JPS5928413Y2 - Thin film light control element - Google Patents

Thin film light control element

Info

Publication number
JPS5928413Y2
JPS5928413Y2 JP16858481U JP16858481U JPS5928413Y2 JP S5928413 Y2 JPS5928413 Y2 JP S5928413Y2 JP 16858481 U JP16858481 U JP 16858481U JP 16858481 U JP16858481 U JP 16858481U JP S5928413 Y2 JPS5928413 Y2 JP S5928413Y2
Authority
JP
Japan
Prior art keywords
light
surface acoustic
optical
thin film
acoustic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16858481U
Other languages
Japanese (ja)
Other versions
JPS57100728U (en
Inventor
充和 近藤
富士郎 斉藤
義徳 太田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP16858481U priority Critical patent/JPS5928413Y2/en
Publication of JPS57100728U publication Critical patent/JPS57100728U/ja
Application granted granted Critical
Publication of JPS5928413Y2 publication Critical patent/JPS5928413Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は超音波による光の回折効果を利用した光変調器
、光偏向器のよつな光制御素子に関し、特に光集積回路
における前記の効果を用いた光制御素子に関するもので
ある。
[Detailed description of the invention] The present invention relates to light control elements such as optical modulators and optical deflectors that utilize the diffraction effect of light caused by ultrasonic waves, and particularly to light control elements that utilize the above-mentioned effects in optical integrated circuits. It is related to.

光情報処理や光通信の分野においては光学装置の安定化
や小型化など金目的とした光集積回路を実現するため精
力的な開発研究が行なわれている。
In the fields of optical information processing and optical communications, vigorous research and development efforts are being carried out to realize optical integrated circuits for the purpose of stabilizing and downsizing optical devices.

光集積回路とは小さな基板上に光源、光増幅器、光変調
器等の能動素子や光導波路、光共振器等の受動素子が設
けられたものをいう。
An optical integrated circuit is a circuit in which active elements such as a light source, optical amplifier, and optical modulator, and passive elements such as an optical waveguide and an optical resonator are provided on a small substrate.

この光集積回路を構成する要素のうち、導波路を伝わる
光波を時間的あるいは空間的に制御する素子を得るには
、基板表面に弾性表面波を励振し、該弾性表面波による
光波の回折現象を利用して薄膜光偏向素子や薄膜光制御
素子會構成する方法が有効である。
Among the elements constituting this optical integrated circuit, in order to obtain an element that temporally or spatially controls light waves propagating through a waveguide, surface acoustic waves are excited on the substrate surface, and the diffraction phenomenon of light waves caused by the surface acoustic waves is generated. It is effective to construct a thin film optical deflection element or a thin film optical control element assembly using the above.

光集積回路における光制御素子を得る方法としては、前
記方法以外に電気光学効果や磁気光学効果をオリ用する
種々の方法が考えられているが、これらの方法は光導波
路まfvは基板が電気光学物質または磁気光学物質であ
るときのみ有効である。
In addition to the methods described above, various methods have been considered for obtaining optical control elements in optical integrated circuits, which make use of electro-optic effects and magneto-optic effects. Valid only when it is an optical or magneto-optical material.

しかるに前記弾性表面波を利用する方法は圧電物質にお
いては表面にすだれ状電極を設けることにより、また非
圧電物質においては表面にすだれ状電極を設け、その上
に圧電物質の薄膜を設ける等の方法により弾性表面波を
励振することができるので、光導波路および基板の物質
にはほとんど制限されない。
However, the method of utilizing the surface acoustic waves is to provide a transducer-like electrode on the surface of a piezoelectric material, or to provide a transducer-like electrode on the surface of a non-piezoelectric material, and to provide a thin film of piezoelectric material on top of the interdigital electrode. Since surface acoustic waves can be excited by the method, there are almost no restrictions on the materials of the optical waveguide and the substrate.

また、前記弾性表面波を用いた素子は従来の体積弾性波
を用いた素子と比べて必要な電気入力が小さくてすむこ
と、弾性波ビームの基板表面よりの制御が容易なこと、
素子を小型化できろことなどの特徴を備えている。
In addition, the element using surface acoustic waves requires less electrical input than the conventional element using bulk acoustic waves, and the elastic wave beam can be easily controlled from the substrate surface.
It has features such as the ability to miniaturize the device.

弾性表面波による光の回折効果を利用した光変調器、光
偏向器においては回折光と非回折光または種々の周波数
の弾性表面波による回折光の間の相互の分離上行なうこ
とが必要である。
In optical modulators and optical deflectors that utilize the diffraction effect of light caused by surface acoustic waves, it is necessary to perform mutual separation between diffracted light and undiffracted light or diffracted light caused by surface acoustic waves of various frequencies. .

2つの回折光の間のなす角度はそれぞれ回折されるとき
の弾性波の周波数の差にほぼ比例するが、−搬には弾性
波を励振し得る周波数には上限があり分離角度はかなり
小さい。
The angle between the two diffracted lights is approximately proportional to the difference in frequency of the elastic waves when they are diffracted, but there is an upper limit to the frequency at which the elastic waves can be excited, and the separation angle is quite small.

そこで普通は光音回折させた後長い距離を伝播させるか
、あるいは前記偏向器の背後に適宜にレンズ等の受動光
学素子を設けることにより回折光相互間の分離全行なっ
ているが光集積回路のz5な小型の素子では上記のよう
な方法は難しい。
Normally, the diffracted lights are separated from each other by diffracting the light and then propagating it over a long distance, or by installing an appropriate passive optical element such as a lens behind the deflector. The above method is difficult for small z5 elements.

