JPS5928923B2 - Compound superconductor - Google Patents

Compound superconductor

Info

Publication number
JPS5928923B2
JPS5928923B2 JP55170517A JP17051780A JPS5928923B2 JP S5928923 B2 JPS5928923 B2 JP S5928923B2 JP 55170517 A JP55170517 A JP 55170517A JP 17051780 A JP17051780 A JP 17051780A JP S5928923 B2 JPS5928923 B2 JP S5928923B2
Authority
JP
Japan
Prior art keywords
compound superconducting
conductor
compound
stress
stabilizing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55170517A
Other languages
Japanese (ja)
Other versions
JPS5795006A (en
Inventor
八男 白木
暁 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP55170517A priority Critical patent/JPS5928923B2/en
Publication of JPS5795006A publication Critical patent/JPS5795006A/en
Publication of JPS5928923B2 publication Critical patent/JPS5928923B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 本発明は、化合物超電導コイルに係り、特にマトリック
ス内に化合物超電導芯線を複数本埋込んでなる化合物超
電導線に安定化材を一体的に添着してなる化合物超電導
導体で構成した化合物超電導コイルの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound superconducting coil, and more particularly to a compound superconducting conductor formed by integrally attaching a stabilizing material to a compound superconducting wire formed by embedding a plurality of compound superconducting core wires in a matrix. This invention relates to improvements in the constructed compound superconducting coil.

従来の化合物超電導線に安定化材を一体的に添着してな
る化合物超電導導体を用いた超電導コイルは、第1図に
示す工うな断面形状の導体で構成されている。
A conventional superconducting coil using a compound superconducting conductor formed by integrally adhering a stabilizing material to a compound superconducting wire is composed of a conductor having a hollow cross-sectional shape as shown in FIG.

すなわち、この第1図は、長方形状のマトリックス1内
に複数本の化合物超電導芯線2を上記マトリックス1の
中心線x、X’ を中心にして対称的に分布埋設した化
合物超電導線3の外周に銅、アルミニウムなどで形成さ
れた安定化材4を金属的に一体的に添着したものとなつ
ている。上記安定化材4は、たとえば上記化合物超電導
線3を嵌入させる溝5ケ有した断面コ字形の安定化材片
6と、この安定化材片6の上記溝5内へ嵌入した上記化
合物超電導線3の図中上面に金属的に接着された安定化
材片7とで構成されており、マトリックス1の中心線x
、X’ を中心にして対称的な寸法関係に設定されてい
る。このような導体を用いた従来の化合物超電導コイル
であつては、導体を超電導機器への組込み時に生じる曲
げや電磁力によつて生じる応力などによつて臨界電流が
劣化する欠点があつた。
That is, FIG. 1 shows a compound superconducting wire 3 in which a plurality of compound superconducting core wires 2 are embedded in a rectangular matrix 1 in a symmetrical distribution about the center lines x and X' of the matrix 1. A stabilizing material 4 made of copper, aluminum, etc. is attached integrally with the metal. The stabilizing material 4 includes, for example, a stabilizing material piece 6 having a U-shaped cross section and having five grooves into which the compound superconducting wire 3 is fitted, and the compound superconducting wire fitted into the groove 5 of the stabilizing material piece 6. 3, the stabilizing material piece 7 is metallically bonded to the upper surface of the matrix 1, and the center line x of the matrix 1 is
, X' are set in a symmetrical dimensional relationship. Conventional compound superconducting coils using such conductors have had the disadvantage that the critical current deteriorates due to stress caused by bending or electromagnetic force that occurs when the conductor is assembled into superconducting equipment.

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、曲げ応力に対する臨界電流の劣
化が少なく、超電導機器の安定性を一層向上させ得る化
合物超電導コイルを提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a compound superconducting coil that has less deterioration of critical current due to bending stress and can further improve the stability of superconducting equipment. It is in.

