JPS5929087B2 - Manufacturing method for low yield point hot-dipped galvanized steel sheets - Google Patents

Manufacturing method for low yield point hot-dipped galvanized steel sheets

Info

Publication number
JPS5929087B2
JPS5929087B2 JP15582877A JP15582877A JPS5929087B2 JP S5929087 B2 JPS5929087 B2 JP S5929087B2 JP 15582877 A JP15582877 A JP 15582877A JP 15582877 A JP15582877 A JP 15582877A JP S5929087 B2 JPS5929087 B2 JP S5929087B2
Authority
JP
Japan
Prior art keywords
hot
cold rolling
yield point
dip
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15582877A
Other languages
Japanese (ja)
Other versions
JPS5487640A (en
Inventor
正郎 久保田
一宇 高木
達明 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP15582877A priority Critical patent/JPS5929087B2/en
Publication of JPS5487640A publication Critical patent/JPS5487640A/en
Publication of JPS5929087B2 publication Critical patent/JPS5929087B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は、ゼンジマー型連続溶融メッキラインで、降伏
点が23kg/一以下の如き低降伏点の溶融メッキ鋼板
を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hot-dip plated steel sheets with a low yield point of 23 kg/1 or less using a Sendzimer-type continuous hot-dip plating line.

インライン焼鈍を内蔵するゼンジマー型連続溶融メッキ
ラインによつて得られる溶融メッキ鋼板は、メッキ前ア
ウトライン焼鈍のフラックス型溶融メッキラインによる
鋼板に比べて、生産効率、経済性、省力住等の操業面で
優れた点が多いが、材質的には、連続焼鈍の急速加熱お
よび急速冷却によるため硬質となり、軟質材の製造は極
めて困難であつた。すなわち、連続焼鈍の急速な加熱冷
却により、(1)フェライト結晶粒が微細し、(2)最
適集合組織にコントロールすることが難しく、また(3
)過飽和固溶炭素による焼入時効の発生、などによつて
硬質化が避けられず、加工にさいし形状凍結性が良好で
、腰折れストレッチャーストレインの発生が防止され、
しかも簡単な曲げ加工を施す用途に対して人力でも加工
可能なような、低降伏点(例えば降伏点23kg/一以
下)の軟質材の製造は、このゼンジマー型連続溶融メッ
キラインによつては極めて困難であるとされるのが通常
であつた。たとえば、近年、ゼンジマー型連続溶融メッ
キラインで降伏点の低い加工性の良好な軟質溶融メッキ
鋼板を製造することを目的として、に値(Mn、、S)
Oの成分含有比を特定の関係をもつて表わす値)を指標
とする化学成分の調整や、熱延時の高温巻取りによる結
晶粒成長の促進、過時効処理による過飽和固溶炭素の析
出、などの処理を実施することが試みられたが、に値調
整に対応した製鋼技術の困難性や過時効ゾーン設置のた
めの設備投資の制約などから、汎用化に至らず、メ)
ツキ前アウトライン焼鈍のフラックス型溶融メッキ鋼板
の場合と同様に、結局のところ、Alなどの特殊元素を
添加したメッキ前の脱炭焼鈍材を母材コイルとして使用
するといつた特殊材の使用によつているのが通常である
The hot-dip coated steel sheets obtained by the Sendzimer-type continuous hot-dip plating line with built-in in-line annealing are superior to the steel sheets produced by the flux-type hot-dip plating line, which uses outline annealing before plating, in terms of production efficiency, economy, labor savings, etc. Although it has many advantages, the material is hard due to rapid heating and rapid cooling during continuous annealing, making it extremely difficult to produce a soft material. That is, due to the rapid heating and cooling of continuous annealing, (1) ferrite crystal grains become fine, (2) it is difficult to control the optimum texture, and (3) ferrite grains become fine.
) Hardening is unavoidable due to quenching aging due to supersaturated solid solute carbon, and it has good shape freezing properties during processing and prevents the occurrence of stretcher strain.
Moreover, it is extremely difficult to manufacture soft materials with a low yield point (for example, a yield point of 23 kg/1 or less) that can be processed manually for applications that require simple bending. It was usually considered difficult. For example, in recent years, with the aim of producing soft hot-dip plated steel sheets with a low yield point and good workability on a Sendzimer-type continuous hot-dip plating line, the values (Mn, S)
Adjustment of chemical components using the O content ratio (a value that expresses a specific relationship) as an index, promotion of grain growth by high-temperature winding during hot rolling, precipitation of supersaturated solid solution carbon by over-aging treatment, etc. Attempts have been made to implement this treatment, but due to the difficulties in steelmaking technology that can accommodate value adjustment and restrictions on capital investment for establishing an over-aging zone, it has not been possible to generalize the process, and
As with the case of flux-type hot-dip galvanized steel sheets that are pre-outline annealed, in the end, the use of special materials such as decarburized annealed pre-plating material to which special elements such as Al are added is used as the base material coil. It is normal that it is on.

