due to resin contraction.
In this case, in the insulating impregnated fixed layer 2 extending from the slot portion 4 of the iron core 1 to the outer peripheral surface, the input surface A and the cutting surface A' of the cutting blade are formed larger than 5 mm.
An excellent outer peripheral cutting effect can be obtained only when the thickness of the material is at least 0.2 mm or more.

この第7図の状態は粉体樹脂の付着むらや粉体樹脂の溶
着時の流れなどによって、第4図の状態のものと同時l
こ同一の鉄心に形成されるものである。
The state shown in Fig. 7 is similar to the state shown in Fig. 4 due to uneven adhesion of the powder resin and flow during welding of the powder resin.
These are formed on the same iron core.

次に、本発明方法を具体的に説明すると、スロット部4
の数19個、外径48mm長さ457nmの鉄心1を直
径101nrIL長さ198mmのシャフト6に嵌着し
、この鉄心1に0.2關〜0.3 mmのエポキシ樹脂
よりなるスロット表面絶縁層5を形成し、導体として、
JISC3210ポリエステル銅線表示の1種Po1y
ether wire (直径1.8 mm )を用
いて巻線し、その端末を半田付けもしくは溶融圧着する
ことによりコンミテータ−7と接続したのちシャフト6
のみをマスキングし、巻線部全体及びコンミテータ−7
の接続部を鉄心1の外周面にまで鉄心1の外周全体にわ
たってエポキシ樹脂で含浸被覆し、第4図に示すごとく
鉄心1の最外径部より厚い絶縁含浸固着層2を作成する
Next, to specifically explain the method of the present invention, the slot portion 4
An iron core 1 with an outer diameter of 48 mm and a length of 457 nm is fitted onto a shaft 6 with a diameter of 101 mm and a length of 198 mm, and a slot surface insulating layer made of epoxy resin with a thickness of 0.2 mm to 0.3 mm is attached to the iron core 1. 5 and as a conductor,
JISC3210 polyester copper wire display type 1 Po1y
After winding the wire using ether wire (diameter 1.8 mm) and connecting the end to the commutator 7 by soldering or melting crimping, the shaft 6
Mask only the entire winding section and commutator 7.
The entire outer periphery of the iron core 1 is impregnated and coated with an epoxy resin, including the connection portion of the iron core 1 to the outer peripheral surface of the iron core 1, thereby creating an insulating impregnated fixing layer 2 that is thicker than the outermost diameter part of the iron core 1, as shown in FIG.

この場合、同一の鉄心1において第7図1こ示すごとく
鉄心1の最外径部とスロット部4内の絶縁含浸固着層2
の最小外径部との間隙Bが、樹脂の収縮による寸法より
大きく形成される部分が前述したごとく生じる。
In this case, in the same core 1, as shown in FIG.
As described above, there is a portion where the gap B between the resin and the minimum outer diameter portion is larger than the size due to the shrinkage of the resin.

この場合の作成条件は下記の通りである。The preparation conditions in this case are as follows.

前記衣1によって得た回転子を切削機械で実際に外周切
削し、従来品と比較した結果が表2である。
Table 2 shows the results of actually cutting the outer periphery of the rotor obtained using Cloth 1 using a cutting machine and comparing it with a conventional product.

表3は高速型切削機械を使用して従来の液状エポキシ樹
脂処理のものと本発明によって得たものを高速型切削機
械の回転数と鉄心1の最外径部を切削する切削スピード
とを変化させて得て結果である。
Table 3 shows the conventional liquid epoxy resin treatment using a high-speed cutting machine and the one obtained by the present invention by changing the rotational speed of the high-speed cutting machine and the cutting speed for cutting the outermost diameter part of the iron core 1. This is the result.

上記結果からも明らかなように、本発明によって得た回
転子はその鉄心1の最外径部を切削する場合、従来の絶
縁含浸固着処理に比較して5倍のスピードで切削が可能
となり自動化による高速化に大きく寄与するものである
As is clear from the above results, when cutting the outermost diameter part of the iron core 1 of the rotor obtained by the present invention, cutting can be done five times faster than the conventional insulation impregnation fixing process, and automation is possible. This greatly contributes to faster speeds.

