JPS5928415B2 - Metal pipe bending method and device - Google Patents

Metal pipe bending method and device

Info

Publication number
JPS5928415B2
JPS5928415B2 JP16635381A JP16635381A JPS5928415B2 JP S5928415 B2 JPS5928415 B2 JP S5928415B2 JP 16635381 A JP16635381 A JP 16635381A JP 16635381 A JP16635381 A JP 16635381A JP S5928415 B2 JPS5928415 B2 JP S5928415B2
Authority
JP
Japan
Prior art keywords
bending
pipe
force
piston
metal pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16635381A
Other languages
Japanese (ja)
Other versions
JPS5868430A (en
Inventor
善郎 加納
徹 佐藤
常義 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benkan Corp
Original Assignee
Nippon Benkan Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Benkan Kogyo Corp filed Critical Nippon Benkan Kogyo Corp
Priority to JP16635381A priority Critical patent/JPS5928415B2/en
Publication of JPS5868430A publication Critical patent/JPS5868430A/en
Publication of JPS5928415B2 publication Critical patent/JPS5928415B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/02Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment
    • B21D7/024Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member
    • B21D7/025Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member and pulling or pushing the ends of the work

Description

【発明の詳細な説明】 本発明は鋼管等金属パイプの曲げ加工法及びこれを実施
するための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for bending metal pipes such as steel pipes, and an apparatus for carrying out the method.

詳しくは軸方向に押圧するピストンに後端部を支持させ
、背圧を伴いながら所定の半径を維持して回転するアー
ムの誘導金具に先端部を把持させた金属パイプを曲げ開
始部の円周部分を局部的に高周波加熱しながら所定の曲
率に曲げ加工する方法において、ピストンに支持された
パイプ後端部にチャック機構を具備する捩わ装置を拘着
させ、当該装置により前記ピストンによる押圧力と誘導
金具の背圧に伴う圧縮力とによるパイプ軸方向への塑性
変形と併行して前記曲げ開始部の加熱領域部分に対し円
周方向への塑性変形をなさしめる加工力を負荷するよう
捩や力を付与して多軸応力による曲げモーメントの発生
を容易にさせることにより曲げ加工することを特徴とす
るものであつて、特に高周波加熱とアームによる誘道方
式を利用した熱間曲げ加工法を一層効果的に作用するも
のとなして、装置、設備の小型化に伴う省力化とパイプ
曲げ部分の減肉と偏平を可及的防止することを目的とし
たものである。高周波加熱による熱間曲げ加工法は、パ
イプの周囲を囲繞するように配設した環状の高周波加熱
コイルによる加熱装置によつてパイプの曲げ開始部の円
周部を局部的に塑性変形温度に加熱し、これに基く加熱
領域部分を軸方向に推進させながら先端部を把持したア
ームの誘導金具による回転によつて曲管する方法である
力ζ加工後のパイプにおいて曲管部の曲げ外側壁の肉厚
が必然的に薄肉となる減肉現象を惹起し、またこれに伴
い当該曲げ部分の断面が偏平化する欠点があり、耐圧性
や耐蝕性などの観点から問題があつた。
Specifically, the rear end is supported by a piston that presses in the axial direction, and the tip is held by the guide fitting of the arm that rotates while maintaining a predetermined radius with back pressure.Bend the metal pipe around the circumference of the starting point. In a method of bending a part to a predetermined curvature while locally heating it with high frequency, a twisting device equipped with a chuck mechanism is secured to the rear end of a pipe supported by a piston, and the device reduces the pressing force by the piston. In parallel with the plastic deformation in the axial direction of the pipe due to the compressive force caused by the back pressure of the induction fitting, the heating area of the bending start part is twisted so as to apply a processing force that causes plastic deformation in the circumferential direction. This method is characterized by bending by applying pressure and force to facilitate the generation of bending moments due to multiaxial stress, and in particular, it is a hot bending method that uses high-frequency heating and an induction method using an arm. The purpose of this invention is to make the pipe work even more effectively, to save labor due to the miniaturization of equipment and equipment, and to prevent thinning and flattening of the bent portion of the pipe as much as possible. In the hot bending method using high-frequency heating, a heating device using an annular high-frequency heating coil placed around the pipe locally heats the circumference of the pipe at the beginning of bending to the plastic deformation temperature. Based on this, the heating area is propelled in the axial direction and the pipe is bent by rotation using a guide fitting of an arm that grips the tip. This causes a thinning phenomenon in which the wall thickness inevitably becomes thinner, and as a result, the cross section of the bent portion becomes flattened, which poses problems from the viewpoint of pressure resistance and corrosion resistance.