しかし、この場合においては、製造コストが必然的に上
昇するほか、メツキ前焼鈍で発生した反応生成物がメツ
キ前処理の還元性雰囲気中では除去されずに残存し、こ
れが不メツキを誘発して表面品質を低下させ歩留ロスを
生じさせるといつた問題があつた。本発明は、上記のよ
うな各種の問題を解決し、低炭素鋼の低降伏点溶融メツ
キ鋼板をゼンジマ一型連続溶融メツキラインで能率よく
製造する新規な方法を開発したもので、その要旨とする
ところは、前記特許請求の範囲に記載したように、ゼン
ジマ一型連続溶融メツキラインで低降伏点の溶融メツキ
鋼板を製造するにあたり、C含有量を0.02〜0.1
5%とした低炭素鋼を熱間圧延のさいに650℃以上の
巻取温度で巻取つてホツトコイルを製造し、次いで通常
の冷間圧延を行なつたあと非脱炭雰囲気下での軟化焼鈍
を施し、さらに冷延率10〜20%の冷間圧延を行なつ
たあとに、ゼンジマ一型連続溶融メツキラインに通板し
、このゼンジマ一型連続溶融メツキラインにおけるイン
ライン焼鈍を650融C−Acl(723℃)の温度域
で実施してメツキすることを特徴とする低降伏点溶融メ
ツキ鋼板の製造法にある。
However, in this case, not only does the manufacturing cost inevitably increase, but the reaction products generated during the pre-plating annealing remain without being removed in the reducing atmosphere of the plating pre-treatment, which may lead to non-plating. There were problems with deterioration of surface quality and yield loss. The present invention solves the above-mentioned various problems and develops a new method for efficiently manufacturing low-yield point hot-plated steel plates made of low carbon steel using a continuous hot-plating line of the Zenzima type. However, as described in the claims, when producing a hot-dip galvanized steel sheet with a low yield point using the Zenzima type 1 continuous hot-melt plating line, the C content is set to 0.02 to 0.1.
5% low carbon steel is hot rolled at a coiling temperature of 650°C or higher to produce a hot coil, followed by normal cold rolling and then softening annealing in a non-decarburizing atmosphere. After further cold rolling at a cold rolling rate of 10 to 20%, the sheet is passed through a Sendzima type 1 continuous melt plating line, and in-line annealed in this Sendzima type 1 continuous melt plating line with 650 molten C-ACl ( The present invention provides a method for producing a low-yield-point hot-dip galvanized steel sheet, characterized in that plating is carried out in a temperature range of 723° C.).