特に切削条件が最も良好なものを得るには、絶縁含浸固
着層2を鉄心1の最外径部より厚くすることはいうまで
もなく、切削径鉄心1の最外径部に対して絶縁含浸固着
層2の最外径部が同等である0、032mm以内に厚く
なった部分に顕著な効果を生じた。
In particular, in order to obtain the best cutting conditions, it goes without saying that the insulating impregnated fixed layer 2 should be made thicker than the outermost diameter part of the core 1, and the insulating impregnated fixing layer 2 should be made thicker than the outermost diameter part of the core 1 with the cutting diameter. A remarkable effect was produced in the portion where the outermost diameter portion of the fixed layer 2 was thickened within the same 0.032 mm.

0.032mm程度の寸法は外観的に目視する程度では
ほとんど平均−であるが精密測定具で測定すると明確に
判定できる。
A dimension of about 0.032 mm is almost average when visually observed, but can be clearly determined when measured with a precision measuring tool.

なお、樹脂の材質、硬化剤の種類、充填材料の種類及び
添加量、硬化時間等によって若干具なるが、切削後大体
鉄心1の最外径部を基準に+0.032朋から−0,0
55mmの範囲に絶縁含浸固着層2が存在している部分
に良好な結果が得られた。
Although it varies slightly depending on the resin material, type of hardening agent, type and amount of filler material added, curing time, etc., after cutting it is approximately +0.032 to -0.0 based on the outermost diameter part of the iron core 1.
Good results were obtained in the area where the insulating impregnated fixing layer 2 was present within a range of 55 mm.

特に、鉄心1の外周面とスロット部5内部の絶縁含浸固
着層2の最小外径との間隙Bが樹脂の収縮による寸法よ
り大きい部分、例えばこの間隙Bが2mm程度ある部分
には切削刃の当る面及び切削刃が切りぬける面は必ず絶
縁固着材料が少なくとも0.2 mmは付着していなけ
ればならなかった。
In particular, the cutting blade is applied to a portion where the gap B between the outer circumferential surface of the iron core 1 and the minimum outer diameter of the insulating impregnated fixing layer 2 inside the slot portion 5 is larger than the size due to shrinkage of the resin, for example, a portion where this gap B is about 2 mm. The contact surface and the surface through which the cutting blade cuts must have at least 0.2 mm of insulating adhesive material adhered to the surface.

即ち、第7図中の間隙Bが樹脂の収縮lこよる寸法より
大きい部分においては、鉄心1のスロット部4から外周
面に至る絶縁含浸固着層2において、切削刃の投入面A
及び切りぬけ面A′の厚みが切削状態に大きく左右する
That is, in the portion where the gap B in FIG. 7 is larger than the size caused by the shrinkage l of the resin, the input surface A of the cutting blade is
The thickness of the cutout surface A' greatly influences the cutting condition.

そして、実験結果によれば、上記投入面A及び切りぬけ
面A′の厚みが0.15y+cy+tのとき従来の切削
条件である切削回転数150 Orpm22秒では切削
パリ等の発生は認められなかったが、高速型の切削条件
である切削回転数180 Orpm 10秒では若干の
切削バリカ鉗忍められた。
According to the experimental results, when the thickness of the input surface A and the cut-out surface A' was 0.15y+cy+t, no occurrence of cutting burrs was observed under the conventional cutting conditions of 150 Orpm and 22 seconds. Under the high-speed cutting conditions of 180 rpm and 10 seconds, some cutting burrs were observed.

それに対し、上記投入面Aおよび切りぬけ面A′の厚み
を0.2 mm以上にすると、上記の高速型の切削条件
においても製品に不具合が生じる切削パリが生せず、良
好な切削状態が得られた。
On the other hand, if the thickness of the input surface A and the cut-through surface A' is set to 0.2 mm or more, even under the above-mentioned high-speed cutting conditions, there will be no cutting burrs that can cause defects in the product, and a good cutting condition can be achieved. Obtained.