そのためにパイプを推進させるピストンの押圧力に対し
、回転するアーム側に背圧をかけることによつて加熱に
よる曲げ部分に圧縮力を加え、それにより曲げモーメン
トを作用させて減肉現象の発生を防止するようにしてい
る。
For this purpose, by applying back pressure to the rotating arm side in response to the pressing force of the piston that propels the pipe, compressive force is applied to the bent part due to heating, thereby applying a bending moment and preventing the occurrence of wall thinning. I'm trying to prevent it.

しかしながら実際の結果として、例えば外径11.4〜
11.5〜、肉厚6.0X程度の一般鋼管を曲げ加工す
る場合にふ・いて、パイプ推進のためのビストン押圧力
.約25,000Kf1背圧による圧縮力・約2000
0Kfの強大な圧力を必要とするためその加工装置の大
型化及び設備費の膨大性が避けられないばかわか、これ
とても減肉率7%以上、偏平率12%と依然として大き
く、期待すべき状態に解消するには至つていないのが実
情である。
However, as an actual result, for example, the outer diameter is 11.4~
11.5~, when bending a general steel pipe with a wall thickness of about 6.0X, the piston pressing force for propelling the pipe. Approximately 25,000Kf1 Compression force due to back pressure・Approx. 2000
Since it requires a huge pressure of 0Kf, it is inevitable that the processing equipment will become larger and the equipment cost will be enormous.However, the thinning rate is still large at over 7% and the flatness rate is 12%, so it is a promising condition. The reality is that the problem has not yet been resolved.

また曲げ加工すべきパイプに予め加工による肉厚減少を
見込んだ余剰の肉厚を一面に形成した厚肉部と薄肉部か
らなる偏肉パイプを用い、これの厚肉部を曲げ外側壁に
なるようにセツテイングして加工することも提案されて
いるハこの特殊管たる偏肉管の製造において余剰肉厚の
選定に困難性があり、したがつて加工製品の価格が高騰
する要因ともなる。
In addition, we use an uneven-walled pipe consisting of a thicker part and a thinner part, in which surplus wall thickness is formed on one side in advance to account for the reduction in wall thickness due to bending, and the thicker part is bent to become the outer wall. It has also been proposed to process the pipe by setting it in the same manner as described above. However, in the production of this special pipe with uneven wall thickness, it is difficult to select the excess wall thickness, which is also a factor in the rise in the price of the processed product.

そこで本発明者らは鋭意研究の結果、前記熱間曲げ加法
に於ける金属材料の塑性加工においては、軸方向への圧
縮力のみによつて生ずる単軸応力に比し軸に対し軸と直
交する如き異方向への加工力をも負荷させることによジ
発生する多軸応力による方が塑性変形を容易にならしめ
ることに着目し、パイプの曲げ開始部である加熱領域部
分に軸方向の圧縮力に加え円周方向に対する捩り力を付
与した多軸応力場を形成させて曲げ加工を行なうように
した。
Therefore, as a result of intensive research, the present inventors found that in the plastic working of metal materials in the hot bending method, the stress perpendicular to the axis is greater than the uniaxial stress generated only by compressive force in the axial direction. We focused on the fact that plastic deformation is made easier by the multiaxial stress generated by applying processing forces in different directions, such as applying processing forces in different directions. Bending is performed by forming a multiaxial stress field that applies torsional force in the circumferential direction in addition to compressive force.