この本発明の原理は、 (1)メツキ前焼鈍で発生した反応生成物は、その後あ
る程度以上の冷延率で冷延するならば破壊することがで
きる、(2)上記の(1)による冷延は、また、引続く
ゼンジマ一型連続溶融メツキラインのインライン焼鈍と
の組合わせで、いわゆる「歪焼鈍法]としての作用効果
を供することができ、この冷延における冷延率の大きさ
を適量の歪エネルギー(予歪)として作用させるならば
、フエライト結晶粒の成長粗大化を介して降伏点の低減
に資することができる、(3)この上記(1)および(
2)の処法を採る場合に、降伏点を23kg/ml以下
にするという要求は、母材コイルの材質は、A1などの
特殊元素を添加したさいのように脱炭焼鈍材によらなく
とも、通常の非脱炭焼鈍材でも十分に満足させることが
できる、との知見に基づくものであり、この知見事実に
加えて熱延におけるホツトコイル巻取温度を所定温)度
以上に設定してフエライト結晶粒の粗大化を助成した上
で、通常どおりの冷延後、非脱炭雰囲気下の条件で軟化
焼鈍を行ない、その後再度、軽度の冷延率による2次冷
延を施して焼鈍時に発生した反応生成物を破壊させると
同時に歪エネルギーを付与し、ゼンジマ一型連続溶融メ
ツキラインのインライン焼鈍で歪焼鈍法を行なわせ、こ
れによりフエライト結晶粒の一層の成長粗大化を図りな
がら低降伏点溶融メツキ鋼板を安定してかつ安価に製造
するものである。
The principles of the present invention are as follows: (1) Reaction products generated during pre-plating annealing can be destroyed if the reaction products are subsequently cold rolled at a cold rolling rate above a certain level, (2) In addition, in combination with the subsequent in-line annealing of the Zenzima type continuous melting line, rolling can provide the effect of the so-called "strain annealing method", and the cold rolling rate in this cold rolling can be adjusted to an appropriate level. If it acts as strain energy (prestrain), it can contribute to reducing the yield point through the growth and coarsening of ferrite crystal grains.
When using the treatment method 2), the requirement that the yield point be 23 kg/ml or less means that the material of the base coil does not need to be a decarburized annealed material as is the case when special elements such as A1 are added. This is based on the knowledge that ordinary non-decarburized annealed materials can sufficiently satisfy the requirements, and in addition to this knowledge, the hot coil winding temperature in hot rolling is set at a predetermined temperature or higher to produce ferrite. After assisting the coarsening of grains, after cold rolling as usual, softening annealing is performed in a non-decarburizing atmosphere, and then secondary cold rolling is performed again at a light cold rolling rate. At the same time, strain energy is applied to destroy the reaction product, and the strain annealing method is performed by in-line annealing of the Zenzima type continuous melting line, thereby achieving low yield point melting while further growing and coarsening the ferrite crystal grains. The purpose is to produce plated steel plates stably and inexpensively.

すなわち本発明法は、降伏点の低下をフエライト結晶粒
の成長粗大化によつて行なうものであり、その処法とし
てホツトコイルの巻取温度の制御、特定の2次冷延なら
びに特定のインライン焼鈍制御を適用することに特徴が
ある。フエライト結晶粒は機械的件質を支配する重要な
因子であり、フエライト結晶粒が粗粒になる程、降伏点
が低下することは、例えばHall−Petchの関係
の如く公知である。
In other words, the method of the present invention lowers the yield point by growing and coarsening ferrite crystal grains, and the methods include controlling the winding temperature of the hot coil, specific secondary cold rolling, and specific in-line annealing control. It is characterized by the application of Ferrite crystal grains are an important factor governing mechanical properties, and it is well known, for example, as in the Hall-Petch relationship, that the coarser the ferrite crystal grains, the lower the yield point.