以上述べたように本発明においては、絶縁含浸固着材料
として特番こ常温で粉末状のエポキシ樹脂を用いて、こ
の樹脂を前記鉄心の外周面にまで付着させると共に、鉄
心の各スロットにおける絶縁含浸固着層の最小外径が前
記鉄心の外径より小さい部分を有し、この部分の鉄心に
対する切削刃の投入面及び切りぬけ面に少なくとも0.
2 mmの厚みで前記樹脂を付着させておき、前記鉄心
の外周面を切削しているから、鉄心スロットの絶縁含浸
固着層が鉄心外周面より極端に凹んでいる場合にも、高
速切削条件下で、鉄心の外周面とスロットとの境界部分
に切削パリが発生するのを防ぐことができ、高品位の回
転子を高能率で得ることができるという優れた効果があ
る。
As described above, in the present invention, an epoxy resin that is powdered at room temperature is used as the insulation impregnation fixing material, and this resin is adhered to the outer peripheral surface of the iron core, and the insulation impregnation fixation is carried out in each slot of the iron core. The layer has a portion where the minimum outer diameter is smaller than the outer diameter of the core, and the input surface and the cutting surface of the cutting blade with respect to the core in this portion have at least 0.0 mm.
Since the resin is adhered to a thickness of 2 mm and the outer circumferential surface of the core is cut, even if the insulation impregnated fixing layer of the core slot is extremely recessed than the outer circumferential surface of the core, it can be cut under high-speed cutting conditions. This has the excellent effect of preventing cutting burrs from occurring at the boundary between the outer circumferential surface of the core and the slots, and making it possible to obtain a high-quality rotor with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の小型モーターの回転子を示す側面図、第
2図乃至第6図は本発明方法の基本を説明するためのも
のであって、第2図は本発明の基本製造方法により製造
した回転子を示す側面図、第3図、第5図および第6図
は第2図図示回転子のスロット部を示す拡大断面図、第
4図は鉄心外周切削前における鉄心の最外径部に絶縁含
浸固着層を厚く被覆した状態を示す拡大断面図、第7図
は本発明方法の説明に供するもので鉄心の最外径部より
スロット部内に深く絶縁含浸固着層が位置している回転
子に本発明方法を適用した状態を示す主要部拡大断面図
である。 1・・・・・・鉄心、2・・・・・・絶縁含浸固着層、
3・・・・・・導体、4・・・・・・スロット部、5・
・・・・・スロット表面絶縁層、A 、 A’・・・・
・・切削刃の投入面及び切りぬけ面における樹脂厚み、
B・・・・・・鉄心外周面とスロット内絶縁含浸固着層
最小外径面との間隙。
FIG. 1 is a side view showing the rotor of a conventional small motor, and FIGS. 2 to 6 are for explaining the basics of the method of the present invention. Figures 3, 5 and 6 are side views showing the manufactured rotor; Figures 3, 5 and 6 are enlarged sectional views showing the slot portions of the rotor shown in Figure 2; Figure 4 is the outermost diameter of the core before cutting the outer periphery of the core. FIG. 7 is an enlarged sectional view showing a state in which the insulating impregnated fixing layer is thickly coated on the core, and is used to explain the method of the present invention. FIG. 3 is an enlarged cross-sectional view of the main parts showing a state in which the method of the present invention is applied to a rotor. 1... Iron core, 2... Insulating impregnated fixing layer,
3...Conductor, 4...Slot part, 5...
...Slot surface insulating layer, A, A'...
・Resin thickness at the input surface and cutting surface of the cutting blade,
B: Gap between the outer peripheral surface of the core and the minimum outer diameter surface of the insulating impregnated fixed layer in the slot.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄心外周の各スロットに複数の導害を装填し、これ
ら導体間に絶縁含浸固着材料を含浸させて導体相互間及
び導体、鉄心間を絶縁固着するものにおいて、前記絶縁
含浸固着材料として常温で粉末状のエポキシ樹脂を用い
、この樹脂を前記鉄心の外周面にまで付着させると共に
、前記各スロットにおける絶縁含浸固着層の最小外径が
前記鉄心の外径より小さい部分を有し、この部分の前記
鉄心に対する切削刃の投入面及び切りぬけ面には少なく
とも0.2mmの厚みで前記樹脂を付着させておき、前
記鉄心の外周面を切削することを特徴とする小型モータ
ーの回転子の製造方法。
1 In a device in which a plurality of conductors are loaded into each slot on the outer periphery of the core and an insulating impregnated fixing material is impregnated between these conductors to insulate and fix the conductors to each other and between the conductor and the iron core, the insulating impregnated fixing material is Powdered epoxy resin is used to adhere this resin to the outer circumferential surface of the core, and each slot has a portion where the minimum outer diameter of the insulating impregnated fixing layer is smaller than the outer diameter of the core. A method for manufacturing a rotor for a small motor, characterized in that the resin is adhered to a thickness of at least 0.2 mm on an input surface and a cutting surface of a cutting blade with respect to the iron core, and the outer peripheral surface of the iron core is cut. .
JP6926777A 1977-06-10 1977-06-10 Manufacturing method for small motor rotor Expired JPS5930026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6926777A JPS5930026B2 (en) 1977-06-10 1977-06-10 Manufacturing method for small motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6926777A JPS5930026B2 (en) 1977-06-10 1977-06-10 Manufacturing method for small motor rotor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP47045241A Division JPS496403A (en) 1972-05-08 1972-05-08