そしてこれにより従来の強力な押圧力及び圧縮力に比し
極めて小さい両圧力による塑性変形を可能とし、その結
果、加工装置の小型化と省力化に成功すると共に、過剰
力を要しない多軸応力による加工手段によつて塑性変形
を容易化なさしめ、曲管部における減肉及び偏平防止に
功を奏するに至つたものである。
This enables plastic deformation with extremely small pressures compared to the conventional strong pushing and compressive forces.As a result, we have succeeded in downsizing and labor-saving processing equipment, and have also succeeded in reducing multi-axial stress without the need for excessive force. This processing method facilitates plastic deformation and has been successful in preventing thinning and flattening of the bent pipe portion.

以下、本発明の一実施例を図面に依拠して説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図乃至3図は本発明曲げ加工法による加工状態を順
次に示したものであつて、1は曲げ加工しようとする所
定長さの金属パイプで、2は前記パイプの後端部を支持
し軸方向へ押圧する作用をなす油圧シリンダー3のピス
トンであり、2aはそのピストンヘツド部を示す。
Figures 1 to 3 sequentially show processing states by the bending method of the present invention, in which 1 is a metal pipe of a predetermined length to be bent, and 2 is a support for the rear end of the pipe. This is the piston of the hydraulic cylinder 3 which acts to press the cylinder in the axial direction, and 2a indicates the piston head.

4はパイプ先端部を把持した誘導金具で回転支点軸6に
枢着されたアーム5に取り付けられており、前記ピスト
ン2の押圧に抗し調整した背圧をかけながら所定の曲率
で回転するよう構成されているものである。
Reference numeral 4 is a guide fitting that grips the tip of the pipe, and is attached to an arm 5 that is pivotally connected to a rotating fulcrum shaft 6, so that it rotates at a predetermined curvature while applying an adjusted back pressure against the pressure of the piston 2. It is configured.

rはピストンによつて押圧されるパイプの推進を助成す
る複数のガイドローラ、8は前記誘導金具直前のパイプ
曲げ開始部に設定された環状の高周波加熱コイルによつ
て構成されている高周波加熱装置であつて、曲げ開始部
の円周囲を囲繞するように設けられており、該円周に亘
つて表わしたWは加熱領域部分を示し、9は加熱装置8
の直後に配置して加熱による曲げ加工部を冷却水噴射ノ
ズル等により冷却するための冷却装置である。10はパ
イプ後端部に拘着させたパイプに円周方向へ対する捩り
作用をなすチヤツク機構を具備した捩り装置である。
r is a plurality of guide rollers that assist in propelling the pipe pressed by the piston, and 8 is a high-frequency heating device constituted by an annular high-frequency heating coil set at the pipe bending start portion immediately before the induction fitting. It is provided so as to surround the circumference of the bending start part, W shown over the circumference indicates a heating area, and 9 is a heating device 8.
This is a cooling device placed immediately after the heating to cool the bent portion by cooling water injection nozzles or the like. Reference numeral 10 denotes a twisting device equipped with a chuck mechanism that twists the pipe in the circumferential direction, which is secured to the rear end of the pipe.

この捩り装置は、ピストンのヘツド部2aと一体構成し
たものであつても、あるいは別体に構成したものを拘着
させてもよく、またこれに具備されたチヤツク機構は通
常のパイプチヤツキング手段による機構のものを使用す
るか、捩り方向の回転にしたがい自然緊締するよう構成
されたものを用いる。
This twisting device may be constructed integrally with the head portion 2a of the piston, or may be constructed separately and secured thereto. Either a mechanical mechanism is used, or a mechanism is used that is configured to tighten naturally according to rotation in the torsional direction.

