JPS5928606B2 - Method for producing reduced iron powder through pyrolysis of heavy oil - Google Patents

Method for producing reduced iron powder through pyrolysis of heavy oil

Info

Publication number
JPS5928606B2
JPS5928606B2 JP5809281A JP5809281A JPS5928606B2 JP S5928606 B2 JPS5928606 B2 JP S5928606B2 JP 5809281 A JP5809281 A JP 5809281A JP 5809281 A JP5809281 A JP 5809281A JP S5928606 B2 JPS5928606 B2 JP S5928606B2
Authority
JP
Japan
Prior art keywords
powder
iron ore
carbon
heavy oil
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5809281A
Other languages
Japanese (ja)
Other versions
JPS57171608A (en
Inventor
伝太郎 金子
信夫 上村
哲久 中村
義文 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Original Assignee
Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai filed Critical Jushitsuyu Taisaku Gijutsu Kenkyu Kumiai
Priority to JP5809281A priority Critical patent/JPS5928606B2/en
Publication of JPS57171608A publication Critical patent/JPS57171608A/en
Publication of JPS5928606B2 publication Critical patent/JPS5928606B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 本発明は重質油を熱分解して軽質油及び分解ガスを製造
すると共に、その熱分解時に生成する副生炭素を活用し
て鉄鉱石を還元し還元鉄粉を製造する方法に係り、特に
ロータリーキルン方式の還元炉を利用して粉末のまま還
元し反応効率の向上、製造工程の簡易化をはかることを
目的とするものである。
Detailed Description of the Invention The present invention not only pyrolyzes heavy oil to produce light oil and cracked gas, but also utilizes the by-product carbon produced during the pyrolysis to reduce iron ore and produce reduced iron powder. The purpose of the present invention is to improve the reaction efficiency and simplify the manufacturing process by reducing the powder as a powder using a rotary kiln reduction furnace.

石油資源の枯渇問題に端を発し、近時重質油を熱分解し
てガソリン、軽油などの軽質油を生産する技術に各方面
から多大の関心が寄せられ、同時に熱分解時に生成する
副生炭素などの活用が種々取沙汰されるに至っている。
Originating from the problem of depletion of petroleum resources, there has recently been a great deal of interest from various quarters in the technology of pyrolyzing heavy oil to produce light oils such as gasoline and diesel oil. Various uses of carbon and other resources are being discussed.

従来、かかる重質油の熱分解時における副生コークスの
活用としてそれ自体を製品として取り出すフルードコー
キング法があり、広く行なわれているが、この方法は流
動状態にある粉体コークスを熱及び流動媒体として熱分
解するものであり、粉末コークスは触媒としてでなく、
単に熱及び流動媒体として使用される関係上、副生コー
クスが沈積しても失活を起すことがなく、従って重質油
の処理が容易であるところから従来古くより重質油を熱
分解して軽質化する方法として知られる流動接触分解法
(FCC法)の原料油製造に用いられ、ディレートコ−
キング法に比べて完全な連続プロセスであること、分解
生成物の収率が高いなどの利点をもたらしている。
Conventionally, there has been a fluid coking method in which by-product coke during the thermal decomposition of heavy oil is extracted as a product, and this method is widely used. It decomposes thermally as a medium, and powder coke does not act as a catalyst.
Since it is used simply as a heat and fluid medium, it does not deactivate even if by-product coke is deposited, and therefore, heavy oil is easy to treat. It is used in the production of feedstock oil for the fluid catalytic cracking method (FCC method), which is known as a method for lightening oil.
Compared to the King method, this method has advantages such as being a completely continuous process and having a higher yield of decomposition products.

しかし反面、上記の如き使用状況から製品コークスが品
質上、燃料用途以外には適さないという欠点がある。
However, on the other hand, due to the above-mentioned usage conditions, the product coke has the disadvantage that it is not suitable for purposes other than fuel in terms of quality.

近時、斜上のような時代の趨勢と、技術の現況に鑑み、
前述したFCC法あるいはフルードコーキング法などの
重質油の流動接触又は熱分解において副生ずる炭素(コ
ークス)のより有効な活用に着目し、その利用として還
元鉄製造用の還元剤が注目され、合理的なプロセスをも
って軽質油の採取と共に還元鉄を得る方法が開発されて
いる。
In light of recent trends and the current state of technology,
Focusing on the more effective use of carbon (coke) that is produced as a by-product in the fluidized contact or thermal decomposition of heavy oil, such as the FCC method or fluid coking method mentioned above, reducing agents for producing reduced iron have attracted attention as a way to utilize it, and rationalization has been developed. A method for extracting light oil and obtaining reduced iron using a process has been developed.

本出願人も、かかる実情に即応し、かねてより種々の研
究を重ね、さきに重質油の流動熱分解において、シリカ
・アルミナ粒子や粉体コークスの代りに鉄鉱石粒子を用
いると共に、流動層熱分解炉の熱源となる加熱された鉄
鉱石粒子の合理的な供給法を始めとして更にその発展的
な幾多の方法を提案した。
In response to these circumstances, the present applicant has been conducting various research for some time, and first used iron ore particles instead of silica/alumina particles and powder coke in the fluidized pyrolysis of heavy oil, and developed a fluidized bed. We proposed a rational method for supplying heated iron ore particles, which serve as a heat source for a pyrolysis furnace, and a number of further advanced methods.

