JPS5929447B2 - How to distinguish between power running and regenerative operation - Google Patents

How to distinguish between power running and regenerative operation

Info

Publication number
JPS5929447B2
JPS5929447B2 JP57023068A JP2306882A JPS5929447B2 JP S5929447 B2 JPS5929447 B2 JP S5929447B2 JP 57023068 A JP57023068 A JP 57023068A JP 2306882 A JP2306882 A JP 2306882A JP S5929447 B2 JPS5929447 B2 JP S5929447B2
Authority
JP
Japan
Prior art keywords
power
voltage
converter
regenerative
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57023068A
Other languages
Japanese (ja)
Other versions
JPS58139826A (en
Inventor
健 土方
廣「視」 篠原
文憲 吉田
豊美 権藤
実 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP57023068A priority Critical patent/JPS5929447B2/en
Publication of JPS58139826A publication Critical patent/JPS58139826A/en
Publication of JPS5929447B2 publication Critical patent/JPS5929447B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Stopping Of Electric Motors (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 本発明は力行運転一回生運転判別方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining whether a power running operation is a regenerative operation.

従来、電気鉄道の回生車より発生する回生電力を交流側
へ回生する方式は、順変換器と逆変換器を各1台もしく
は各複数台の変換器を使用している。
Conventionally, a method for regenerating regenerative power generated from a regenerative car of an electric railway to the alternating current side uses one forward converter and one inverse converter, or a plurality of each converter.

これを1台もしくは複数台のサイリスタ変換器で順逆性
能をもたせて電力回生を行なう方式が考えられている。
この場合、順変換器状態から逆変換器状態への切替につ
いては、き電系が回生状態にあることを検出する必要が
あり、一般には変電所母線電圧を検出している。しかし
ながら、この変電所母線電圧を検出して、力行時か回生
時かを判別する方式によると、電圧検出に当り次のよう
な問題点がある。
A method is being considered in which one or more thyristor converters are used to provide forward/reverse performance for power regeneration.
In this case, in order to switch from the forward converter state to the inverse converter state, it is necessary to detect that the feeding system is in the regenerative state, and generally the substation bus voltage is detected. However, this method of detecting the substation bus voltage to determine whether it is during power running or regeneration has the following problems in voltage detection.

(1)変電所母線電圧には、順変換器の整流リップルが
あるので、フィルタにより平均値を求める必要がある。
(1) Since the substation bus voltage includes rectification ripples from the forward converter, it is necessary to find an average value using a filter.

そのためフィルタによる検出の時間遅れを生ずる。(2
)検出電圧の設定値は、順変換器の電源変動、負荷変動
による直流電圧の変動の影響を避け得る値まで高めて設
定するか、もしくは補償回路を必要とする。
This causes a time delay in detection by the filter. (2
) The set value of the detection voltage must be set high enough to avoid the influence of DC voltage fluctuations due to power fluctuations and load fluctuations of the forward converter, or a compensation circuit is required.

前者は検出の時間遅れにつながり、後者は複雑高価とな
る。本発明はこのような問題点を解決するためになされ
たもので、即ち商用周波の交流電力を直流電力に変換し
て力行電力としてき電線に給電し、かつ回生車両よりの
回生電力を交流電力に逆変換して商用周波電源側へ回生
する変換装置を変電所に設置して、前記き電線の電圧を
もとに前記変換装置が力行運転を行なうか回生運転を行
なうかの判別を行なうようにしたものにおいて、前記変
換装置の直流出力電圧を検出してこの検出電圧の脈流レ
ベルの最大値と最小値とをそれぞれ取出し、これら最大
値信号と最小値信号をもとに前記変換装置が力行運転か
回生運転かを判別するようにしたことを特徴とする力行
運転一回生運転判別方法を提供しようとするもので、以
下実施例を用いて説明する。
The former leads to detection time delays, and the latter is complicated and expensive. The present invention was made in order to solve these problems. Specifically, the present invention converts commercial frequency AC power into DC power and supplies it to the feeder line as power running power, and converts the regenerative power from the regenerative vehicle into AC power. A converting device is installed in a substation that reversely converts the power and regenerates it to the commercial frequency power supply side, and the converting device determines whether to perform power running operation or regenerative operation based on the voltage of the feeder line. The converter detects the DC output voltage of the converter, extracts the maximum value and minimum value of the pulsating current level of the detected voltage, and converts the converter based on these maximum value signals and minimum value signals. The present invention aims to provide a method for determining whether power running or regenerative operation is performed, which is characterized by discriminating between power running and regenerative operation, and will be described below using examples.

