JPS5929992A - Stacked type heat exchanger - Google Patents

Stacked type heat exchanger

Info

Publication number
JPS5929992A
JPS5929992A JP57139719A JP13971982A JPS5929992A JP S5929992 A JPS5929992 A JP S5929992A JP 57139719 A JP57139719 A JP 57139719A JP 13971982 A JP13971982 A JP 13971982A JP S5929992 A JPS5929992 A JP S5929992A
Authority
JP
Japan
Prior art keywords
flow
heat exchanger
type
liquids
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57139719A
Other languages
Japanese (ja)
Inventor
Yasushi Izunaga
康 伊豆永
Shigeru Kimura
茂 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57139719A priority Critical patent/JPS5929992A/en
Publication of JPS5929992A publication Critical patent/JPS5929992A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain the stacked type heat exchanger having a large heat exchanging capacity by a method wherein the flow speeds of both heat exchanging liquids are increased and both of the liquids are flowed opposingly along the whole of the flowing paths thereof. CONSTITUTION:The blade-tube side liquid enters from an inlet pipeline 4 and the stream thereof is branched before entering into the layer-type flowing paths 8. The flow directions of the liquids in each layer-type flow paths are turned twice by bulkheads 12, 13, thereafter, are joined together to discharge them through an outlet pipeline 5. On the other hand, cylinder side liquid enters from the inlet pipeline 6 into the layer-type flow path 9, exchanges the heat thereof with tube plate side liquid while turning the flow direction twice by the bulkheads 14, 15 in the manner of the opposing flow, thereafter, it is joined together and is discharged from the outlet pipeline 7. In this case, the flow speed of both liquids becomes substantially three times as compared with the conventional stacked type heat exchanger and, therefore, a large heat exchanging capacity may be obtained. In case of a single phase flowing, for example, the heat transfer rate is made proportional to the flow speed to the power of 0.8 generally in case of a turbulent flow, therefore, the heat transfer rate of about 2.4 times of the conventional stacking type heat exchanger may be obtained in both liquids. Further, a large temperature efficiency may be obtained because all heat exchanging flow paths are formed into meandering flow paths of counter-flow type.

Description

【発明の詳細な説明】 本発明は積層型熱交換器に関するものである。[Detailed description of the invention] The present invention relates to a stacked heat exchanger.

従来の績層型熱交換器全第1図乃至第3ツ1により説明
する。第1図乃至第3図において、1.2は熱交換器胴
、3はプレートチューブ、4,5はそれぞれプレートチ
ューブ側流体の入口配管および出口配管、6,7はそれ
ぞれ胴側流体の入口配管および出口配管、8はプレート
チューブ側の層状流路、9け胴側の層状流路である。各
プレートチューブは2枚のプレートの外周部を接合して
流路全構成しており、流路の入口部および出]コ部にお
いてそれぞれバイブ10,111C,l:、!l)他の
プレートチューブと接合されている。プレートチューブ
側流体は入口配管4から流入して分流し、層状流路8を
通った後合流して出口配管5がら流出する。
A conventional stratified heat exchanger will be explained with reference to FIGS. 1 to 3. In Figures 1 to 3, 1.2 is a heat exchanger shell, 3 is a plate tube, 4 and 5 are inlet piping and outlet piping for fluid on the plate tube side, respectively, and 6 and 7 are inlet piping for fluid on the body side, respectively. and outlet piping, 8 is a laminar flow path on the plate tube side, and 9 is a laminar flow path on the shell side. Each plate tube has an entire flow path formed by joining the outer peripheries of two plates, and vibrators 10, 111C, l:, ! at the inlet and outlet portions of the flow path, respectively. l) Joined with other plate tubes. The plate tube side fluid flows in from the inlet pipe 4, separates, passes through the laminar flow path 8, joins together, and flows out from the outlet pipe 5.