本発明は、更にそれらの方法の一環として前記鉄鉱石を
粉末で利用し、該粉末を流動状態に保持した流動層熱分
解炉で重質軸を熱分解して軽質油ならびに分解ガスを製
造すると共に、前記熱分解時に生成する副生炭素を利用
して鉄鉱石を還元し、還元鉄粉を製造する方法における
、より好ましい新規な加熱還元手段を提供するものであ
り、前記重質油の熱分解時に前記副生炭素を鉄鉱石粉末
粒子に付着させてこれを流動層熱分解炉から抜き出し、
得られる炭素付着鉄鉱石粉末を粉末状態のままロータリ
ーキルン型還元炉に供給し、加熱還元を行なうことを特
徴とするものである。
The present invention further provides, as part of these methods, the use of the iron ore in the form of powder, and the production of light oil and cracked gas by thermally decomposing the heavy shaft in a fluidized bed pyrolysis furnace that maintains the powder in a fluidized state. In addition, the present invention provides a new and more preferable thermal reduction means in the method for producing reduced iron powder by reducing iron ore using the by-product carbon generated during the thermal decomposition, and At the time of decomposition, the by-product carbon is attached to iron ore powder particles and extracted from the fluidized bed pyrolysis furnace,
The method is characterized in that the resulting carbon-adhered iron ore powder is supplied in powder form to a rotary kiln-type reduction furnace for thermal reduction.

ここで、ロータリーキルン法は石炭、粉コークスと云っ
た固体還元剤を使用できる直接製鉄法として特長を有し
、使用鉱石粒度の範囲も広くとることが可能であると共
に、かなり高温度での還元が可能で、製造された還元鉄
の対再酸化機能がすぐれている利点をもつ。
Here, the rotary kiln method has the advantage of being a direct steelmaking method that can use solid reducing agents such as coal and coke powder, and can be used in a wide range of ore particle sizes, as well as being capable of reduction at fairly high temperatures. It has the advantage that the produced reduced iron has excellent reoxidation resistance.

このロータリーキルン法の歴史は古く、地域条件に適合
した固体還元剤を利用し、製鋼用原料の製造や製鉄所内
発生ダクト処理など多様な目的をもって操業されて来た
This rotary kiln method has a long history, and has been operated for a variety of purposes, including the production of raw materials for steelmaking and the treatment of ducts generated within steelworks, using solid reducing agents suited to local conditions.

SL/RL法はかかるロータリーキルンを利用した方法
として鉄鉱石がペレタイザーで造粒された後、トラベリ
ンググレードで予熱され、更にロータリーキルンに移行
してゆくが、同時に石炭、粉コークスなどの固定還元剤
が混合され、重油、ガス、微粉炭などが主バーナー原料
として使用される。
The SL/RL method utilizes such a rotary kiln, in which iron ore is granulated in a pelletizer, then preheated in a traveling grade, and then transferred to the rotary kiln, but at the same time, fixed reducing agents such as coal and coke breeze are mixed in. Heavy oil, gas, pulverized coal, etc. are used as the main burner raw materials.

この方法は通常、キルンに移行し外装した炭材粒と混合
して還元されるところから炭材外装法と呼ばれているが
、キルンを使用する方法には外に酸化ペレット還元法、
炭材内装法、炭材合併法など種々の方法がある。
This method is usually called the carbon sheathing method because it is transferred to a kiln and mixed with the sheathed carbon grains for reduction.
There are various methods such as the carbon material interior method and the carbon material merging method.

しかし酸化ペレツ1〜還元法を除いた他の方法に共通し
て云えることはキルン内、還元過程における粉化の問題
である。
However, what is common to all other methods except the oxidation pellets 1 to reduction method is the problem of pulverization in the kiln and during the reduction process.

粉化が著しいとキルン入口から気流に乗り逃散する鉱石
が多いばかりでなく、キルン内高温部で粉鉄がレンガに
付着し、いわゆるリングを形成し、操業に大きな支障を
招来する。
If the pulverization is significant, not only will a large amount of ore escape from the kiln inlet in the airflow, but powdered iron will adhere to the bricks in the high-temperature parts of the kiln, forming so-called rings, which will cause major problems in operations.

出願人の実験によればこのような炭材外装法、合併法に
おけるキルン内強度変化の代表例に関し、予熱ペレット
が一定の強度を有していてもキルン内、前半に強度が低
下し、その後、再び向上することが知見されている。
According to the applicant's experiments, a typical example of the change in strength inside the kiln in the carbon material sheathing method and the combined method is that even if the preheated pellets have a constant strength, the strength decreases in the first half of the kiln, and then , it has been found that it improves again.

ロータリーキルン利用によるこの原因は、還元初期へマ
クイト(hema t i te )→マグネタイト(
magnet ite )への変化段階における結晶構
造が、ヘキサゴナル(hexagonal 、格子定数
a−5,42人)からキュビック(Cubic 、 a
= 8.38人)への変態に起因することによるが、
還元時における酸素の脱出や炭素の消費による空隙の増
加もこれを促している。
The reason for this is due to the use of a rotary kiln.
The crystal structure at the stage of change to magnetite changes from hexagonal (lattice constant a-5, 42) to cubic (cubic, a).
= 8.38 people),
This is also promoted by the increase in voids due to oxygen escape and carbon consumption during reduction.