本発明は、マトリックス内に化合物超電導芯線を複数本
埋込んでなる化合物超電導線に安定化材を一体的に添着
してなる化合物超電導導体を巻回して構成した化合物超
電導コイルにおいて、上記導体の横断面上に描かれる一
本の中立軸の位置と上記横断面内で前記化合物超電導芯
線が分布している範囲の上記中立軸と平行する中心線の
位置との間の距離を上記化合物超電導芯線の分布してい
る範囲の上記中心線と直交する方向の径のほぼ1/6に
設定し、かつ、上記中立軸を上記中心線に対して上記化
合物超電導導体の引張応力が加わる側になるように設定
して上記化合物超電導導体を巻回して構成することによ
つて、導体に応力が加わつても臨界電流が劣化しない優
れた効果を有する化合物超電導コイルである。
The present invention provides a compound superconducting coil constructed by winding a compound superconducting conductor formed by embedding a plurality of compound superconducting core wires in a matrix and integrally attaching a stabilizing material to the compound superconducting wire, in which the conductor crosses the The distance between the position of one neutral axis drawn on the surface and the position of the center line parallel to the neutral axis in the range where the compound superconducting core wire is distributed in the cross section is calculated as follows: It is set to approximately 1/6 of the diameter in the direction orthogonal to the center line of the distributed range, and the neutral axis is set on the side where the tensile stress of the compound superconducting conductor is applied with respect to the center line. By setting and winding the compound superconducting conductor, the compound superconducting coil has an excellent effect that the critical current does not deteriorate even when stress is applied to the conductor.

以下、本発明の詳細を図示の実施例によつて説明する。Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第2図は、本発明の一実施例に係る導体の横断面を示す
もので、この導体も大きく分けて化合物超電導線11と
、この化合物超電導線11に一体的に添着された安定化
材12とで構成されている。
FIG. 2 shows a cross section of a conductor according to an embodiment of the present invention, and this conductor is roughly divided into a compound superconducting wire 11 and a stabilizing material 12 integrally attached to this compound superconducting wire 11. It is made up of.

上記化合物超電導線11は、横断面がたとえば長方形状
のマトリツクス13内に上記マトリツクス13の中心線
X,X′ を中心にして対称関係にたとえば12本の化
合物超電導芯線14を分布埋設して構成されている。な
お、化合物超電導芯線14の素材としてはNb線が使用
され、またマトリツクス13としてはCu−Sn合金が
使用され、前記安定化材12を添着した後、熱処理を施
してNb線の表面に化合物超電導物質であるNb3Sn
層を形成したものとなつている。しかして、前記安定化
材12は、銅、アルミニウムなどで形成されたもので、
上述した化合物超電導線11を嵌入させる溝15を有し
た断面コ字形の安定化材片16と、この安定化材片16
の開口端側に接合される帯状の安定化材片17とで構成
され、これら安定化材片16,17は、図示の如く化合
物超電導線11の外周を完全に覆うように上記化合物超
電導線11の外面に対して低融点金属接合、圧接あるい
は溶接等によつて一体的に添着されている。
The compound superconducting wire 11 is constructed by embedding, for example, twelve compound superconducting core wires 14 in a symmetrical relationship about the center lines X and X' of the matrix 13 in a matrix 13 having a rectangular cross section, for example. ing. Note that Nb wire is used as the material for the compound superconducting core wire 14, and a Cu-Sn alloy is used as the matrix 13. After attaching the stabilizing material 12, heat treatment is performed to form compound superconducting wire on the surface of the Nb wire. The substance Nb3Sn
It is made up of layers. Therefore, the stabilizing material 12 is made of copper, aluminum, etc.
A stabilizing material piece 16 having a U-shaped cross section and having a groove 15 into which the compound superconducting wire 11 described above is inserted, and this stabilizing material piece 16
These stabilizing material pieces 16 and 17 are attached to the compound superconducting wire 11 so as to completely cover the outer periphery of the compound superconducting wire 11 as shown in the figure. The material is integrally attached to the outer surface of the material by low melting point metal joining, pressure welding, welding, etc.