本発明法はこのフエライト結晶粒と降伏点の関係をゼン
ジマ一型連続溶融メツキラインにおいて巧妙に利用する
ものであるが、降伏点が23kg/i以下の低降伏点溶
融メツキ鋼板を得るにはフエライト結晶粒の粒度NOを
6以下とすることが必要であることを確認した。換言す
れば本発明は、ゼンジマ一型連続溶融メツキラインでフ
エライト結晶粒が所定以上(例えば粒度NOが6以下)
の溶融メツキ鋼板を製造する方法を見い出したものと言
うことができる。以下に本発明の各要件ならびに数値限
定理由につき、個別に詳述する。まず大発明は、C含有
量を0.02〜0.15%とした低炭素鋼を熱間圧延の
さいに650℃以上の巻取温度で巻取つてホツトコイル
を製造するのであるが、C含有量の下限値を0.02%
に限定しているのは、これより低C含有量の鋼を溶製す
るには通常の製鋼法では困難であり、真空脱ガス装置お
よびオープンコイル焼鈍炉での脱炭処理を必要として本
発明の目的の1つである安価性および経済性が損なわれ
ることによる。
The method of the present invention cleverly utilizes this relationship between ferrite crystal grains and yield point in the Zenzima type continuous melt plating line, but in order to obtain a low yield point melt plated steel sheet with a yield point of 23 kg/i or less, It was confirmed that it is necessary to make the particle size NO of the grains 6 or less. In other words, in the present invention, the ferrite crystal grains are larger than a predetermined value (for example, the particle size NO is 6 or less) in the Zenzima type continuous melting line.
It can be said that we have discovered a method for manufacturing hot-dip galvanized steel sheets. Each requirement of the present invention and the reason for numerical limitation will be individually explained in detail below. First, the great invention is to manufacture a hot coil by winding low carbon steel with a C content of 0.02 to 0.15% at a coiling temperature of 650°C or higher during hot rolling. Lower limit of amount 0.02%
The reason for this is that it is difficult to melt steel with a lower C content using normal steel manufacturing methods, and the present invention requires decarburization using a vacuum degassing device and an open coil annealing furnace. This is because one of the objectives of the system, which is low cost and economic efficiency, is impaired.

またC含有量の上限値を0.15%に限定しているのは
、0.15%を超えるC含有量では材質硬化作用が強く
なることによる。また、熱延時のコイル巻取温度を65
0℃以上とするのは、この温度以上の高温巻取りによつ
て、炭化物を凝集粗大化させて炭化吻の粒界移動阻止作
用を減少させ、これによりフエライト結晶粒の成長粗大
化を行なわせるためである。650℃未満の巻取温度で
は、この効果が不十分であり後続工程との組合わせによ
つても本発明の目的が達成できない。
Further, the upper limit of the C content is limited to 0.15% because a C content exceeding 0.15% has a strong material hardening effect. In addition, the coil winding temperature during hot rolling was set to 65
The reason why the temperature is set at 0°C or higher is that by high-temperature winding at a temperature higher than this temperature, the carbides are aggregated and coarsened to reduce the grain boundary movement inhibiting effect of the carbonization proboscis, thereby causing the growth and coarsening of ferrite crystal grains. It's for a reason. At a winding temperature of less than 650°C, this effect is insufficient and the object of the present invention cannot be achieved even when combined with subsequent steps.