ニュージランド・スチール・カンパニーにおいては、か
つて上記代表例に示した炭材外装法にて含チタン鉄鉱石
粉を造粒子熱し、キルンで還元していたが、この粉化と
、それに伴なう操業トラブルに悩みがあり、そこで思い
切って予熱グレードを取り去って了い、粒度を管理した
鉄鉱石粉末(100〜200μ)を外装炭材と共に直接
キルンに供給し、還元を行なわしめることにより、かえ
って順調な操業が得られたと報告している。
At the New Zealand Steel Company, titanium-containing iron ore powder was once granulated and heated using the carbon material sheathing method shown in the above representative example, and then reduced in a kiln. I had some concerns, so I took the plunge and removed the preheating grade, and by supplying iron ore powder (100 to 200μ) with controlled particle size directly to the kiln together with the exterior carbon material and performing reduction, I was able to achieve smooth operation. reported that it was obtained.

本発明の前記特徴をもつ方法は、かくて上記ニュージラ
ンド・スチール・カンパニーの示唆トー脈相通ずる点が
あるわけであるが、更により一層還元効率を上げ、キル
ン内の付着現象を阻止する方策を講じたものである。
The method of the present invention having the above-mentioned characteristics is thus similar to the suggestions of the New Zealand Steel Company, but it also requires measures to further increase the reduction efficiency and prevent the phenomenon of adhesion within the kiln. This is what I learned.

以下、更に添付図面にもとづいて本発明の具体的な実施
の態様を説明する。
Hereinafter, specific embodiments of the present invention will be described further based on the accompanying drawings.

図は本発明製造法の1例を示すフローシートで、油槽1
には例えばコンラドソン炭素5〜30係、比重0.90
〜1.10の減圧蒸留残油の如き重質油が貯蔵されてお
り、予熱炉2にて熱分解が起らない400℃以下の温度
に予熱されて配管11を経て縦長円筒状の流動層熱分解
炉4に供給され、配管14から供給されて同分解炉4内
で流動状態にある鉄鉱石粉末により接触分解され、供給
重質油の70〜90%は該熱分解炉4の頂部より配管1
6を経て取り出され、公知の精留分離系5に送給されて
分解ガス、ガソリン、軽質ガス油などの夫々の留分に分
離され、重質留分は残渣油として系外に取り出されるよ
うになっている。
The figure is a flow sheet showing an example of the manufacturing method of the present invention.
For example, Conradson carbon 5-30 ratio, specific gravity 0.90
Heavy oil such as vacuum distillation residual oil of ~1.10 is stored, and is preheated in a preheating furnace 2 to a temperature below 400°C at which thermal decomposition does not occur, and then passed through a pipe 11 into a vertically cylindrical fluidized bed. The heavy oil is supplied to the pyrolysis furnace 4 and is catalytically cracked by the iron ore powder that is supplied from the piping 14 and is in a fluid state within the pyrolysis furnace 4, and 70 to 90% of the supplied heavy oil is from the top of the pyrolysis furnace 4. Piping 1
6 and sent to a known rectification separation system 5 where it is separated into respective fractions such as cracked gas, gasoline, light gas oil, etc., and the heavy fraction is taken out of the system as residual oil. It has become.

ここで前記熱分解炉4内で鉄鉱石粉末を流動化させるた
め、該分解炉4には別途配管21から高温スチームが供
給されており、これら鉄鉱石粉末及びスチームは熱分解
炉4内に400〜630℃の流動層を形成するのに必要
な量及び温度に制御されて供給がなされている。
In order to fluidize the iron ore powder in the pyrolysis furnace 4, high-temperature steam is separately supplied to the pyrolysis furnace 4 from a pipe 21, and these iron ore powder and steam are fed into the pyrolysis furnace 4 at a temperature of 400. The supply is controlled in the amount and temperature necessary to form a fluidized bed at ~630°C.

この場合、熱分解温度を630°C以上に上げて、この
段階で鉄鉱石を部分的に還元することも勿論可能である
が、このように熱分解温度を上昇させるのは一般に熱的
に不利であるので好ましくは上記温度範囲が採用される
In this case, it is of course possible to partially reduce the iron ore at this stage by raising the pyrolysis temperature to 630°C or higher, but it is generally disadvantageous thermally to raise the pyrolysis temperature in this way. Therefore, preferably the above temperature range is adopted.

熱分解炉4内の空塔速度は一般に30crrL/sec
以下、炉内圧力は2kg/m以下で操業され、前述の通
り重質油の約70〜90係は分解生成物として炉頂より
配管16を経て分離系に送出され、残りの約10〜30
係は副生炭素となり、鉄鉱石粉末に付着して配管15よ
り次工程であるロータリーキルンに向けて排出される。
The superficial velocity in the pyrolysis furnace 4 is generally 30 crrL/sec.
Thereafter, the furnace is operated at a pressure of 2 kg/m or less, and as mentioned above, approximately 70 to 90% of the heavy oil is sent from the top of the furnace as a decomposition product to the separation system via piping 16, and the remaining approximately 10 to 30% of the heavy oil
The carbon becomes a by-product carbon, which adheres to the iron ore powder and is discharged from the pipe 15 to the rotary kiln, which is the next process.