本実施例を説明する前に本発明は変電所の母線からの交
流を直流に変換する変換装置の直流出力(直流き電回路
電圧)の波形に着目すると次のことがいえる。
Before explaining this embodiment, the following can be said by focusing on the waveform of the DC output (DC feeding circuit voltage) of the converter that converts AC from the busbar of a substation into DC.

第1図a−dは変換装置の直流出力の電圧波形であり、
第1図aは力行負荷供給時の波形であつて、イの部分は
位相制御および転流重なりによる波形の落ち込みを示し
ている。
Figures 1a-d are voltage waveforms of the DC output of the converter,
FIG. 1A shows a waveform when a power running load is supplied, and the part A shows a drop in the waveform due to phase control and commutation overlap.

また第1図bは力行無負荷時の波形であり、第1図cは
回生開始の波形であり、口の部分は回生電圧の影響によ
るもので、回生電圧の上昇により第1図dの如くなる。
第1図dになると、回生電圧によりリツプルがマスクさ
れ平滑な波形ハとなる。従つて第1図C,2dのように
脈流波形に着目することにより回生状態か否かを判別す
ることができる。本発明はこの点に鑑みてなされたもの
であつて、以下第2図に示す実施例に基づき詳述する。
In addition, Figure 1b shows the waveform during no-load power running, and Figure 1c shows the waveform at the start of regeneration. Become.
When the waveform becomes d in FIG. 1, the ripples are masked by the regenerative voltage, resulting in a smooth waveform c. Therefore, by paying attention to the pulsating flow waveforms as shown in FIGS. 1C and 2d, it is possible to determine whether or not the system is in a regenerative state. The present invention has been made in view of this point, and will be described in detail below based on the embodiment shown in FIG.

第2図は本発明による力行運転一回生運転判別〉方法の
一実施例を示し、同図において1は変電所に設置された
変換器であつて、この変換器1は変電所の母線からの3
相交流入力(商用周波の交流電力)を直流電力に変換し
て力行電力としてき電線に給電し、かつ回生車両よりの
回生電力を交流電力に逆変換して商用周波電源側(変電
所側)へ回生するものである。変換器1の出力電圧(き
電線電圧)を抵抗2と3とからなる分圧器4で分圧し、
分圧器4で分圧した電圧(抵抗3の分圧電圧)をアナロ
グーデイジタル変換器(以下、A/D変換器と略称する
。)5でデイジタル変換してデイジタル値とし、この出
力を絶縁変圧器6を介して記憶装置7に導く。この記憶
装置7は、例えば変換器1の直流出力電圧波形が位相制
御角αに応じて第1図に示す波形のように最大値VMA
Xαと最小値MINaとがそれぞれ表われるので、これ
ら諸量を取込むべく直流出力電圧の1周期分、即ち整流
リツプルの最小周波数の周期分アナログーデイジタル変
換したデイジタル値を記憶する。8は変換器1の各サイ
リスタ素子群を点弧制御するための位相制御部、9は位
相制御部8より出力されるゲート信号群が何度の位相制
御角αで発せられたかのアナログ情報をデイジタル信号
に変換するA/D変換器、10は判別回路であつて、こ
の判別回路10は記憶装置7より取込んだ整流リツプル
のデイジタル情報より1周期分の期間における最大波高
値VMAXと最小波高値VMINとをそれぞれ取出して
、これら各情報を記憶回路11,12にそれぞれ記憶さ
せる。
FIG. 2 shows an embodiment of the method for determining power running and regenerative operation according to the present invention. In the figure, 1 is a converter installed in a substation, and this converter 1 3
Converts phase AC input (commercial frequency AC power) to DC power and supplies it to feeder lines as power running power, and converts the regenerative power from the regenerative vehicle back to AC power on the commercial frequency power supply side (substation side) It is something that can be regenerated. The output voltage (feeder line voltage) of the converter 1 is divided by a voltage divider 4 consisting of resistors 2 and 3,
The voltage divided by the voltage divider 4 (divided voltage of the resistor 3) is converted into a digital value by an analog-to-digital converter (hereinafter referred to as an A/D converter) 5, and this output is converted to an isolation transformer. is led to a storage device 7 via a device 6. This storage device 7 stores, for example, the DC output voltage waveform of the converter 1 at a maximum value VMA as shown in FIG. 1 according to the phase control angle α.
Since Xα and the minimum value MINa are respectively displayed, in order to incorporate these quantities, digital values obtained by analog-to-digital conversion for one cycle of the DC output voltage, that is, the cycle of the minimum frequency of the rectification ripple, are stored. 8 is a phase control unit for controlling firing of each thyristor element group of the converter 1, and 9 is a digital representation of analog information indicating at what phase control angle α the gate signal group output from the phase control unit 8 is emitted. An A/D converter for converting into a signal, 10 is a discrimination circuit, and this discrimination circuit 10 determines the maximum peak value VMAX and the minimum peak value in a period of one cycle from the digital information of the rectified ripple taken in from the storage device 7. VMIN and are respectively taken out, and each of these pieces of information is stored in the storage circuits 11 and 12, respectively.