胴側流体は入口配管6から流入して分流し、層状流路9
を通る間にプレートチューブ側流体と対向流の熱交換を
行った後合流して出口配管7より流出する。このような
熱交換器は例えば実開昭48−4457等に開示されて
いる。
The body side fluid flows in from the inlet pipe 6 and is divided into a laminar flow path 9.
While passing through the plate tube side fluid, the fluid exchanges heat with the fluid on the plate tube side in a counter-flow manner, then merges and flows out from the outlet pipe 7. Such a heat exchanger is disclosed in, for example, Japanese Utility Model Application No. 48-4457.

一般に、最大の熱交換能力を得るために有効な方法は両
流体の流速音大きくして熱伝達率全増大させることであ
る。ところが、従来の積層型熱交換器では、両流体の流
速は各層状流路の断面積で決められてし貰うため、任意
に流速を大きくすることができないので、熱伝達率を向
上させることができない欠点を有している。
Generally, an effective method to obtain the maximum heat exchange capacity is to increase the flow velocity of both fluids to increase the total heat transfer coefficient. However, in conventional laminated heat exchangers, the flow velocity of both fluids is determined by the cross-sectional area of each laminar flow path, so the flow velocity cannot be increased arbitrarily, so it is difficult to improve the heat transfer coefficient. It has the disadvantage that it cannot be used.

本発明の目的は、側熱交換流体の流速全同時に大きくし
、かつ全流路にわたって両流体全対向流にすることによ
り、熱交換能力の大きな積層型熱交換器を提供すること
にある。
An object of the present invention is to provide a stacked heat exchanger with a large heat exchange capacity by simultaneously increasing the flow speeds of the side heat exchange fluids and making both fluids flow in opposite directions throughout the flow paths.

本発明は上記の目的を達成するために、両層状流路の全
熱交換流路全対向流の蛇行流路に形成して、側熱交換流
体の流速全同時に大きくし、熱交換能力を向上させるよ
うにしたものである。
In order to achieve the above object, the present invention forms all the heat exchange channels of both laminar channels into meandering channels with counterflow, thereby increasing the flow rate of the side heat exchange fluid at the same time, and improving the heat exchange capacity. It was designed so that

以下、本発明の一実施例を第4図乃至第8図により説明
する。本実施例は各流体が谷層状流路同で2回方向転換
する場合である。第4図乃至第8図において第1図乃至
@3図と同一あるいは類似の部分は同一の符号で表わし
、その説明金箔mbしである。12 、13はプレート
チューブ側流路の隔壁、14 、15は胴側流路の隔壁
であり、L形の形状をなし、それぞれの流体が層状流路
内で2回方向転換するように各層状流路内に配置してい
る。
An embodiment of the present invention will be described below with reference to FIGS. 4 to 8. In this example, each fluid changes direction twice in the same valley layered flow path. In FIGS. 4 to 8, parts that are the same as or similar to those in FIGS. 1 to 3 are indicated by the same reference numerals, and their explanations are given in gold foil. Reference numerals 12 and 13 indicate partition walls of the flow passages on the plate tube side, and 14 and 15 indicate partition walls of the flow passages on the body side, which have an L-shape. It is placed inside the flow path.