猶図中のPは捩り力表示で、Tl,t2は第1,2図の
状態時におけるパイプ捩り新囲を表わし、またK及びK
l,K2はパイプが曲げ角度θ1,θ21fC.曲管さ
れたときの捩り角の状態を示すためにパイプ上に表示し
たけがき線Kとその軌跡Kl,K2であり、A,bはパ
イプの捩り方向を、Ml,m2は曲げ角度がθ1とθ2
時における圧縮力及ひ捩り力に対応した多軸応力作用部
分を示したものである。
P in the diagram represents the torsional force, Tl and t2 represent the new pipe torsion under the conditions shown in Figures 1 and 2, and K and K
l, K2 are pipes bent at angles θ1, θ21fC. These are the marking lines K and their trajectories Kl and K2 displayed on the pipe to show the state of the twist angle when the pipe is bent, where A and b indicate the twist direction of the pipe, and Ml and m2 indicate the bending angle θ1. and θ2
This figure shows the area where multiaxial stress acts in response to compressive force and torsional force at the time.

斯くて以上の構成によりなる本発明装置において曲げ加
工するに当わ、先づ第1図の状態、即ちパイプ1がガイ
ドローラ7に案内されて推進する如くセツテイングし、
両端部をピストン2の支持と誘導金具4の把持により固
定させAと共に、後端部に捩り装置10をチヤツク機構
によリ拘着させる。
Therefore, when performing bending using the apparatus of the present invention having the above-described configuration, first the pipe 1 is set in the state shown in FIG. 1, that is, the pipe 1 is guided and propelled by the guide rollers 7, and
Both ends are fixed by supporting the piston 2 and gripping the guide fitting 4, and together with A, the twisting device 10 is secured to the rear end by a chuck mechanism.

そこで高周波期熱装置8VC.より曲げ開始部の円周部
分を局部的に塑性変形温度に加熱させると共に、ピスト
ン2によりパイプ1を軸方向に押圧する。
Therefore, the high frequency heating device 8VC. The circumferential portion at the bending start point is locally heated to a plastic deformation temperature, and the piston 2 presses the pipe 1 in the axial direction.

これと同時に誘導金具4に調整した背圧をかけながら圧
縮力を加えると、曲げ開始部の加熱領域部分wに相応の
圧縮応力が発生して曲管作用が働くが、この場合本発明
に於てはピストンの押圧と併行して前記軸方向の圧縮力
に加担する円周方向に対する加エカを負荷するよう捩り
装置10の作用によつて連続的な捩り力Pを付与する。
これにより加熱領域部分Wに軸方向の圧縮応力と円周方
向の捩り応力が相乗的に作用した多軸応力による曲げモ
ーメントの発生を容易になさしめる。換言すればこの両
応力の相乗作用により曲げ開始部の塑性変形が極めて容
易な状態になるから、したがつて肉厚減少や偏平の発生
も抑制され、且つピストンの押圧力も誘導金具の背圧に
伴う圧縮力も軽減された小圧力を以つて楽に曲げ加工が
行なはれる特徴がある。捩り装置による捩り方向は第4
図に示すように右回転又は左回転の一定方向(同図A,
B)に連続的に、あるいは往復的な正逆方向(同図C)
に交互連続して行なうもので、いずれも減速モータ等の
駆動機構と伝達させた手段を採ることによつて捩り力を
付与することができる。
At the same time, when a compressive force is applied while applying an adjusted back pressure to the induction fitting 4, a corresponding compressive stress is generated in the heated region w at the bending start part, and a bending pipe action is activated. In parallel with the pressing of the piston, a continuous torsion force P is applied by the action of the torsion device 10 so as to apply an additional force in the circumferential direction which adds to the compressive force in the axial direction.
This facilitates the generation of a bending moment due to multiaxial stress in which compressive stress in the axial direction and torsional stress in the circumferential direction act synergistically on the heated region portion W. In other words, the synergistic effect of these two stresses makes plastic deformation extremely easy at the bending start point, thereby suppressing wall thickness reduction and flattening, and also reducing the pressing force of the piston to the back pressure of the guide fitting. It has the characteristic that the bending process can be easily performed with a small pressure, which reduces the compressive force associated with the bending process. The twisting direction by the twisting device is the fourth
As shown in the figure, a certain direction of right or left rotation (A,
B) Continuously or reciprocating forward and backward directions (C in the same figure)
The torsional force can be applied by means of transmission with a drive mechanism such as a deceleration motor.