一方、前記流動層熱分解炉4に供給される鉄鉱石粉末は
、予めキルン入口ガス流にのり飛散しない程度に破砕又
は粉砕されてホッパー7に貯蔵されており、配管からの
スチームと共に配管12を経て鉱石加熱器3に供給され
、後述するロータリーキルン型還元炉6から配管20を
通って供給されて来る約800〜1100°Cの高温排
ガスによって500℃以上、通常、600〜700℃に
加熱されて配管13より前記流動層熱分解炉4に送給さ
れる。
On the other hand, the iron ore powder to be supplied to the fluidized bed pyrolysis furnace 4 is crushed or pulverized in advance to the extent that it will not be scattered in the gas flow at the inlet of the kiln and stored in the hopper 7. The ore heater 3 is then heated to 500°C or higher, usually 600°C to 700°C, by high-temperature exhaust gas of approximately 800 to 1100°C supplied from a rotary kiln reduction furnace 6, which will be described later, through piping 20. It is fed to the fluidized bed pyrolysis furnace 4 through a pipe 13.

熱分解炉4における分解反応は、通常、吸熱反応である
から該炉4には充分な熱量が供給されなければならず、
又、この熱量は主として、鉄鉱石粉末によって炉内に搬
入される熱量であるから、このため、熱分解炉4より抜
き出された副生炭素付着鉄鉱石粉末の一部を好ましくは
90%以上を配管14を通って鉱石加熱器3に帰還させ
て再加熱したのち再び前述した配管13より熱分解炉4
に供給する鉄鉱石粉末循環回路を形成して熱分解炉4へ
の加熱鉄鉱石粉末供給量が大きくなるように工夫が施さ
れている。
Since the decomposition reaction in the pyrolysis furnace 4 is usually an endothermic reaction, a sufficient amount of heat must be supplied to the furnace 4.
Moreover, since this amount of heat is mainly the amount of heat carried into the furnace by the iron ore powder, a portion of the by-product carbon-adhered iron ore powder extracted from the pyrolysis furnace 4 is preferably 90% or more. is returned to the ore heater 3 through the piping 14 and reheated, and then returned to the pyrolysis furnace 4 through the piping 13 described above.
An arrangement is made to form a circulation circuit for iron ore powder to be supplied to the pyrolysis furnace 4 to increase the amount of heated iron ore powder supplied to the pyrolysis furnace 4.

上記の場合において、重質軸の種類、熱分解温度、ある
いは鉄鉱石の種類にもよるが、一般に高温排ガスの熱量
のみでは鉄鉱石加熱のための熱量が不足するから、該鉱
石加熱器3内に図の矢印で示したように空気を供給し、
鉄鉱石に付着している副生炭素の一部を燃焼させて不足
分の熱量を補なうか、あるいは図示なき燃焼器に別途、
重油、ガスなどの燃料を供給してこれを燃焼し、高温燃
焼ガスを生成して配管を通じ鉱石加熱器3に供給して不
足熱量を補充したり、あるいは更に高温排ガス中には相
当量のCOガスが含有されているから、これを予め図示
なき排ガス燃焼器などで燃焼してより高温のガスにして
鉱石加熱器3に供給することが可能であり、なかんずく
、これらの方法を単独のみならず適宜組み合わせて使用
することが好ましい態様である。
In the above case, although it depends on the type of heavy shaft, pyrolysis temperature, or type of iron ore, the amount of heat in the high-temperature exhaust gas alone is generally insufficient to heat the iron ore. Supply air as shown by the arrow in the figure,
Either burn some of the by-product carbon attached to the iron ore to make up for the lack of heat, or use a separate burner (not shown) to burn it.
Fuel such as heavy oil or gas is supplied and combusted to generate high-temperature combustion gas, which is supplied to the ore heater 3 through piping to replenish the insufficient amount of heat, or furthermore, there is a considerable amount of CO in the high-temperature exhaust gas. Since it contains gas, it is possible to combust it in advance in an exhaust gas combustor (not shown) to turn it into a higher-temperature gas and supply it to the ore heater 3. It is a preferred embodiment to use them in appropriate combinations.

特に、加熱器3内の鉄鉱石粉末表面に付着した炭素の一
部を燃焼させる場合には、前記空気を供給する方式の図
示していないが、燃焼器などに供給する空気の量を多少
、過剰となすことにより、配管矢印の空気供給に代える
ことも可能である。
In particular, when burning part of the carbon adhering to the surface of the iron ore powder in the heater 3, the amount of air supplied to the combustor etc. may be reduced to some extent, although the air supply system is not shown. By making it excessive, it is also possible to replace the air supply with the piping arrow.

また、上記供給する空気は、還元炉からの排出ガスの燃
焼用としての役割も有している。
Furthermore, the supplied air also has the role of burning exhaust gas from the reduction furnace.

なお、鉱石加熱器3としては図示の如く熱分解炉4と同
様に流動層形式のものが使用されるが、これに限るもの
ではなく、鉄鉱石粉末を連続的に加熱できるものであれ
ば移動層形式のもの、その他の構造も随時、使用可能で
ある。
As the ore heater 3, a fluidized bed type one is used like the pyrolysis furnace 4 as shown in the figure, but it is not limited to this, and any device that can continuously heat the iron ore powder can be used. Layered and other structures may also be used at any time.