13は位相制御角αの範囲における瞬時最大値VMAX
aを求める第1の演算回路であつて、この第1の演算回
路13は記憶回路11より導びかれる最大波高値信号V
MAXとA/D変換器9より導かれる位相制御角信号α
とを基にVMAXa=VMAXsin(α十晋一匹)(
ただし、Pは変換器1の整流相数、この実P施例の場合
P−6となる。
13 is the instantaneous maximum value VMAX in the range of phase control angle α
This first arithmetic circuit 13 calculates the maximum peak value signal V derived from the memory circuit 11.
MAX and phase control angle signal α derived from A/D converter 9
Based on, VMAXa=VMAXsin (α1000 animals) (
However, P is the number of rectification phases of the converter 1, which is P-6 in this embodiment.

)なる所定の演算を行ないVMAXaを求める。14は
第2の演算回路であつて、この第2の演算回路14は記
憶回路11より導かれる最大波高値信号VMAXとA/
D変換器9より導かれる位相制御角信号αとを基に、V
MlNa=VMAXOO5(α十令)(ただし、Pは変
換器1の整流相数、この実施例の場合P=6となる。
) to obtain VMAXa. 14 is a second arithmetic circuit, and this second arithmetic circuit 14 receives the maximum peak value signal VMAX and A/A derived from the memory circuit 11.
Based on the phase control angle signal α derived from the D converter 9, V
MlNa=VMAXOO5 (α10) (where P is the number of rectification phases of the converter 1, and in this example, P=6.

)なる所定の演算を行なつて、位相制御角αの範囲にお
ける瞬時最小値VMINaを求める。15は第1の飛躍
電圧Vαを求めるための第3の演算回路であつて、この
第3の演算回路15は第1,第2の各演算回路13,1
4より導かれる瞬時最大値信号VMAXa、瞬時最小値
信号VMlNaとを基にVα−VMAXa−VMINa
なる演算を行ない所望のVαを求める。
) to find the instantaneous minimum value VMINa in the range of the phase control angle α. 15 is a third arithmetic circuit for determining the first jump voltage Vα, and this third arithmetic circuit 15 is connected to each of the first and second arithmetic circuits 13, 1.
Based on the instantaneous maximum value signal VMAXa and the instantaneous minimum value signal VMlNa derived from 4, Vα-VMAXa-VMina
The desired Vα is obtained by performing the following calculation.

16は第2の飛躍電圧Va5を求めるための第4の演算
回路であつて、この第4の演算回路16は第1の演算回
路13より導かれる瞬時最大値信号VMAXaと記憶回
路12より導かれる最小波高値信号VMINとで(MA
Xa−VMIN)なる演算を行なつて所望のVa7を求
める。
16 is a fourth arithmetic circuit for determining the second jump voltage Va5, and this fourth arithmetic circuit 16 is derived from the instantaneous maximum value signal VMAXa derived from the first arithmetic circuit 13 and the memory circuit 12. With the minimum peak value signal VMIN (MA
A desired Va7 is obtained by performing the calculation (Xa-VMIN).