そして、上記安定化材片16のいわゆる側壁16a,1
6bの肉厚は等しい値に設定され、また安定化材片16
の(・わゆる底壁16cの肉厚は安定化材片17の肉厚
に対して次のように設定されている。すなわち、今、こ
の導体に長手方向に沿う図中下面が曲りの内側となる曲
げ応力を作用させ友ときに描かれる中立軸をZとしたと
き、この中立軸Zと上記中立軸zと平行する前記化合物
超電導線11の中心線Xとを位置的に所定にずらし得る
値、具体的には、上記中立軸Zが上記中心線Xより図中
上方で、かつ中立軸Zと中心線Xとの距離が前記化合物
超電導芯線14の分布している範囲の上記中心線Xと直
交する方向の径Yのほぼ1/6となる工うに前記安定化
材片17の肉厚に対して前記底壁16cの肉厚が薄肉に
設定されている。換言すれば前記径Yを図中上から下へ
向けてA:B−1:2に区分した線上に中立軸zがほぼ
位置するように安定化材片16の底壁16cの肉厚が設
定されている。このように構成された化合物超電導導体
を常に図中下面が曲りの内側に位置するようにコイルを
巻回することによつて、コイル紮製作するときや電磁力
などによる曲げ応力が加わつても、その臨界電流の劣化
を大幅に少なくすることができる。この理由は、たとえ
ば、第1図に示す従来の化合物超電導コイルと比較して
説明する。この導体は主として製作性の面からマトリツ
クス1の中心線X,X′ を中心にして対称関係に化合
物超電導芯線2を分布埋設するとともに同じく対称関係
に安定化材4の寸法を設定するようにしている。この工
うに構成された導体にあつて、今、たとえば導体の長手
方向に沿う図中下面が曲りの内側に位置し得る曲げ力を
作用させると、このときの導体の中立軸位置は前記関係
に設定されていることからして中心線Xの位置に一致す
る。L.たがつて、中心線Xより図中下側には圧縮力が
作用し、上側には引張力が作用する。この圧縮力と引張
力との関係は、引張応力(歪)が生じた場合の方が圧縮
応力(歪)が生じた場合に較べて1/2の歪量で臨界電
流の劣化するのである。このことを第3図を用いて臥7
する。
The so-called side walls 16a, 1 of the stabilizing material piece 16 are
6b are set to equal values, and the stabilizing material pieces 16
(The thickness of the so-called bottom wall 16c is set as follows with respect to the thickness of the stabilizing material piece 17. In other words, the bottom surface in the figure along the longitudinal direction of this conductor is now on the inside of the bend. When the neutral axis drawn when applying a bending stress such as Specifically, the neutral axis Z is above the center line X in the figure, and the distance between the neutral axis Z and the center line X is the center line X in the range where the compound superconducting core wire 14 is distributed. The thickness of the bottom wall 16c is set to be approximately 1/6 of the diameter Y in the direction perpendicular to the diameter Y. The thickness of the bottom wall 16c of the stabilizing material piece 16 is set so that the neutral axis z is approximately located on the line divided into A:B-1:2 from top to bottom in the figure. By winding the constructed compound superconductor into a coil so that the bottom surface in the figure is always located on the inside of the curve, the critical current can be maintained even when the coil is manufactured or when bending stress is applied due to electromagnetic force. The reason for this will be explained in comparison with the conventional compound superconducting coil shown in FIG. The compound superconducting core wires 2 are distributed and buried in a symmetrical relationship with X' as the center, and the dimensions of the stabilizing material 4 are also set in a symmetrical relationship.For a conductor configured in this way, for example, If a bending force is applied that causes the lower surface in the figure along the longitudinal direction of the conductor to be located on the inside of the bend, the neutral axis position of the conductor at this time will be at the position of the center line They match.L. Therefore, a compressive force acts on the lower side of the figure from the center line X, and a tensile force acts on the upper side.The relationship between the compressive force and the tensile force is the tensile stress (strain). When compressive stress (strain) occurs, the critical current deteriorates by 1/2 the amount of strain compared to when compressive stress (strain) occurs.
do.