次にこの実施例の動作について説明する。ブレートチュ
ーブ側流体は入口配管4から流入して分流し層状流路8
に入る。各層状流路内では第7図に示すように隔壁12
 、13によって2回方向転換した後合流して出口配管
5から出る。一方胴側流体は入口配管6から流入し分流
して層状流路9に入る。各層状流路内では@8図に示す
ように隔壁14゜15によって2回方向転換する間にプ
レートチューブ側流体と対向流の熱交換を行った後合流
して出口配管7よυ出る。この実施例の場合、両流体の
流速は第1図乃至第3図に示す従来の積層型熱交換器に
比べて約3倍になり、大きな熱交換能力が得られる。例
えば単相流の場合、熱伝達率は一般に乱流の場合流速の
0.8乗に比例するので両流体共第1図乃至g3図に示
す従来の積層型熱交換器の約2.4倍の熱伝達率が得ら
れ、また、全熱交換流路を対向流の蛇行流路としたので
大きな温度効率が得らhy、。なお、上述したのは両流
体が各層状流路内で2回方向転換するようにして流速が
約3倍になる場合であるが、本発明はこの一例に限定さ
れるものではなく、両流体の流速を要求される大きさに
し、しかも全流路内で対向流の熱交換をするように隔壁
の形状、数、配置等全変えてもよい。
Next, the operation of this embodiment will be explained. The fluid on the brate tube side flows in from the inlet pipe 4 and is divided into the laminar flow path 8
to go into. In each layered channel, there are partition walls 12 as shown in FIG.
, 13, and then merge and exit from the outlet pipe 5. On the other hand, the body-side fluid flows in from the inlet pipe 6, branches off, and enters the laminar flow path 9. In each laminar flow path, as shown in Figure 8, the direction is changed twice by the partition walls 14 and 15, and after exchanging heat in a counter-flow with the fluid on the plate tube side, the fluid merges and exits through the outlet pipe 7. In this embodiment, the flow rate of both fluids is approximately three times that of the conventional stacked heat exchanger shown in FIGS. 1 to 3, resulting in a large heat exchange capacity. For example, in the case of single-phase flow, the heat transfer coefficient is generally proportional to the 0.8th power of the flow velocity in the case of turbulent flow, so for both fluids it is approximately 2.4 times that of the conventional stacked heat exchanger shown in Figures 1 to 3. In addition, since the total heat exchange flow path is a meandering flow path with counterflow, a large temperature efficiency can be obtained. In addition, although the above-described case is a case in which both fluids change direction twice in each laminar flow path, and the flow velocity is approximately tripled, the present invention is not limited to this example; The shape, number, arrangement, etc. of the partition walls may be completely changed so that the flow velocity of the partition walls is set to the required magnitude and heat exchange is performed in counterflow within the entire flow path.

第9図は他の実施例金示すもので、プレートチューブに
突出部1G 、 17 、17aおよび17b’i加工
形成して蛇行流路を形成する。3はプレートチューブ、
突出部16はプレートチューブ側層状流路の隔壁を構成
する突出部で、突出の高さは流路面さHlと同じ、また
突出部17 、17a 、 17bは胴側層状流路の隔
壁を構成する突出部で、突出部17の市さはH2、突出
部17a、17bの突出の冒さは1(8の流路を形成し
ている。第10図は更に他の実施例を示す。16c、1
6dはプレートチューブ側層状流路の隔壁を構成する突
出部17a 、 17b 、 17c 、 17d は
胴側層状流路の隔壁を構成する突出部である。この実力
(Ip例により、ば突出部16c 、 1(3d 、 
17c 、 17dの突出の高さを低くでき、加二[が
容易になる。
FIG. 9 shows another embodiment in which protrusions 1G, 17, 17a and 17b'i are formed on a plate tube to form a meandering flow path. 3 is the plate tube,
The protruding portion 16 is a protruding portion that constitutes a partition wall of the laminar flow path on the plate tube side, and the height of the protrusion is the same as the flow path surface height Hl, and the protrusion portions 17, 17a, and 17b constitute the partition wall of the layered flow path on the body side. In the protrusion, the width of the protrusion 17 is H2, and the protrusion depth of the protrusions 17a and 17b is 1 (forming 8 channels. Fig. 10 shows still another embodiment. 16c, 1).
6d is a protrusion that constitutes a partition wall of the plate tube side laminar flow path, and 17a, 17b, 17c, and 17d are protrusion portions that constitute a partition wall of the body side laminar flow path. This ability (according to the Ip example, the protrusions 16c, 1 (3d,
The height of the protrusions 17c and 17d can be lowered, making it easier to apply.