17は判定回路であつて、この判定回路17は第3,第
4の各演算回路15,16より導かれる各飛躍電圧信号
Vα,Va5を基にVa′/Vα〈K(ただし、Kは定
数で、検出誤動作を防止するために0.95くK〈1.
0の範囲であるように予め前もつて規定してある)の判
定式に従つて、Va′/Vαの比がKより大きければ力
行運転、これとは反対にKより小さければ回生運転とそ
れぞれ判定し、その判定出力0にもとづいて変換器1を
当該回生運転あるいは力行運転の位相制御を行なう。
Reference numeral 17 denotes a determination circuit, which determines Va'/Vα<K (where K is a constant In order to prevent detection malfunction, 0.95 K<1.
According to the judgment formula (prescribed in advance to be in the range of 0), if the ratio of Va'/Vα is larger than K, power running is performed, and on the other hand, if it is smaller than K, regenerative operation is performed. Based on the determined output of 0, phase control of the converter 1 for regenerative operation or power running is performed.

ここで、回生運転の位相制御は変換器1の位相を逆変換
領域側へ進ませる制御である。以上のように構成される
本実施例の動作について以下述べる。
Here, the phase control of the regenerative operation is control to advance the phase of the converter 1 toward the inverse conversion region. The operation of this embodiment configured as above will be described below.

変電所に設置された変換器1の出力電圧(き電線電圧)
波形は第1図で示される。
Output voltage of converter 1 installed in the substation (feeder line voltage)
The waveform is shown in FIG.

その変換器1の出力電圧を分圧器4で分圧し、抵抗3の
分圧電圧をA/D変換器5でA/D変換し、絶縁変圧器
6を介して記憶装置7に導き、この記憶装置7で直流出
力電圧の1周期分、即ち整流リツプルの最小周波数の周
期分A/D変換したデイジタル値を記憶する。判別回路
10は記憶装置7より取込んだ整流リツプルのデイジタ
ル情報より1周期分の期間における第1図a−cに示す
如き最大波高値VMAXと最小波高値VMINとを夫々
取り出して、記憶回路11には最大波高値VMAXを、
記憶回路12には最小波高値MINを記憶させる。第1
の演算回路13は、記憶回路11より導かれる最大波高
値信号と、位相制御部8より変換器1に対し出力される
ゲート信号群の位相制御角α(アナグロ情報)をA/D
変換器9でデイジタル信号に変換してなる位相制御角信
号αとを基に、MAX3ln(α十令一令)なる演算を
行ない位相制御角αの範囲における瞬時最大値VMAX
aを求める。
The output voltage of the converter 1 is divided by a voltage divider 4, and the divided voltage of a resistor 3 is A/D converted by an A/D converter 5, and is led to a storage device 7 via an isolation transformer 6. The device 7 stores the A/D converted digital value for one cycle of the DC output voltage, ie, the cycle of the minimum frequency of the rectification ripple. The discrimination circuit 10 takes out the maximum wave height value VMAX and the minimum wave height value VMIN as shown in FIG. is the maximum wave height value VMAX,
The minimum peak value MIN is stored in the storage circuit 12. 1st
The arithmetic circuit 13 A/D converts the maximum peak value signal derived from the memory circuit 11 and the phase control angle α (analog information) of the gate signal group output from the phase control unit 8 to the converter 1.
Based on the phase control angle signal α converted into a digital signal by the converter 9, the calculation MAX3ln (α1001) is performed to obtain the instantaneous maximum value VMAX in the range of the phase control angle α.
Find a.