3このようにして得られ
たホツトコイルは、次いで、通常どおりの酸洗、冷間圧
延を行なつたあと非脱炭雰囲気下での軟化焼鈍を施す。
そして、再び冷延率10〜20%の2次冷延を実施する
。この2次冷延を実施し、その冷延率を10〜201%
の範囲とすることに本発明の大きな特徴がある。非脱炭
雰囲気下での軟化焼鈍後に実施するこの2次冷延は、既
述のようにこのメツキ前焼鈍で発生した反応生成物の破
壊作用と、引続き実施するゼンジマ一型連続溶融メツキ
ラインのインライン焼1鈍におけるフエライト結晶粒の
成長粗粒化を助成する歪エネルギー(予歪)を付与する
作用とを供する。前者の反応生成物破壊作用は冷延率を
高めればそれたけ高くなるのであるが、後者の場合には
あまり冷延率を高くすると、かえつて予歪が過5剰とな
りフエライト結晶粒の細粒化現象が生ずることとなり、
この冷延率の選定に対しては、好ましい範囲が存在する
ことを一連の実験から見い出すことができた。第1図は
その結果の代表例を示すものであり、この2次冷延にお
ける冷延率とフ ニエライト結晶粒度NOとの関係をプ
ロツトしたものである。この第1図は、ゼンジマ一型連
続溶融メツキラインのインライン焼鈍との組合わせでフ
エライト結晶粒の成長粗大化を図る場合に、この2次冷
延で予歪を付与するさいの2次冷延率がフエライト結晶
粒度NOに特定の関係をもつて影響を与え、約15%の
冷延率でフエライト結晶粒の成長粗大化に最大の効果を
発揮することを示している。そして、本発明者らの実験
によると、降伏点を23kg/1ii以下とするにはフ
エライト結晶粒の粒度NOを6以下としなければならな
いから、この要求を満たすには、第1図からも明らかな
ように、2次冷延率は10〜20%の範囲に限定されね
ばならない。すなわち、2次冷延率が10%より少ない
場合には、歪エネルギー(予歪)の不足により、フエラ
イト結晶粒が均一に成長粗大化せず、粗粒の中において
板厚の中心部を中心として細粒が残存する混粒組織を呈
することになり、第1図に示すとおり、フエライト結晶
粒の粒度フ難となる。
3 The hot coil thus obtained is then subjected to usual pickling and cold rolling, and then softening annealing in a non-decarburizing atmosphere.
Then, secondary cold rolling is performed again at a cold rolling rate of 10 to 20%. This secondary cold rolling is carried out, and the cold rolling rate is 10 to 201%.
A major feature of the present invention lies in the range of . This secondary cold rolling, which is carried out after softening annealing in a non-decarburizing atmosphere, is due to the destructive effect of the reaction products generated in this pre-plating annealing as described above, and the in-line of the Zenzima type continuous melt plating line that will be carried out subsequently. It provides the effect of imparting strain energy (prestrain) that assists in the growth and coarsening of ferrite crystal grains during annealing. In the former case, the destructive effect of reaction products increases as the cold rolling rate increases, but in the latter case, if the cold rolling rate is too high, the prestrain becomes excessive and the fine grains of the ferrite crystal grains This will cause the phenomenon of
Through a series of experiments, it was found that there is a preferable range for selecting this cold rolling rate. Figure 1 shows a representative example of the results, and is a plot of the relationship between the cold rolling rate and the Funierite grain size NO in the secondary cold rolling. This figure 1 shows the secondary cold rolling rate when applying prestrain in this secondary cold rolling when attempting to grow and coarsen ferrite crystal grains in combination with in-line annealing of the Sendzima type continuous melt plating line. It has been shown that NO affects the ferrite crystal grain size NO in a specific relationship, and that a cold rolling rate of about 15% has the greatest effect on the growth and coarsening of ferrite crystal grains. According to the experiments conducted by the present inventors, in order to make the yield point 23 kg/1ii or less, the grain size NO of the ferrite crystal grains must be 6 or less. As such, the secondary cold rolling ratio must be limited to a range of 10 to 20%. In other words, when the secondary cold rolling ratio is less than 10%, the ferrite crystal grains do not grow uniformly and become coarse due to the lack of strain energy (prestrain), and the coarse grains center around the center of the plate thickness. As a result, a mixed grain structure in which fine grains remain is exhibited, and as shown in FIG. 1, the grain size of the ferrite crystal grains becomes difficult.

したがつて、このゼンジマ一型連続溶融メツキラインに
おけるインライン焼鈍温度を650℃〜Acl(723
℃)の範囲とすることが本発明にとつて極めて重要な要
件となる。以下、実施例について述べる。
Therefore, the in-line annealing temperature in this Zenzima type 1 continuous melt plating line was set at 650°C to ACl (723°C).
℃) is an extremely important requirement for the present invention. Examples will be described below.