以上述べたように本発明によれば側熱交換流体の流速を
同時に任意に大きくして熱伝達率全増大させることがで
き、しかも全流路にわたって対向流の熱交換が行なえる
ので最大の熱交換能力をもつ積層型熱交換器を得ること
ができる。
As described above, according to the present invention, the flow rate of the side heat exchange fluid can be increased arbitrarily at the same time to completely increase the heat transfer coefficient.Furthermore, counterflow heat exchange can be performed over the entire flow path, so that the maximum heat can be achieved. A stacked heat exchanger with exchange capability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の積層型熱交換器の平面図、第2図はgP
、i図の縦断面図、第3図は第1図の八−A線縦面図、
第4図は本発明の一実施例全示す平面図、第5図は第4
図の縦断面図、第6図は第4図のB−B断面図、第7図
は第5図のC−C断面図、第8図は第5図のD−D断面
図、第9図れt、他の実施例の斜視図、第10図は更に
他の実施例の斜視図である。 1.2・・・熱交換器胴、3・・・プレートチューブ、
J、2 、13・・・プレートチューブ側層状流路の隔
壁、14゜15・・・胴側層状流路の隔壁、16 、1
6c 、 16d・・・突出部、17 、17a 、 
17b 、 17c 、 17d−−−突出部。 代理人弁理士 秋 本 正 実 第1図 第2図 第4図 第5図 第6図 第7図 第9図 第10図 16(1bO 手続補正書(自発) 昭和57年/7月29日 特許庁長官 若杉和夫殿 1、事件の表示 昭和57  年特願1n/3り7/タ 号2、発明の名
称 積層型熱交換器 3、補正をする者 71[件との関イH特許出願人 イ] 所(居所)東京都千代田区丸の内−丁目5番7氏
名(名称) (510)株式会社 日立製作所4、代理
人 第5図 第6図 IO14B
Figure 1 is a plan view of a conventional stacked heat exchanger, Figure 2 is a gP
, FIG. 3 is a longitudinal sectional view taken along line 8-A in FIG. 1,
FIG. 4 is a plan view showing one embodiment of the present invention, and FIG.
6 is a sectional view taken along the line B-B in FIG. 4, FIG. 7 is a sectional view taken along line C-C in FIG. 5, FIG. FIG. 10 is a perspective view of another embodiment, and FIG. 10 is a perspective view of still another embodiment. 1.2... Heat exchanger body, 3... Plate tube,
J, 2, 13... Partition wall of plate tube side laminar flow path, 14° 15... Partition wall of body side laminar flow path, 16, 1
6c, 16d... protrusion, 17, 17a,
17b, 17c, 17d---protrusions. Representative Patent Attorney Tadashi Akimoto Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 Figure 7 Figure 9 Figure 10 Figure 16 (1bO procedural amendment (voluntary) Patent dated July 29, 1982 Director-General Kazuo Wakasugi 1, Indication of the case 1988 Patent Application 1n/3ri7/ta No. 2, Title of the invention Laminated heat exchanger 3, Amendment person 71 [Relation with the case H patent applicant Address: 5-7 Marunouchi-chome, Chiyoda-ku, Tokyo Name (510) Hitachi, Ltd. 4, Agent Figure 5 Figure 6 IO14B

Claims (1)