尚、化合物超電導線は熱処理を行うことによつてNb3
Sn等の化合物超電導体が生成されるので冷却後は逆に
Nb3Sn等の化合物超電導体は常K圧縮応力が加わつ
た状態となり、みかけ上の化合物超電導線の無応力状態
は第3図におけるN線のところとなる。又、引張歪のマ
イナス側は圧縮応力を示し、ブラス側は引張応力を示す
。今、たとえば、圧縮応力及び引張応力としてそれぞれ
同じ応力0.5%を加えると、応力下における臨界電流
1eと無応力下における臨界電流cとの比((7)が9
0%と42%となり、引張応力下では圧縮応力下の場合
に較べてほぼ2倍の臨界電流の劣化が認められる。した
がつて、第1図に示した構造の導体では、中心線X、つ
まり中立軸から化合物超電導芯線の最外層までの距離A
,Bが引張側と圧縮側とでそれぞれ等しく、同じ応力が
加わつているので、引張側における劣化が大きく、この
友め曲げ応力に対して、いわゆる弱い導体なのである。
これに対し、上記のような本願の発明の構成であつては
、中心線Xと中立軸Zとの間が1/6Yだけずれている
ので、図中で上方に位置する6本の化合物超電導芯線1
4に加わる引張応力(歪》ま下方に位置する6本の化合
物超電導芯線14に加わる圧縮応力(歪)のほぼ1/2
と非常に小さな値となる。
Note that the compound superconducting wire is Nb3 by heat treatment.
Since a compound superconductor such as Sn is generated, on the contrary, after cooling, the compound superconductor such as Nb3Sn is in a state where normal K compressive stress is applied, and the apparent stress-free state of the compound superconducting wire is the N line in Figure 3. It will be at that place. Further, the negative side of tensile strain indicates compressive stress, and the positive side indicates tensile stress. Now, for example, if the same stress of 0.5% is applied as compressive stress and tensile stress, the ratio of critical current 1e under stress to critical current c under no stress ((7) becomes 9
0% and 42%, which indicates that the critical current deteriorates approximately twice as much under tensile stress as compared to under compressive stress. Therefore, in the conductor having the structure shown in Fig. 1, the distance A from the center line X, that is, the neutral axis, to the outermost layer of the compound superconducting core wire is
, B are equal on both the tension side and the compression side, and the same stress is applied, so the deterioration on the tension side is large and it is a so-called weak conductor with respect to this bending stress.
On the other hand, in the configuration of the invention of the present application as described above, since the center line X and the neutral axis Z are shifted by 1/6 Y, the six compound superconducting Core wire 1
The tensile stress (strain) applied to 4 is approximately 1/2 of the compressive stress (strain) applied to the six compound superconducting core wires 14 located below.
This is a very small value.

この応力の比は、圧縮応力を受けた化合物超電導芯線と
引張応力を受けた化合物超電導芯線とに同時に臨界電流
劣化が認められる応力比にほぼ等しい。このことは、上
記構成であると、臨界電流の劣化が発生する曲げ径を従
来のものより小さくできることになり、結局、曲げ応力
が加わつた場合に曲り方向が常に一定となるように、つ
まり第2図の場合には常に図中下面が曲りの内側に位置
するようにコイルを巻回することによつて、従来のもの
に較べて曲げ応力に対する臨界電流劣化を大幅に少なく
することができる。発明者らは、5X1011101の
平角断面形状の化合物超電導線を用い、この超電導線の
回りに一体的に添着される安定化材の各部肉厚を変えて
前述したAとBとの比が1:1の断面10×20n10
1の試料(従来のもの)と1:2の断面10X20?の
試料(本発明のもの)とを作成し、この2種類の試料に
ついて曲げ径(曲げ応力、歪)と臨界電流Icとの関係
を調べたところ第4図に示す結果を得た。
This stress ratio is approximately equal to the stress ratio at which critical current deterioration is observed simultaneously in the compound superconducting core wire subjected to compressive stress and the compound superconducting core wire subjected to tensile stress. This means that with the above configuration, the bending radius at which critical current deterioration occurs can be made smaller than that of the conventional one, and as a result, when bending stress is applied, the bending direction is always constant; In the case of FIG. 2, by winding the coil so that the lower surface in the figure is always positioned on the inside of the bend, critical current deterioration due to bending stress can be significantly reduced compared to the conventional method. The inventors used a compound superconducting wire with a rectangular cross section of 5 x 1011101, and changed the thickness of each part of the stabilizing material integrally attached around the superconducting wire, so that the ratio of A and B described above was 1: 1 cross section 10×20n10
1 sample (conventional) and 1:2 cross section 10X20? When the relationship between bending diameter (bending stress, strain) and critical current Ic was investigated for these two types of samples, the results shown in FIG. 4 were obtained.