実施例 表1に供試材の化学成分値(重量%)を示す。Example Table 1 shows the chemical composition values (wt%) of the sample materials.

この低炭素鋼を転炉で溶製し、7本のスラブを製造した
。この7本のスラブ(A−Gノをそれぞれ表2に表示し
た熱延巻取温度で巻取り、2.7×930へのホツトコ
イルを製造した。次いで各ホツトコイルを通常どおりの
酸洗いと冷間圧延(1次)を実施し、この1次冷間圧延
において、A〜Eの5本のコイルは2.7%から0.7
♂に、Fのコイルは2,7へから0.86′に、またG
のコイルは2.7%から0.63〜に冷間圧延した。次
いでいづれのコイルも非脱炭雰囲気中で軟化焼鈍を行な
つたあと、表2に表示した冷延率で2次冷延を実施した
This low carbon steel was melted in a converter and seven slabs were manufactured. These seven slabs (A-G) were each rolled at the hot-rolling temperature shown in Table 2 to produce a 2.7 x 930 hot coil.Next, each hot coil was pickled and cold-rolled as usual. Rolling (first stage) is carried out, and in this first stage cold rolling, the five coils A to E are rolled from 2.7% to 0.7%.
♂, the F coil goes from 2,7 to 0.86', and the G
The coil was cold rolled from 2.7% to 0.63~. Next, each coil was subjected to softening annealing in a non-decarburizing atmosphere, and then subjected to secondary cold rolling at the cold rolling rate shown in Table 2.

すなわち、A−Eの5本のコイルは0.7〜から0.6
〜に(冷延率14%)、Fのコイルは0.86%から0
.6%に(冷延率30%)、Gのコイルは0.63%か
ら0.6%に(軽質圧延、調質率5%)、の2次冷延を
実施し、歪エネルギーを付与した冷延コイルを製造した
。得られた各冷延コイルをゼンジマ一型連続溶融亜鉛メ
ツキラインに通板し、そのさいインライン焼鈍温度をそ
れぞれ表2に表示した600、700、または750れ
Cの条件のもとに制御し、いづれも亜鉛付着量609/
TrIO?融亜鉛メツキ鋼板を製造した。
That is, the five coils A-E are 0.7 to 0.6
(cold rolling rate 14%), F coil is 0.86% to 0
.. 6% (cold rolling ratio: 30%), and the G coil was subjected to secondary cold rolling from 0.63% to 0.6% (light rolling, tempering ratio: 5%) to impart strain energy. A cold-rolled coil was manufactured. Each of the obtained cold-rolled coils was passed through a Zenzima type continuous hot-dip galvanizing line, and the in-line annealing temperature was controlled under the conditions of 600, 700, or 750 degrees C as shown in Table 2. Zinc adhesion amount 609/
TrIO? A galvanized steel sheet was manufactured.

得られた各製品の機械的゜肚質(特に降伏点)およびフ
エライト結晶粒番号(Figs.NO)、不メツキの有
無、を測定し、それぞれ表2に示す結果を得た。
The mechanical properties (especially yield point), ferrite grain number (Figs.

Claims (1)