第2の演算回路14は記憶回路11より導かれる最大波
高値信号VMAX(5A/D変換器9より導かれる位相
制御角信号αとを基に、VMAXOO5(α十令)なる
演算を行なつて、位相制御角αの範囲における瞬時最小
値VMINaを求める。これらVMAXO,VMINa
は演算値であり、第1図a〜cに示す値に相当し、力行
時(第1図A,b)にはVMINa=VMINであり、
回生時(第1図c)にはVMIN′S.VMINaとな
る。第3の演算回路15は第1,第2の各演算回路13
,14より導かれる瞬時最大値信号VMAXa、瞬時最
小値信号VMINctとを基に(MAXct一VMIN
a)なる演算を行ない、第1図a−cに示す如きαを求
める。
The second arithmetic circuit 14 performs an operation VMAXOO5 (α 10th order) based on the maximum peak value signal VMAX derived from the memory circuit 11 (and the phase control angle signal α derived from the 5A/D converter 9). , find the instantaneous minimum value VMINa in the range of phase control angle α.These VMAXO, VMINa
is a calculated value and corresponds to the values shown in Fig. 1 a to c, and during power running (Fig. 1 A, b), VMINa = VMIN,
During regeneration (Fig. 1c), VMIN'S. Becomes VMINa. The third arithmetic circuit 15 is connected to each of the first and second arithmetic circuits 13.
, 14, based on the instantaneous maximum value signal VMAXa and the instantaneous minimum value signal VMINct (MAXct - VMIN
a) Perform the following calculation to find α as shown in FIG. 1 a-c.

また第4の演算回路16は第1の演算回路13より導か
れる瞬時最大値信号VMAXaと記憶回路12より導か
れる最小波高値信号VMlNとで(VMAXa−VMI
N)なる演算を行なつて第1図a−cに示す如きVa5
を求める。力行時0η図A,b)にはVα=Va7であ
り、回生時(第1図c)にはVct′S,α5である。
判定回路17は第3,第4の各演算回路15,16より
導かれる各飛躍電圧信号Vα,Va5を基にVa′/V
α〈Kの判定式が成立するか否かを判定し、該当する判
定出力0を送出する訳であるが、力行負荷供給時(第1
図a)や力行無負荷時(第1図b)にはVα=Vct′
となるからVa5/Vα=1(〉K)となり力行運転(
力行状態)と判定する。また回生が開始された場合、変
換器1の出力側のき電線電圧は第1図cの如くなり、V
a+Va5、かつVa5〈Vαとなり上記判定式が成立
し、回生状態にあると判定する。従つて、最初力行運転
していて前記判定式が成立したら判定回路17の出力と
して回生状態検出の判定出力を送出し、この判定出力に
もとづいて直ちに位相制御部8は変換器1の位相を逆変
換領域側へ進ませる制御を行ない力行運転から回生運転
に移行せしめる。従つて回生車両よりの回生電力が変換
器1で交流電力に逆変換されて商用周波電源側へ回生さ
れる。なお判定回路17において、前記判定式が不成立
の場合には、当該判定出力0にもとづいて位相制御部8
は変換器1の力行運転を継続せしめる。一方、回生運転
を行なつていて、判定回路17の出力として力行状態検
出の判定出力が送出されたら、この判定出力にもとづい
て直ちに位相制御部8は変換器1の位相を順変換領域側
へ進ませる制御を行ない、力行運転に移行せしめる。従
つて商用周波の交流電力が変換器1で直流電力に変換さ
れて力行電力としてき電線に給電される。そして判定回
路17の判定出力が変らない限り力行運転が継続される
。上述した本発明を用いれば、変換装置の電源電圧上昇
の影響がなく、従つてこれにより生ずる検出時間の遅れ
がない。
Further, the fourth arithmetic circuit 16 uses the instantaneous maximum value signal VMAXa derived from the first arithmetic circuit 13 and the minimum peak value signal VMlN derived from the memory circuit 12 (VMAXa-VMI
Va5 as shown in Fig. 1 a-c by performing the calculation N)
seek. During power running, Vα=Va7 in 0η figures (A, b), and Vct'S, α5 during regeneration (FIG. 1c).
The determination circuit 17 determines Va'/V based on the jump voltage signals Vα and Va5 derived from the third and fourth arithmetic circuits 15 and 16.
It is determined whether the determination formula α<K holds true or not, and the corresponding determination output 0 is sent out.
Vα=Vct' in Figure a) and during no-load power running (Figure 1 b)
Therefore, Va5/Vα=1(>K) and power running (
It is determined that the vehicle is running (powering state). Furthermore, when regeneration is started, the feeder line voltage on the output side of converter 1 becomes as shown in Figure 1c, and V
a+Va5 and Va5<Vα, the above determination formula is established, and it is determined that the regeneration state is present. Therefore, when the above-mentioned judgment formula is established during power running at first, a judgment output for detecting the regeneration state is sent as the output of the judgment circuit 17, and based on this judgment output, the phase control section 8 immediately reverses the phase of the converter 1. Control is performed to advance to the conversion region side, and the transition from power running operation to regenerative operation is performed. Therefore, the regenerated power from the vehicle is reversely converted into alternating current power by the converter 1 and regenerated to the commercial frequency power source. Note that in the determination circuit 17, when the determination formula is not established, the phase control unit 8
causes the converter 1 to continue powering operation. On the other hand, when regenerative operation is being performed and a judgment output of power running state detection is sent as the output of the judgment circuit 17, the phase control unit 8 immediately changes the phase of the converter 1 to the forward conversion region side based on this judgment output. Performs control to advance the vehicle and transitions to power running. Therefore, AC power at a commercial frequency is converted to DC power by the converter 1, and is supplied to the feeder line as running power. Power running is continued as long as the judgment output of the judgment circuit 17 does not change. When the present invention described above is used, there is no effect of an increase in the power supply voltage of the converter, and therefore there is no delay in detection time caused by this.