パイプ先端部は誘導金具に把持されて回転しないように
固定されており、外力は塑性変形可能な加熱領域部分w
に作用するから、前記捩り装置の作用に伴うパイプの捩
り範囲は第1図の曲げ開始状態時ではt1の長さ部分に
亘り、又第2図の過程時にあつてはT2の長さ部分に作
用することになる。
The tip of the pipe is held by an induction fitting and fixed so that it does not rotate, and the external force is applied to the heated area that can be plastically deformed.
Therefore, the twisting range of the pipe due to the action of the twisting device extends over the length t1 in the bending start state shown in FIG. 1, and extends over the length T2 during the process shown in FIG. It will work.

そしてパイプ円周方向に対する捩ね力の状態は実施例図
のように右方向に捩りを行なつた場合、そのけがき線で
判明するように第1図のけがき線Kはパイプがe1角度
曲げ加工されたときには軌跡K1の状態になり、さらV
Ce2角度の曲げ加工完了時には軌跡K2の状態となる
The state of the twisting force in the circumferential direction of the pipe is determined by twisting the pipe in the right direction as shown in the example diagram. When it is bent, it will be in the state of trajectory K1, and further V
When the bending process at the Ce2 angle is completed, the state becomes the trajectory K2.

上記の軌跡の状態によつても理解されるように、パイプ
に軸方向の圧縮力と円周方向の捩り力を同時に相乗させ
て作用せしめることにより曲げ開始部の加熱領域部分に
は多軸応力場が形成され、この応力による曲げモーメン
トの発生により塑性変形を極めて容易化なさしめるので
多軸応力作用部分Ml,m2の曲管部曲げ外側壁の減肉
現象並びに当該曲管部断面の偏平現象はいずれも殆んど
生じることなく解消される。
As can be understood from the state of the trajectory above, by simultaneously applying a synergistic axial compressive force and circumferential torsional force to the pipe, multiaxial stress is applied to the heated region at the beginning of bending. A field is formed, and the bending moment generated by this stress greatly facilitates plastic deformation, resulting in thinning of the bending outer wall of the bent pipe section of the multiaxial stress acting portion Ml, m2 and flattening of the cross section of the bent pipe section. Both are resolved with almost no occurrence.

つぎに本発明者らによる実験例を示す。Next, an experimental example conducted by the present inventors will be shown.

実1験例 1 外径114.3%、肉厚6.0%の鋼管を加熱温度90
0℃の許に曲げ半径152.4%の曲管に曲げ加工した
とき、実1験例 2 外径304.8〜、肉厚8.2%の鋼管を加熱温度90
0℃の許に曲げ半径216.3〜の曲管に曲げ力[[し
たとき、以上の実験例に基く比較表にて判明するように
、本発明に於ては捩り力を必要とするけれども、これに
より多軸応力を発生するためにパイプの押圧力及び圧縮
力とも外径114.3Xの普通鋼管にあつては1/10
VC軽減されると共に、これに伴い減肉率は1/7.3
VC.、偏平率も1/5.2VC減少されることハまた
外径304.8Xの大径鋼管であつても押圧力と圧縮力
は1/5、減肉率と偏平率はいずれも1/3.7にそれ
ぞれ減少されることが実証された。
Experimental example 1: Heating a steel pipe with an outer diameter of 114.3% and a wall thickness of 6.0% at a temperature of 90
When bent into a bent pipe with a bending radius of 152.4% at 0°C, a steel pipe with an outer diameter of 304.8~ and a wall thickness of 8.2% was heated to a temperature of 90°C.
When applying a bending force to a curved pipe with a bending radius of 216.3~ at 0°C, as shown in the comparison table based on the above experimental examples, the present invention requires a torsional force. , in order to generate multiaxial stress, both the pushing force and compressive force of the pipe are 1/10 for ordinary steel pipes with an outer diameter of 114.3X.
VC is reduced and the thinning rate is 1/7.3.
V.C. Also, even if it is a large diameter steel pipe with an outer diameter of 304.8X, the pressing force and compressive force are 1/5, and the thinning rate and flatness rate are both 1/3. .7 respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例であつて、第1図乃至3図は曲
げ加工法による加工状態を順次に示した概略図で、第4
図A,B,Cの各図はパイプの捩り方向を示したもので
ある。 主要符号、1・・・・・・金属パイプ、2・・・・・ゼ
ストン、4・・−・・誘導金具、8・・・・・・高周波
加熱装置、10・・・・・・チヤツク機構を具備した捩
り装置、P・・・・・・捩り力、W・・・・・・加熱領
域部分。
The drawings are one embodiment of the present invention, and FIGS. 1 to 3 are schematic diagrams sequentially showing processing states by the bending method, and FIG.
Each of the figures A, B, and C shows the twisting direction of the pipe. Main symbols: 1...Metal pipe, 2...Zeston, 4...Induction fitting, 8...High frequency heating device, 10...Chuck mechanism A twisting device equipped with P...Twisting force, W...Heating area portion.