【特許請求の範囲】 1 ゼンジマー型連続溶融メッキラインで低降伏点の溶
融メッキ鋼板を製造するにあたり、C含有量を0.02
〜0.15%とした低炭素鋼を熱間圧延のさいに650
℃以上の巻取温度で巻取つてホットコイルを製造し、次
いで通常の冷間圧延を行なつたあと非脱炭雰囲気下での
軟化焼鈍を施し、さらに冷延率10〜20%の冷間圧延
を行なつたあとに、ゼンジマー型連続溶融メッキライン
に通板し、このゼンジマー型連続溶融メッキラインにお
けるインライン焼鈍を650℃〜Ac_1(723℃)
の温度域で実施してメッキすることを特徴とする低降伏
点溶融メッキ鋼板の製造方法。 2 溶融メッキ鋼板の降伏点が23kg/mm^2以下
である特許請求の範囲第1項記載の製造方法。
[Claims] 1. When manufacturing hot-dip plated steel sheets with a low yield point on a Sendzimer-type continuous hot-dip plating line, the C content is reduced to 0.02.
650% during hot rolling of low carbon steel containing ~0.15%
A hot coil is manufactured by coiling at a coiling temperature of ℃ or above, followed by normal cold rolling, followed by softening annealing in a non-decarburizing atmosphere, and further cold rolling at a cold rolling rate of 10 to 20%. After rolling, the plate is passed through a Sendzimer continuous hot-dip plating line, and in-line annealed at 650°C to Ac_1 (723°C) in this Sendzimer continuous hot-dip plating line.
A method for producing a low-yield-point hot-dip plated steel sheet, characterized in that plating is carried out in a temperature range of . 2. The manufacturing method according to claim 1, wherein the yield point of the hot-dip plated steel sheet is 23 kg/mm^2 or less.
JP15582877A 1977-12-24 1977-12-24 Manufacturing method for low yield point hot-dipped galvanized steel sheets Expired JPS5929087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15582877A JPS5929087B2 (en) 1977-12-24 1977-12-24 Manufacturing method for low yield point hot-dipped galvanized steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15582877A JPS5929087B2 (en) 1977-12-24 1977-12-24 Manufacturing method for low yield point hot-dipped galvanized steel sheets

Publications (2)

Publication Number Publication Date
JPS5487640A JPS5487640A (en) 1979-07-12
JPS5929087B2 true JPS5929087B2 (en) 1984-07-18

Family

ID=15614373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15582877A Expired JPS5929087B2 (en) 1977-12-24 1977-12-24 Manufacturing method for low yield point hot-dipped galvanized steel sheets

Country Status (1)

Country Link
JP (1) JPS5929087B2 (en)

Also Published As

Publication number Publication date
JPS5487640A (en) 1979-07-12

Similar Documents

Publication Publication Date Title
JP2009503265A (en) Method for producing directional electromagnetic steel strip
JP2009503264A (en) Method for producing directional electromagnetic steel strip
EP0147659B2 (en) Method for manufacturing grain-oriented silicon steel sheet
CN107779727A (en) A kind of production method of orientation silicon steel
CN108411205A (en) The method that CSP flows produce high-magnetic induction, low-iron loss non-oriented electrical steel
NO141723B (en) PROCEDURE FOR THE MANUFACTURE OF CRYSTALL-ORIENTED MAGNETIC PLATE
EP0075803B1 (en) Process for producing cold rolled steel sheets having excellent press formability and ageing behaviour
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPS5929087B2 (en) Manufacturing method for low yield point hot-dipped galvanized steel sheets
JPH0582458B2 (en)
JPS62130268A (en) Production of hot dip zinc coated mild steel sheet for working subjected to alloying treatment
JPS6114216B2 (en)
JPS6114219B2 (en)
KR860000350B1 (en) Method for manufacture of black plate
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS5857491B2 (en) Method for producing thermosetting cold-rolled steel sheet for deep drawing
JPH066747B2 (en) Method for producing unidirectional silicon steel sheet having high magnetic flux density and low iron loss
KR890000666B1 (en) Process of cold rolled steel sheet having a good ductility
JPH03111519A (en) Production of high strength hot dip galvanized steel sheet having high r-value
JPS6323248B2 (en)
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JPS6362822A (en) Production of cold rolled steel sheet for deep drawing
JPS61238919A (en) Manufacture of cold rolled deep drawing steel sheet having low anisotropy in plane
JPH03150317A (en) Manufacture of hot dip galvanized cold rolled steel sheet for deep drawing having excellent brittlement resistance in secondary working