Publications (2)

Publication Number Publication Date
JPS534802A JPS534802A (en) 1978-01-17
JPS5930026B2 true JPS5930026B2 (en) 1984-07-24

Family

ID=13397735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6926777A Expired JPS5930026B2 (en) 1977-06-10 1977-06-10 Manufacturing method for small motor rotor

Country Status (1)

Country Link
JP (1) JPS5930026B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0145255Y2 (en) * 1979-04-27 1989-12-27
JP2573842B2 (en) * 1987-06-22 1997-01-22 株式会社 三ツ葉電機製作所 Method of manufacturing motor rotor
JP2672800B2 (en) * 1995-11-14 1997-11-05 株式会社東芝 Flat motor stator manufacturing method

Also Published As

Publication number Publication date
JPS534802A (en) 1978-01-17

Similar Documents

Publication Publication Date Title
EP1320169B1 (en) AC generator stator for vehicle
JPH02101947A (en) Commutator and manufacture thereof
JPS5930026B2 (en) Manufacturing method for small motor rotor
EP1744434B1 (en) Method for manufacuring a rotor of an electric rotating machine
JP2847800B2 (en) Mounting method of armature winding of slotless iron core
JP2004242443A (en) Motor, core, manufacturing method thereof, and fixing structure thereof
US5107160A (en) Electrical commutator with reinforced connectors
JP3518128B2 (en) Stator winding of rotating electric machine
JP3385520B2 (en) Commutator motor and method of manufacturing the same
JP3977443B2 (en) Commutator
US4039876A (en) Improved supporting arrangement for hollow cylindrical armature winding
JPH0139079Y2 (en)
JPH0210664B2 (en)
US3187413A (en) Process of manufacturing servo motor rotors
JPH0250700B2 (en)
SU1091276A1 (en) Process for manufacturing winded magnetic circuit for electric machine
JPS5921260A (en) Manufacture of insulated coil
JPH01318527A (en) Mold commutator of rotary electric machine and manufacture thereof
JP2001028854A (en) Stator coil for rotary electric machine
JPH0474933B2 (en)
JPS633544B2 (en)
JPH1169593A (en) Production of rubber stress cone
JPS63287340A (en) Stator of dc machine
JPH0150309B2 (en)
JPS61180541A (en) Field coil