Claims (1)

【特許請求の範囲】 1 軸方向に押圧するピストンに後端部を支持させ、背
圧を伴いながら所定の半径を維持して回転するアームの
誘導金具に先端部を把持させた金属パイプを曲げ開始部
の円周部分を局部的に高周波加熱しながら所定の曲率に
曲げ加工する方法において、ピストンに支持されたパイ
プ後端部にチャック機構を具備する捩り装置を拘着させ
、当該装置により前記ピストンによる押圧力と誘導金具
の背圧に伴う圧縮力とによるパイプ軸方向への塑性変形
と併行して前記曲げ開始部の加熱領域部分に対し円周方
向への塑性変形をなさしめる加工力を負荷するよう捩り
力を付与して多軸応力による曲げモーメントの発生を容
易にさせることにより曲げ加工することを特徴とする金
属パイプの曲げ加工法。 2 曲げ開始部の加熱領域部分に対し円周方向への塑性
変形をなさしめる加工力を負荷する捩り力を一定方向に
連続的に付与して曲げ加工することを特徴とする特許請
求の範囲第1項記載の金属パイプの曲げ加工法。 3 曲げ開始部の加熱領域部分に対し円周方向への塑性
変形をなさしめる加工力を負荷する捩り力を往復的な正
逆方向に交互連続的に付与して曲げ加工することを特徴
とする特許請求の範囲第1項記載の金属パイプの曲げ加
工法。 4 金属パイプの後端部を支持して軸方向へ押圧するピ
ストンと、押圧されるパイプの先端部を把持して背圧を
伴いながら所定の曲率に回転するアームに取付けられた
誘導金具と、曲げ開始部の円周部分を局部的に加熱する
高周波加熱装置とを備えた熱間曲げ加工装置において、
パイプの加熱領域部分に対し円周方向への捩り力を付与
するチャック機構を具備した捩り装置をパイプ後端部に
拘着するよう設けた構成を特徴とする金属パイプの曲げ
加工装置。 5 パイプ後端部に拘着するよう設けた捩り装置がピス
トンのヘッド部と一体に構成されていることを特徴とす
る特許請求の範囲第4項記載の金属パイプの曲げ加工装
置。 6 パイプ後端部に拘着するよう設けた捩り装置がピス
トンのヘッド部と別体に構成されていることを特徴とす
る特許請求の範囲第4項記載の金属パイプの曲げ加工装
置。
[Claims] 1. A metal pipe is bent, the rear end of which is supported by a piston that presses in the axial direction, and the tip of which is held by a guide fitting of an arm that rotates while maintaining a predetermined radius with back pressure. In a method of bending a circumferential part of a starting part to a predetermined curvature while locally heating it with high frequency, a twisting device equipped with a chuck mechanism is fixed to the rear end of a pipe supported by a piston, and the device In parallel with the plastic deformation in the axial direction of the pipe due to the pressing force by the piston and the compressive force due to the back pressure of the induction fitting, a processing force is applied that causes the heated region of the bending start part to undergo plastic deformation in the circumferential direction. A metal pipe bending method characterized by bending by applying a torsional force to facilitate the generation of bending moment due to multiaxial stress. 2. Bending is performed by continuously applying a torsional force in a certain direction to apply a working force that causes plastic deformation in the circumferential direction to the heated region of the bending start part. The metal pipe bending method described in item 1. 3. Bending is performed by alternately and continuously applying a torsional force that applies a processing force that causes plastic deformation in the circumferential direction to the heated region of the bending start part in a reciprocating forward and reverse direction. A method for bending a metal pipe according to claim 1. 4. A piston that supports the rear end of a metal pipe and presses it in the axial direction; a guide fitting attached to an arm that grips the tip of the pipe being pressed and rotates to a predetermined curvature while applying back pressure; In a hot bending device equipped with a high frequency heating device that locally heats a circumferential portion of a bending start part,
A metal pipe bending device characterized by a structure in which a twisting device equipped with a chuck mechanism that applies a twisting force in the circumferential direction to a heated region of the pipe is fixed to the rear end of the pipe. 5. The metal pipe bending device according to claim 4, wherein the twisting device provided to be secured to the rear end of the pipe is constructed integrally with the head portion of the piston. 6. The metal pipe bending device according to claim 4, wherein the twisting device provided to fasten to the rear end of the pipe is constructed separately from the head of the piston.
JP16635381A 1981-10-20 1981-10-20 Metal pipe bending method and device Expired JPS5928415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16635381A JPS5928415B2 (en) 1981-10-20 1981-10-20 Metal pipe bending method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16635381A JPS5928415B2 (en) 1981-10-20 1981-10-20 Metal pipe bending method and device