なお、同図において、横軸は曲げ径を示し、縦軸は曲げ
応力下におけるIcと無応力下におけるIcとの比(!
fl)を示し、P曲線は本発明に係る化合物超電導コイ
ルに使用する導体を、ま友Q曲線は第1図に示した導体
の特性を示している。この図から明らかなように本発明
に係る化合物超電導コイルに使用する導体は従来の導体
に較べて小さい曲げ径まで使用できる。すなわち曲げ応
力GDに対していわゆる強い導体であることが理解され
る。なお、前述した実施例ではAとBとの比をほぼ1:
2に設定し、大きい方を曲げの内側に位置させるように
したが、上記比が多少変動してもそれ相当の前述した効
果が得られる。
In the figure, the horizontal axis shows the bending diameter, and the vertical axis shows the ratio of Ic under bending stress to Ic under no stress (!
fl), the P curve shows the conductor used in the compound superconducting coil according to the present invention, and the Matomo Q curve shows the characteristics of the conductor shown in FIG. As is clear from this figure, the conductor used in the compound superconducting coil according to the present invention can be used up to a smaller bending diameter than conventional conductors. In other words, it is understood that it is a so-called strong conductor against bending stress GD. In addition, in the above-mentioned embodiment, the ratio of A and B is approximately 1:
2, and the larger one is located on the inside of the bend, but even if the above ratio varies somewhat, the corresponding effect described above can be obtained.

また、前述し友実施例では安定化材の各部の肉厚を調整
することに工つて中立軸Zの位置をずらすようにしたが
、安定化材中に補強材を埋込んだり、あるいは安定化材
に補強材を添着することによつて中立軸Zの位置をずら
すようにしてもよい。また、前述し友実施例においては
、第2図中の下面が曲りの内側に位置する工うにしたが
、上面が曲りの内側に位置するようにするには、前述し
友関係が得られるように安定化材片17の肉厚を薄くし
友り、あるいは上記関係が得られるように下面に補強材
を一体的に添着すればよい。また、前述した実施例では
化合物超電導芯線としてモノリスタイプのものを用いて
いるがストランドタイプあるいはブレードケーブルタイ
プのものも使用できることは勿論である。以上詳述した
ように本発明に工れば、超電導機器への組込時に大きな
曲げ応力が加わつた場合や電磁力によつて大きな曲げ応
力が加わつ友場合であつても臨界電流の劣化が少なく、
使い易い化合物超電導コイルを提供できる。
In addition, in the above-mentioned embodiment, the position of the neutral axis Z was shifted by adjusting the wall thickness of each part of the stabilizing material, but it is also possible to embed a reinforcing material in the stabilizing material or The position of the neutral axis Z may be shifted by attaching a reinforcing material to the material. In addition, in the above-mentioned friend embodiment, the lower surface in FIG. Alternatively, the thickness of the stabilizing material piece 17 may be made thinner, or a reinforcing material may be integrally attached to the lower surface so as to obtain the above relationship. Further, in the above embodiments, a monolith type compound superconducting core wire is used, but it goes without saying that a strand type or braided cable type can also be used. As detailed above, if the present invention is implemented, the deterioration of the critical current can be prevented even when large bending stress is applied during installation into superconducting equipment or when large bending stress is applied due to electromagnetic force. less,
A compound superconducting coil that is easy to use can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の導体の横断面図、第2図は本発明の一実
施例に係る化合物超電導コイルに使用する導体の横断面
図、第3図は化合物超電導導体の引張歪一臨界電流特性
図、第4図は本発明の化合物超電導コイルに使用する導
体と従来の導体との曲げ径一臨界電流特性を調べた実験
結果を示す図である。 11・・・・・・化合物超電導線、12・・・・・・安
定化材、13・・・・・・マトリツクス、14・・・・
・・化合物超電導芯線、Z・・・・・・中立軸。
Fig. 1 is a cross-sectional view of a conventional conductor, Fig. 2 is a cross-sectional view of a conductor used in a compound superconducting coil according to an embodiment of the present invention, and Fig. 3 is a tensile strain-critical current characteristic of a compound superconducting conductor. 4 are diagrams showing the results of an experiment in which the bending diameter-critical current characteristics of the conductor used in the compound superconducting coil of the present invention and a conventional conductor were investigated. 11... Compound superconducting wire, 12... Stabilizing material, 13... Matrix, 14...
...Compound superconducting core wire, Z...neutral axis.