また本発明によれば、変換装置の出力に整流リツプルが
含まれていてもフイルタによる平均値を求める必要がな
いので、フイルタによる検出時間の遅れが生じない。さ
らに本発明によれば、回生か力行かの検出の速さについ
ては、従来の電圧検出方式がフイルタにより少なくとも
旦匹ラジアンの時間遅れがあるのに対して、P変換装置
の直流出力電圧の1周期分のデータをもとに1回の判定
演算ですむので従来の電圧検出方式の時間遅れの1/3
に相当する検出周期、即ち2π −ーラジアンと等しく
なり、本発明は従来の電圧P 〜
検出方式に比べて検出時間の速さにおいてもすぐれてい
るなど種々の効果を奏する。
Furthermore, according to the present invention, even if the output of the converter includes rectification ripples, there is no need to use a filter to obtain an average value, so there is no delay in detection time caused by the filter. Furthermore, according to the present invention, regarding the speed of detection of regeneration or power generation, whereas in the conventional voltage detection method there is a time delay of at least 1 radian due to the filter, Only one judgment operation is required based on the data for each cycle, so the time delay is 1/3 of the conventional voltage detection method.
, i.e., equal to 2π - radians, and the present invention can be applied to the conventional voltage P ~
Compared to other detection methods, this method has various effects such as being faster in detection time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a−dは本発明を説明するための波形図、第2図
は本発明の一実施例を示す構成図であつて、図中1は変
換器、2,3は抵抗、4は分圧器、5はA/D変換器、
6は絶縁変圧器、7は記憶装置、8は位相制御部、9は
A/D変換器、10は判別回路、11,12は記憶回路
、13は第1の演算回路、14は第2の演算回路、15
は第3の演算回路、16は第4の演算回路、17は判定
回路を示す。
1A to 1D are waveform diagrams for explaining the present invention, and FIG. 2 is a configuration diagram showing one embodiment of the present invention, in which 1 is a converter, 2 and 3 are resistors, and 4 is a Voltage divider, 5 is A/D converter,
6 is an isolation transformer, 7 is a memory device, 8 is a phase control section, 9 is an A/D converter, 10 is a discrimination circuit, 11 and 12 are memory circuits, 13 is a first arithmetic circuit, and 14 is a second arithmetic circuit. Arithmetic circuit, 15
16 is a third arithmetic circuit, 16 is a fourth arithmetic circuit, and 17 is a determination circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 商用周波の交流電力を直流電力に変換して力行電力
としてき電線に給電し、かつ回生車両よりの回生電力を
交流電力に逆変換して商用周波電源側へ回生する変換装
置を変電所に設置して、前記き電線の電圧をもとに前記
変換装置が力行運転を行なうか回生運転を行なうかの判
別を行なうようにしたものにおいて、前記変換装置の直
流出力電圧を検出してこの検出電圧の脈流レベルの最大
値と最小値とをそれぞれ取出すと共に、前記変換装置の
サイリスタ素子群の位相制御角を検出して、この位相制
御角と前記脈流レベルの最大値とに基づいて位相制御角
の範囲における瞬時最大値と瞬時最小値とを求め、前記
瞬時最大値から瞬時最小値を差し引いて第1の飛躍電圧
を求めると共に、前記瞬時最大値から脈流レベルの最小
値を差し引いて第2の飛躍電圧を求め、これら第1の飛
躍電圧と第2の飛躍電圧との比に基づいて力行運転か回
生運転かを判別することを特徴とする力行運転一回生運
転判別方法。
1 Install a conversion device in the substation that converts commercial frequency AC power to DC power and supplies it to the feeder line as running power, and converts the regenerative power from the regenerative vehicle back to AC power and regenerates it to the commercial frequency power source. installed to determine whether the converter performs power running or regenerative operation based on the voltage of the feeder line, the detection is performed by detecting the DC output voltage of the converter. The maximum value and the minimum value of the voltage pulsating current level are respectively taken out, the phase control angle of the thyristor element group of the conversion device is detected, and the phase is determined based on this phase control angle and the maximum value of the pulsating current level. Determine the instantaneous maximum value and instantaneous minimum value in the range of the control angle, subtract the instantaneous minimum value from the instantaneous maximum value to determine the first jump voltage, and subtract the minimum value of the pulsating flow level from the instantaneous maximum value. A method for determining whether a power running or regenerative operation is performed, the method comprising determining a second jump voltage and determining whether the operation is a power running or a regenerative operation based on the ratio of the first jump voltage and the second jump voltage.
JP57023068A 1982-02-16 1982-02-16 How to distinguish between power running and regenerative operation Expired JPS5929447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57023068A JPS5929447B2 (en) 1982-02-16 1982-02-16 How to distinguish between power running and regenerative operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023068A JPS5929447B2 (en) 1982-02-16 1982-02-16 How to distinguish between power running and regenerative operation