Publications (2)

Publication Number Publication Date
JPS5868430A JPS5868430A (en) 1983-04-23
JPS5928415B2 true JPS5928415B2 (en) 1984-07-12

Family

ID=15829802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16635381A Expired JPS5928415B2 (en) 1981-10-20 1981-10-20 Metal pipe bending method and device

Country Status (1)

Country Link
JP (1) JPS5928415B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5383245B2 (en) * 2009-02-20 2014-01-08 三菱重工業株式会社 Pipe bending machine
CN103736795B (en) * 2014-01-10 2016-05-25 株洲双菱科技有限公司 A kind of steel pipe fire bending space bending method and fire bending space bent pipe machine
DE102018215501A1 (en) * 2018-09-12 2020-03-12 Wafios Aktiengesellschaft Process for producing a bent part and bending machine for carrying out the process

Also Published As

Publication number Publication date
JPS5868430A (en) 1983-04-23

Similar Documents

Publication Publication Date Title
KR20060124546A (en) Method and apparatus for hot-bending of metallic pipe
CN105195512A (en) Equipment for preparing metal composite plate and preparation method for metal composite plate
JP4584412B2 (en) Method for manufacturing fixed element
JPS5928415B2 (en) Metal pipe bending method and device
CN105195548A (en) Equipment for processing metal composite plate and processing method of equipment
US2396795A (en) Method for applying helical fins to cylindrical bodies
JPH1071428A (en) Method for bending pipe
CN204974709U (en) Apparatus for preparing metal clad sheet
CN201862645U (en) Device for preparing variable-channel superfine-crystal copper aluminum wire
CN214556960U (en) Wire rod uncoiler
JP3860065B2 (en) Compression bending method for metal strip
JP6061685B2 (en) Rack manufacturing method
JPS582726B2 (en) Kinzokukannomagekakohou
JPH0669583B2 (en) Method and apparatus for processing metal circular tube upset
JPH01154825A (en) Bending method for stainless steel pipe
JPS59120323A (en) Method and device for bending pipe
JP2005088066A (en) Enlarge-working method for shaft
JPH0440085B2 (en)
JPS58196124A (en) Manufacture of flexible pipe
JP2503746B2 (en) Method for manufacturing ice heat storage coil
JPS61199521A (en) Manufacture of bent pipe
JPS58927B2 (en) Bending method for austenitic stainless steel pipe
JPH0679743B2 (en) Continuous hot tension straightening device
JP2002113523A (en) Method and apparatus for manufacturing bent bar stock
TWI272310B (en) Heat treatment method for a work-piece without straightening