かくして、鉄鉱石粉末の表面には副生された炭素質物質
による被覆が施されるが、この炭素付着鉄鉱石粉末は引
続き必要に応じて外装炭材を配管22を通じて添加混合
し、ロータリーキルン型還元炉に移行し加熱還元する。
In this way, the surface of the iron ore powder is coated with the by-produced carbonaceous material, but this carbon-adhered iron ore powder is subsequently mixed with an exterior carbonaceous material through the pipe 22 as necessary, and subjected to rotary kiln type reduction. Transfer to a furnace and heat and reduce.

ロークリ−キルン型還元炉6は、通常1重油、ガス、石
炭などのバーナー燃焼によって加熱され、キルン内気相
には燃焼排ガスとしてのCO2CO2゜H2Oが充満し
ている。
The Rochley kiln type reduction furnace 6 is usually heated by burner combustion of heavy oil, gas, coal, etc., and the gas phase inside the kiln is filled with CO2CO2°H2O as combustion exhaust gas.

一方、固相内においては、炭素付着鉄鉱石粉末は F e 203 十CO= 2 、F e +CO2け
)F eO+ CO= F 、e + CO2(2)C
+C02=2CO(3> からなる反応を起すことが必要で、そのためCOガス濃
度が高い雰囲気が維持されなければならない。
On the other hand, in the solid phase, carbon-adhered iron ore powder is F e O+ CO= F , e + CO2 (2) C
It is necessary to cause a reaction consisting of +C02=2CO (3>), and therefore an atmosphere with a high CO gas concentration must be maintained.

ここで留意すべきことは、還元ガスが前記熱分解炉4か
ら排出される熱分解生成物より分解ガスを分離してガス
改質炉、例えば脱硫装置10にて改質したガスであるこ
とである。
What should be noted here is that the reducing gas is gas obtained by separating cracked gas from the pyrolysis products discharged from the pyrolysis furnace 4 and reforming it in a gas reforming furnace, for example, the desulfurization equipment 10. be.

このガスは配管17より配管19を経てロータリーキル
ンに吹き込まれるが、炉内における鉄鉱石粉末は、その
表面が炭素により被覆されているため、900℃以上の
温度とすることが可能となり、分解ガスの高温と相俟っ
て800〜1200°Cの還元性雰囲気に保持された炉
内において粉末表面の炭素質が、 Fe2O3+3C→2Fe+3CO のように反応し、鉄鉱石は還元され、鉄品位85チ〜9
5係程度の還元鉄となり、後続のロータリークーラー8
、ブリケット9を経て還元鉄粉として送出される。
This gas is blown into the rotary kiln from pipe 17 through pipe 19, but since the surface of the iron ore powder in the furnace is coated with carbon, it is possible to reach a temperature of over 900°C, and the cracked gas is In the furnace, which is maintained in a reducing atmosphere of 800 to 1200°C in conjunction with high temperature, the carbonaceous material on the powder surface reacts as follows: Fe2O3+3C→2Fe+3CO, and the iron ore is reduced to an iron grade of 85 to 9.
It becomes reduced iron of about 5 ratio, and the subsequent rotary cooler 8
, and is sent out as reduced iron powder through briquettes 9.

なお、Fe−0系物質におけるH2−H2O。Note that H2-H2O in Fe-0-based materials.

C0−CO2ガスとの平衡関係は、酸化鉄の還元を進行
させ、金属鉄を生成せしめるには前述のよう度において
一定値以上に維持する必要がある。
The equilibrium relationship with C0-CO2 gas needs to be maintained above a certain value as described above in order to proceed with the reduction of iron oxide and generate metallic iron.

そのためロータリーキルン内の固相はバーナー排ガ望ま
れるが、炭材外装法における外装炭材の役目の1つは還
元材としてのCOガスを提供すること、そして今1つは
気相からの酸性ガスの固相内への移行を遮断することで
ある。
Therefore, the solid phase in the rotary kiln is desired to be exhausted by the burner, but one of the roles of the exterior carbonaceous material in the carbonaceous packaging method is to provide CO gas as a reducing agent, and the other is to remove acid gas from the gas phase. The goal is to block the migration of into the solid phase.

このためにはFe−0物質に対して相当多量の外装炭材
を必要とすることが争えないが、本発明方法においては
鉄鉱石粉末における酸化鉄個々の周辺が炭素物質で覆わ
れていることから、還元反応途中における鉄鉱石粉末が
直接気相にさらされることがなく、外装炭材の配合量が
必要最小限に低下せしめることが可能となる。
Although it cannot be disputed that this requires a considerably large amount of exterior carbon material relative to the Fe-0 material, in the method of the present invention, the periphery of each iron oxide in the iron ore powder is covered with carbon material. Therefore, the iron ore powder during the reduction reaction is not directly exposed to the gas phase, making it possible to reduce the blending amount of the exterior carbon material to the necessary minimum.

上記ロータリーキルン内における反応を効果的ならしめ
るには、配管22を通じて混合される炭材粉末と流動層
熱分解炉から送り出される前記炭素付着鉄鉱石粉末にお
ける付着炭材との合計量を鉄鉱石還元に必要な理論量よ
りも過剰とすることが望ましい。
In order to make the reaction in the rotary kiln effective, the total amount of the carbonaceous powder mixed through the pipe 22 and the carbonaceous material in the carbon-coated iron ore powder sent out from the fluidized bed pyrolysis furnace should be adjusted to reduce the iron ore. It is desirable that the amount be in excess of the theoretical amount required.