Publications (2)

Publication Number Publication Date
JPS58139826A JPS58139826A (en) 1983-08-19
JPS5929447B2 true JPS5929447B2 (en) 1984-07-20

Family

ID=12100083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023068A Expired JPS5929447B2 (en) 1982-02-16 1982-02-16 How to distinguish between power running and regenerative operation

Country Status (1)

Country Link
JP (1) JPS5929447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199551U (en) * 1986-06-10 1987-12-18

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239591A (en) * 1985-04-15 1986-10-24 シャープ株式会社 Electromagnetic cooker
JP5931301B1 (en) * 2015-02-19 2016-06-08 三菱電機株式会社 Station building power supply device and regeneration determination voltage value calculation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199551U (en) * 1986-06-10 1987-12-18

Also Published As

Publication number Publication date
JPS58139826A (en) 1983-08-19

Similar Documents

Publication Publication Date Title
CN100550599C (en) Control apparatus for electric railcar
GB2135144A (en) Variable-voltage variable-frequency elevator control apparatus
EP0199315B1 (en) Control system for an electric locomotive having ac to dc converters
JPH0588065B2 (en)
JPS5929447B2 (en) How to distinguish between power running and regenerative operation
JPWO2020008575A1 (en) Railroad vehicle control device and disconnection determination method
JP2000050410A (en) Drive circuit of permanent magnet synchronous motor train
JP3186281B2 (en) AC electric vehicle control device
US4533862A (en) Polyphase motor drive imbalance detection
WO2021014803A1 (en) Power regeneration converter and processing method thereof
JP2548738B2 (en) PWM converter device
JPS59159602A (en) Thyristor firing angle controller for ac electric rolling stock
JPH07154901A (en) Motor controller of electric automobile
JP3351631B2 (en) Electric car control device
JP2781288B2 (en) AC electric vehicle control device
KR100758979B1 (en) Regenerative inverter system for DC railway system and method thereof
JP3678543B2 (en) Control method for self-excited inverter for feeder compensation
JPH0363310B2 (en)
JP2877577B2 (en) AC electric vehicle control device
JPH11289767A (en) Power failure detector for power converter
JP2672885B2 (en) Power failure detection device for AC electric vehicles
JPS61273103A (en) Ac and dc electric railcar
JPH01152966A (en) Service interruption detector
JP2917531B2 (en) Failure detection circuit of regenerative power processing unit
JPS5849110B2 (en) Inverter operating status detection device