Claims (1)

【特許請求の範囲】[Claims] 1 マトリックス内に化合物超電導芯線を複数本埋込ん
でなる化合物超電導線に安定化材を一体的に添着してな
る化合物超電導導体を巻回して構成した化合物超電導コ
イルにおいて、上記導体の横断面上に描かれる一本の中
立軸の位置と上記横断面内で前記化合物超電導芯線が分
布している範囲の上記中立軸と平行する中心線の位置と
の間の距離を上記化合物超電導芯線の分布している範囲
の上記中心線と直交する方向の径のほぼ1/6に設定し
、かつ、上記中立軸を上記中心線に対して上記化合物超
電導導体の引張応力が加わる側に設定して上記化合物超
電導導体を巻回してなることを特徴とする化合物超電導
コイル。
1. In a compound superconducting coil constructed by winding a compound superconducting conductor formed by integrally attaching a stabilizing material to a compound superconducting wire formed by embedding a plurality of compound superconducting core wires in a matrix, The distance between the position of one neutral axis drawn and the position of a center line parallel to the neutral axis in the range where the compound superconducting core wires are distributed in the cross section is defined as the distribution of the compound superconducting core wires. and the neutral axis is set on the side where the tensile stress of the compound superconducting conductor is applied with respect to the center line. A compound superconducting coil characterized by being made by winding a conductor.
JP55170517A 1980-12-03 1980-12-03 Compound superconductor Expired JPS5928923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55170517A JPS5928923B2 (en) 1980-12-03 1980-12-03 Compound superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55170517A JPS5928923B2 (en) 1980-12-03 1980-12-03 Compound superconductor

Publications (2)

Publication Number Publication Date
JPS5795006A JPS5795006A (en) 1982-06-12
JPS5928923B2 true JPS5928923B2 (en) 1984-07-17

Family

ID=15906402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55170517A Expired JPS5928923B2 (en) 1980-12-03 1980-12-03 Compound superconductor

Country Status (1)

Country Link
JP (1) JPS5928923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033352A1 (en) * 2019-08-21 2021-02-25 株式会社日立製作所 Superconducting coil and mri device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7291469B2 (en) * 2018-10-31 2023-06-15 株式会社日立製作所 Superconducting wire manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4430751Y1 (en) * 1966-08-12 1969-12-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4430751Y1 (en) * 1966-08-12 1969-12-18

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033352A1 (en) * 2019-08-21 2021-02-25 株式会社日立製作所 Superconducting coil and mri device
JP2021034489A (en) * 2019-08-21 2021-03-01 株式会社日立製作所 Superconducting coil and MRI equipment

Also Published As

Publication number Publication date
JPS5795006A (en) 1982-06-12

Similar Documents

Publication Publication Date Title
EP0472197B1 (en) High-temperature superconductive conductor winding
JPS6047684B2 (en) Superconducting composite and its manufacturing method
US5929385A (en) AC oxide superconductor wire and cable
RU94006008A (en) CONDUCTOR FOR SUPERCONDUCTING WIRES FROM Nb3X ALLOY
JPS5928923B2 (en) Compound superconductor
JPH0475642B2 (en)
EP0461109B1 (en) Stranded conductor of electricity with a flat wire core
EP1124236A3 (en) High voltage submarine cable
JP3549295B2 (en) Superconducting cable
JP2003158010A (en) Terminal structure for superconducting coil
JPH1050153A (en) Oxide supreconductive wire for alternating current, and cable
JPS5928924B2 (en) Compound superconducting coil
JP3422189B2 (en) Composite superconducting conductor
JP4566576B2 (en) Dislocation segment conductor
JPH03239308A (en) Superconducting coil
JPH09141324A (en) Manufacture of aluminum steel composite wire
JPH08124434A (en) Superconductor
JPS5943616Y2 (en) Single core lead submerged bottom cable for power use
JPS6348147B2 (en)
JPS6313286B2 (en)
JPS59105211A (en) Forcibly cooling superconductive conductor
JPH08287746A (en) Superconducting cable for ac
JP2002075727A (en) Superconducting coil, its manufacturing method, and superconductor used for the same
JPH0452569B2 (en)
JPH02189812A (en) Snow melting conductor