また、鉄鉱石粉末に付着した副生炭素量は炭素付着鉄鉱
石粉末の2〜20係の範囲にあるのが最も工業上有利で
ある。
Furthermore, it is most industrially advantageous for the amount of by-product carbon adhering to the iron ore powder to be in the range of 2 to 20 times the carbon adhering iron ore powder.

なお炭素付着鉄鉱石粒子の平均粒径は50〜100μと
極めて小さく、従って還元反応も速やかに進行するので
、該鉄鉱石粒子のキルン内滞留時間は、従来のベレット
還元法に比べて大幅に短縮され、約15〜40分程度で
よい。
The average particle size of the carbon-attached iron ore particles is extremely small, 50 to 100μ, and therefore the reduction reaction proceeds quickly, so the residence time of the iron ore particles in the kiln is significantly shortened compared to the conventional pellet reduction method. It takes about 15 to 40 minutes.

このキルン内滞留時間を管理する手法としては、次のウ
オルナー(Warrner)の式がよく知られている。
As a method for managing the residence time in the kiln, the following Warner equation is well known.

t:キルン内滞留時間(分) D:キルン内径(m) N:キルン回転数(rpm) L:キルン長さくm) f:原料圧縮係数(キ1.0) θr:原料安息角(度) θS:キルン傾斜角(度) 上式において、flθrは原料特性であり、D7Lはキ
ルンによって定まる価であるから、滞留時間tはN、θ
Sによって常時管理されることになる。
t: Residence time in the kiln (minutes) D: Inside diameter of the kiln (m) N: Kiln rotation speed (rpm) L: Kiln length (m) f: Raw material compression coefficient (K1.0) θr: Raw material repose angle (degrees) θS: Kiln inclination angle (degrees) In the above equation, flθr is a raw material characteristic and D7L is a value determined by the kiln, so the residence time t is N, θ
It will be constantly managed by S.

従って、本発明においても、滞留時間(1)が15〜4
0分となる様に上記N、θSを管理することになり、特
にθSは、従来のベレット方式での値がる様に管理する
ことになる。
Therefore, in the present invention, the residence time (1) is 15 to 4
The above-mentioned N and θS will be managed so that the time will be 0 minutes, and in particular, θS will be managed so that the value in the conventional pellet method is reduced.

次に本発明方法の適用される原料油としては熱分解工程
において炭素の副生の抑制が本質的に必要がないところ
からフルードコーキング法に用いるような劣質の減圧蒸
留残油も使用可能であり、その他、重質油として溶剤脱
れき抽出残油、熱分解残油接触分解残油、重質ガス油、
減圧ガス油、その他フルードコーキング法並びにFCC
法で用いる原料油はすべて利用でき、更に石炭、オイル
サンド、頁岩等から得られる油状物質も同様に用いるこ
とができる。
Next, as the raw material oil to which the method of the present invention is applied, it is also possible to use low-quality vacuum distillation residual oil, such as that used in the fluid coking method, since there is essentially no need to suppress carbon by-products in the pyrolysis process. , other heavy oils include solvent deasphalt extraction residual oil, pyrolysis residual oil, catalytic cracking residual oil, heavy gas oil,
Vacuum gas oil, other fluid coking method and FCC
All feedstock oils used in the process can be used, as well as oily substances obtained from coal, oil sands, shale, etc.

また、本発明に用いる鉄鉱石としては、通常の製鉄原料
としての各種鉄鉱石が含まれ、構成鉱物でいえば磁鉄鉱
、赤鉄鉱、黄鉄鉱、磁硫鉄鉱、磁鉄鉱、磁鉄鉱等を例示
することができ、また他の分類によれば、Kiruna
型、T abe r g型、Ma−gnitnaya型
、B il bao型、Laterite型、A1go
ma型、Lake 5uperior型、C11nto
n型、Minette型等を挙げることができ、いずれ
のものを用いても、成分的に多少変化はあるも本発明に
おいて用いることができることは云うまでもない。
In addition, the iron ore used in the present invention includes various iron ores that are used as ordinary raw materials for iron making, and examples of constituent minerals include magnetite, hematite, pyrite, pyrrhotite, magnetite, magnetite, etc. According to other classifications, Kiruna
Type, Taberg type, Ma-gnitnaya type, Bil bao type, Laterite type, A1go type
ma type, Lake 5upper type, C11nto
Examples include n-type, Minette-type, etc., and it goes without saying that any of them can be used in the present invention, although there may be some changes in composition.

以上説明した通り、本発明方法は流動層による重質油の
熱分解と、それによって得られた副生炭素による鉄鉱石
の還元をロータリーキルン還元として粉末状態のまま加
熱還元せしめる方法であり、以下、その方法の特長を整
理すれば下記の通りである。
As explained above, the method of the present invention is a method in which the thermal decomposition of heavy oil in a fluidized bed and the reduction of iron ore using the by-product carbon resulting from the thermal decomposition are carried out in a rotary kiln state in a powdered state. The features of this method can be summarized as follows.