【特許請求の範囲】 1、 熱交換流体が流通する層状流路全形成するプレー
トデユープを熱交換器胴内に設け、該胴と前記プレート
チューブとの間の層状空間内に他方の熱交換流体を流通
させる積層型熱交換器において、両層状流路の全熱交換
流路を対向流の蛇行流路としたことを特徴とする積層型
熱交換器。 2 蛇行流路が偶数路でちる特許請求の範囲第1項記載
のfiIj層型熱文型熱交 換器 蛇6行流路がプレートチューブおよび胴体とは別
体の隔壁によって形成されている特許請求の範囲第1項
記載の積層型熱交換器。 4、 隔壁がr、Nr−型に形成された部材である特許
請求の範囲第3項記載の積層型熱交換器。 5、 蛇行流路がプレートチューブに成形した突出部に
よって形成されている特許請求の範囲第1項記載の積層
型熱交換器。 6、 プレートチューブの両側に突出部全形成し、その
互の先端を突き合わせ隔壁を形成した特許請求の範囲第
5項記載の積層型熱交換器。
[Claims] 1. A plate duplex that completely forms a laminar flow path through which a heat exchange fluid flows is provided in the heat exchanger body, and the heat exchanger body and the plate tube have a layered space between the other heat exchanger. A laminated heat exchanger for circulating an exchange fluid, characterized in that the total heat exchange passages of both laminar passages are meandering passages with counterflow. 2. FiIj layered thermographic heat exchanger according to claim 1, in which the meandering passages are formed by an even number of passages. Claim 2, in which the six meandering passages are formed by a plate tube and a partition wall separate from the body. A laminated heat exchanger according to scope 1. 4. The laminated heat exchanger according to claim 3, wherein the partition walls are members formed in an r, Nr-type. 5. The laminated heat exchanger according to claim 1, wherein the meandering flow path is formed by a protrusion formed on the plate tube. 6. The laminated heat exchanger according to claim 5, wherein the plate tubes are entirely formed with protrusions on both sides, and their tips abut against each other to form partition walls.
JP57139719A 1982-08-13 1982-08-13 Stacked type heat exchanger Pending JPS5929992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57139719A JPS5929992A (en) 1982-08-13 1982-08-13 Stacked type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57139719A JPS5929992A (en) 1982-08-13 1982-08-13 Stacked type heat exchanger

Publications (1)

Publication Number Publication Date
JPS5929992A true JPS5929992A (en) 1984-02-17

Family

ID=15251807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57139719A Pending JPS5929992A (en) 1982-08-13 1982-08-13 Stacked type heat exchanger

Country Status (1)

Country Link
JP (1) JPS5929992A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218448A (en) * 1989-12-15 1993-06-08 Matsushita Electric Industrial Co., Ltd. Signal reproducing apparatus
US7957132B2 (en) * 2007-04-16 2011-06-07 Fried Stephen S Efficiently cool data centers and electronic enclosures using loop heat pipes
CN107941057A (en) * 2017-10-31 2018-04-20 上海交通大学 Heat exchanger with bionical fractal structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218448A (en) * 1989-12-15 1993-06-08 Matsushita Electric Industrial Co., Ltd. Signal reproducing apparatus
US7957132B2 (en) * 2007-04-16 2011-06-07 Fried Stephen S Efficiently cool data centers and electronic enclosures using loop heat pipes
CN107941057A (en) * 2017-10-31 2018-04-20 上海交通大学 Heat exchanger with bionical fractal structure

Similar Documents

Publication Publication Date Title
US4002201A (en) Multiple fluid stacked plate heat exchanger
JP2605035Y2 (en) Stacked heat exchanger
JPH0144959Y2 (en)
JP3669590B2 (en) Heat exchanger and its manufacturing method
JPH08219677A (en) Plate laminated body as heat exchanger
JPS5929992A (en) Stacked type heat exchanger
JPH03241290A (en) Mixer element for heat exchange
JPS59158986A (en) Laminated type heat exchanger
JPS6039960B2 (en) Shell and plate heat exchanger
JPS599188Y2 (en) Multilayer plate heat exchanger
JPS61295492A (en) Heat exchanger
JPH01181090A (en) Heat exchanger
JPH03186194A (en) Laminar heat exchanger
JP2523797B2 (en) Stacked heat exchanger
JP2569505B2 (en) Plate-fin heat exchanger
JPH0141032Y2 (en)
JPH0833286B2 (en) Plate type heat exchanger
JPH018864Y2 (en)
JPH0216154Y2 (en)
JPH04161796A (en) Laminated heat exchanger
JPH03214000A (en) Laminated heat exchanger
JPH073162Y2 (en) Heat exchanger
JPH037742Y2 (en)
JPH01196495A (en) Water cooler
JPH02103397A (en) Layered heat exchanger