(1)酸化鉄又は還元された鉄粉末が個々に炭素質で被
覆されており、気相酸化性ガスに直接さらされることが
ないので、還元進行雰囲気が高い(2)上記(1)の点
から外装炭材が不要であるか、又必要であるとしても極
めて少ない量で良いという利点を有する。
(1) Since the iron oxide or reduced iron powder is individually coated with carbonaceous material and is not directly exposed to gaseous oxidizing gas, the atmosphere in which reduction progresses is high. (2) Point (1) above It has the advantage that exterior carbonaceous material is not necessary, or even if it is necessary, only a very small amount is required.

(3)鉄鉱石は粉末であり、それ自体、鉱石やペレット
に比べて大きさが小さいので熱伝導が早く、伝熱効率が
良好である。
(3) Iron ore is a powder and is smaller in size than ores or pellets, so it conducts heat quickly and has good heat transfer efficiency.

(4)前述の如く、表面が炭素質で被覆されているので
ロータリーキルン内においても相互付着やリングの形成
が全く起らない。
(4) As mentioned above, since the surface is coated with carbonaceous material, mutual adhesion and ring formation do not occur at all even in the rotary kiln.

(5)造粒工程やプレヒーターがないため還元鉄製造工
程が簡素化され、実用的である。
(5) Since there is no granulation process or preheater, the reduced iron manufacturing process is simplified and practical.

かくして、本発明方法は重質油と鉄鉱石を一環して大量
に処理することが出来ると共に、負荷価値の低い副産物
の生成を伴なわず、その活用のもとに還元鉄を高効率で
製造することができ、現下の趨勢に即応し、その工業化
が期待される方法である。
Thus, the method of the present invention can process heavy oil and iron ore in large quantities in one process, and can produce reduced iron with high efficiency without producing by-products with low load value. It is a method that can quickly respond to current trends and is expected to be industrialized.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法の一例を示すフローシートである。 1・・・・・・油槽、2・・・・・・予熱炉、3・・・
・・・鉱石加熱器、4・・・・・・流動層熱分解炉、5
・・・・・・精留分離系、6・・・・・・ロータリーキ
ルン。
The figure is a flow sheet showing an example of the method of the present invention. 1...Oil tank, 2...Preheating furnace, 3...
...Ore heater, 4...Fluidized bed pyrolysis furnace, 5
... Rectification separation system, 6 ... Rotary kiln.

Claims (1)

【特許請求の範囲】 1 鉄鉱石粉末を流動状態に保持した流動層熱分解炉4
で重質油を熱分解して軽質油並びに分解ガスを製造する
と共に、熱分解時に生成する副生炭素を利用して鉄鉱石
を還元し、還元鉄粉を製造する方法において、前記重質
油の熱分解時に前記副生炭素を鉄鉱石粉末粒子に付着さ
せてこれを流動層熱分解炉4から抜き出し、得られた炭
素付着鉄鉱石粉末を粉末状態のままロータリーキルン型
還元炉6に供給し、加熱還元鉄粉を製造することを特徴
とする重質油の熱分解と共に還元鉄粉を製造する方法。 2 流動層熱分解炉4に供給する鉄鉱石粉末を予め加熱
する鉱石加熱器3を設けると共に、流動層熱分解炉4か
ら抜き出された炭素付着鉄鉱石粉末の一部を該鉱石加熱
器3に帰還させて再加熱する特許請求の範囲第1項記載
の重質油の熱分解と共に還元鉄粉を製造する方法。 3 鉱石加熱器3内で鉄鉱石粒子に付着した炭素の一部
を燃焼させて鉄鉱石粉末の加熱に利用する特許請求の範
囲第2項記載の重質油の熱分解と共に還元鉄粉を製造す
る方法。 4 ロータリーキルン型還元炉6からの高温排ガスを鉱
石加熱器3に供給して鉄鉱石粉末の加熱に利用する特許
請求の範囲第2項記載の重質油の熱分解と共に還元鉄粉
を製造する方法。 5 ロータリーキルン型還元炉6内に炭素付着鉄鉱石粉
末と共に炭材粉末を供給し、前記付着炭素と炭材粉末と
の合計量を鉄鉱石還元に必要な理論量よりも過剰にした
特許請求の範囲第1〜4項の何れかに記載の重質油の熱
分解と共に還元鉄粉を製造する方法。 6 ロータリーキルン型還元炉6内での鉄鉱石加熱温度
が800〜1200°Cである特許請求の範囲第1〜5
項の何れかに記載の重質油の熱分解と共に還元鉄粉を製
造する方法。 7 鉄鉱石粉末に付着した副生炭素量が炭素付着鉄鉱石
粉末の2〜20%wtである特許請求の範囲第1〜6項
の何れかに記載の重質油の熱分解と共に還元鉄粉を製造
する方法。
[Claims] 1. Fluidized bed pyrolysis furnace 4 that maintains iron ore powder in a fluidized state.
In the method of pyrolyzing heavy oil to produce light oil and cracked gas, and reducing iron ore using by-product carbon generated during pyrolysis to produce reduced iron powder, the method comprises: At the time of thermal decomposition, the by-product carbon is attached to iron ore powder particles and extracted from the fluidized bed pyrolysis furnace 4, and the obtained carbon-adhered iron ore powder is supplied in a powder state to a rotary kiln type reduction furnace 6, A method for producing reduced iron powder through thermal decomposition of heavy oil, the method comprising producing reduced iron powder by heating. 2. An ore heater 3 is provided to preheat the iron ore powder to be supplied to the fluidized bed pyrolysis furnace 4, and a part of the carbon-adhered iron ore powder extracted from the fluidized bed pyrolysis furnace 4 is heated to the ore heater 3. A method for producing reduced iron powder through thermal decomposition of heavy oil according to claim 1, which comprises returning the oil to reheating. 3 Production of reduced iron powder with thermal decomposition of heavy oil as described in claim 2, in which a part of carbon attached to iron ore particles is burned in the ore heater 3 and used for heating the iron ore powder. how to. 4. A method for producing reduced iron powder through thermal decomposition of heavy oil as set forth in claim 2, in which high-temperature exhaust gas from the rotary kiln-type reduction furnace 6 is supplied to the ore heater 3 and used for heating iron ore powder. . 5. A claim in which carbonaceous powder is supplied together with carbon-adhered iron ore powder into the rotary kiln-type reduction furnace 6, and the total amount of the adhering carbon and carbonaceous powder is in excess of the theoretical amount necessary for iron ore reduction. A method for producing reduced iron powder through thermal decomposition of heavy oil according to any one of items 1 to 4. 6 Claims 1 to 5, wherein the iron ore heating temperature in the rotary kiln type reduction furnace 6 is 800 to 1200°C.
A method for producing reduced iron powder through thermal decomposition of heavy oil according to any one of the preceding paragraphs. 7. Reduced iron powder with thermal decomposition of heavy oil according to any one of claims 1 to 6, wherein the amount of by-product carbon attached to the iron ore powder is 2 to 20% wt of the carbon-attached iron ore powder. How to manufacture.
JP5809281A 1981-04-16 1981-04-16 Method for producing reduced iron powder through pyrolysis of heavy oil Expired JPS5928606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5809281A JPS5928606B2 (en) 1981-04-16 1981-04-16 Method for producing reduced iron powder through pyrolysis of heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5809281A JPS5928606B2 (en) 1981-04-16 1981-04-16 Method for producing reduced iron powder through pyrolysis of heavy oil

Publications (2)

Publication Number Publication Date
JPS57171608A JPS57171608A (en) 1982-10-22
JPS5928606B2 true JPS5928606B2 (en) 1984-07-14

Family

ID=13074300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5809281A Expired JPS5928606B2 (en) 1981-04-16 1981-04-16 Method for producing reduced iron powder through pyrolysis of heavy oil

Country Status (1)

Country Link
JP (1) JPS5928606B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198509A (en) * 2010-03-23 2011-09-28 郑永贤 Method for producing iron concentrate powder by using reductive magnetizing rotary furnace
JP6167837B2 (en) * 2013-10-15 2017-07-26 新日鐵住金株式会社 Direct reduction method

Also Published As

Publication number Publication date
JPS57171608A (en) 1982-10-22

Similar Documents

Publication Publication Date Title
EP0018184B1 (en) An integrated process for the thermal cracking of a heavy oil and the reduction of an iron ore
JPS5836034B2 (en) Method for producing reduced iron through pyrolysis of heavy oil
CN112266997A (en) Coal-based hydrogen metallurgy process for raw iron ore
WO2013011521A1 (en) A method for direct reduction of oxidized chromite ore fines composite agglomerates in a tunnel kiln using carbonaceous reductant for production of reduced chromite product/ agglomerates applicable in ferrochrome or charge chrome production.
SU1012797A3 (en) Method for reducing ferrugenous material
JPH11510216A (en) Iron oxide reduction in a rotary hearth furnace
JP2004518020A (en) Method and apparatus for producing pig iron or fluid primary iron from a charge containing iron ore
US3420656A (en) Process for forming hard oxide pellets and product thereof
US3093474A (en) Process of reducing metal oxides
CN210916204U (en) Iron ore rotary kiln coal-based hydrogen metallurgy device
CN111748684A (en) Iron ore grate-rotary kiln shallow hydrogen metallurgy iron ore concentrate production process and system
US1979729A (en) Production of sponge iron
JPS5928606B2 (en) Method for producing reduced iron powder through pyrolysis of heavy oil
JP2001181720A (en) Method of manufacturing reduce iron with rotary hearth furnace
KR100317661B1 (en) Flow Bed Method for Manufacturing Iron Carbide
US4158620A (en) Retorting oil shale with iron oxide impregnated porous pellets
JPH079015B2 (en) Smelting reduction method for iron ore
US4369059A (en) Process of directly reducing iron oxide containing materials in a rotary kiln
USRE19770E (en) Production of sponge ibxn
JPS5920724B2 (en) Method for producing iron ore pellets for producing reduced iron
US1447071A (en) Process of agglomerating mixtures of fine ore and fuel in shaft furnaces
US3264209A (en) Simultaneously coking iron ore and cracking hydrocarbons
JPS6250533B2 (en)
EP0054926A2 (en) A process for the production of reduced iron and thermal cracking of heavy oils
JPH0238627B2 (en) JUSHITSUYUNONETSUBUNKAITOTOMONIKANGENTETSUOSEIZOSURUHOHO