また、上記の弾性表面波を用いた素子を光集積回路の一
素子として使57’vめには他の光集積回路素子と結合
しなければならない。
Furthermore, in order to use the above element using surface acoustic waves as one element of an optical integrated circuit, it must be coupled with other optical integrated circuit elements.

本考案の目的は回折光を分離するための有効な手段會備
え、かつ小形で他の光集積回路素子への結合が可能な弾
性表面波による光変調素子、光偏向素子等の光制御素子
を提供することにある。
The purpose of the present invention is to provide light control elements such as light modulation elements and light deflection elements using surface acoustic waves, which are equipped with an effective means for separating diffracted light, and which are small and can be coupled to other optical integrated circuit elements. It is about providing.

本考案によれば、固体基板上に設けた薄膜光導波体と、
該薄膜光導波体中音伝搬する光波に作用する弾性表面波
音発生させるための弾性表面波変換器と、前記弾性表面
波によって回折された少なくとも1つ以上の光波成分を
更に回折し光波戒分間の進行方向の角度差を増大せしめ
る少なくとも1組以上の回折格子と、前記角度差を増大
せしめられた複数の光波成分會それぞれ独立に導びく光
導波体表面し、さらに前記回折格子として、格子ベクト
ルの大きさ又は方向のうち、少なくとも一方が互いに異
なる複数の回折格子を同一領域に重複して形成した回折
格子を用いた薄膜光制御素子が得られる。
According to the present invention, a thin film optical waveguide provided on a solid substrate;
a surface acoustic wave converter for generating a surface acoustic wave sound acting on a light wave propagating in the thin film optical waveguide, and a surface acoustic wave converter for further diffracting at least one light wave component diffracted by the surface acoustic wave, At least one set of diffraction gratings that increase the angular difference in the propagation direction; A thin film light control element using a diffraction grating in which a plurality of diffraction gratings different in at least one of sizes and directions are formed overlappingly in the same area can be obtained.

次に図面を参照して本考案について詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第1図は従来の回折格子と光導波路を用いた薄膜光変調
素子または薄膜光スイッチング素子の一例を示す。
FIG. 1 shows an example of a thin film optical modulation device or a thin film optical switching device using a conventional diffraction grating and an optical waveguide.

1は基板上に設けられた薄膜光導波体であり、例えばス
パッタやイオン交換等の方法により製作される。
Reference numeral 1 denotes a thin film optical waveguide provided on a substrate, and is manufactured by, for example, a method such as sputtering or ion exchange.

2は光導波体1に入射した光ビーム3を回折させるため
に光導波体表面に弾性表面波4會電気的に発生させる弾
性表面波変換器である。
Reference numeral 2 denotes a surface acoustic wave converter that electrically generates surface acoustic waves 4 on the surface of the optical waveguide 1 in order to diffract the optical beam 3 incident on the optical waveguide 1.

5は弾性表面波4の基板端面かもの反射波を防ぐために
設けられた弾性表面波の吸収体である。
Reference numeral 5 denotes a surface acoustic wave absorber provided to prevent the surface acoustic waves 4 from being reflected from the end surface of the substrate.

6は弾性表面波4に、l:る回折光と非回折光の角度差
を増大させる機能を有する薄膜回折格子であり、周期的
に光導波路の厚さを変えて等価的な屈折率を周期的に変
化せしめる方法等にエリ製作した位相格子である。
6 is a thin film diffraction grating that has the function of increasing the angular difference between diffracted light and non-diffracted light in the surface acoustic wave 4, and periodically changes the thickness of the optical waveguide to maintain an equivalent refractive index. This is a phase grating manufactured using a method that changes the angle.

7と8は回折格子6によって角度差を増大させられた回
折光9と非回折光10をそれぞれ独立に導く光導波路で
あり、11お工び12はそれらの入射端である。
Reference numerals 7 and 8 are optical waveguides that respectively independently guide the diffracted light 9 and the undiffracted light 10 whose angular difference has been increased by the diffraction grating 6, and 11 and 12 are the incident ends thereof.

薄膜回折格子6が前記の機能を有するためには次に述べ
る条件音溝たす必要がある。
In order for the thin film diffraction grating 6 to have the above-mentioned function, it is necessary to satisfy the following condition sound groove.

すなわち、第1に回折角度が十分大きいこと、第2に回
折効率が高いこと、第3に特定の入射角度で入射した光
波だけを選択的に回折させる性質すなわち角度選択性が
高いことである。
That is, first, the diffraction angle is sufficiently large, second, the diffraction efficiency is high, and third, the property of selectively diffracting only the light waves incident at a specific incident angle, that is, the angle selectivity is high.

上記条件音溝たす具体的構成お工び数値例を次に示す。A specific numerical example of a configuration that satisfies the above conditions is shown below.

薄膜光導波体1の等価的な屈折率i1.5Q入射光3の
真空中での波長’16328°A、弾性表面波4の速度
および周波数をそれぞれ3000m/sec60MHz
とする。
The equivalent refractive index of the thin film optical waveguide 1 is i1.5Q. The wavelength in vacuum of the incident light 3 is '16328°A, and the velocity and frequency of the surface acoustic wave 4 are 3000 m/sec and 60 MHz, respectively.
shall be.

入射光3は幅が0.5mmのほぼ平行な光ビームとし、
弾性表面波4の波面方向に対して回折光強度が最大とな
る角度、いわゆるブラッグ角度で入射させる。
The incident light 3 is a nearly parallel light beam with a width of 0.5 mm,
The light is made incident at an angle with respect to the wavefront direction of the surface acoustic wave 4 at which the intensity of the diffracted light is maximum, the so-called Bragg angle.

また、薄膜回折格子6は弾性表面波4による回折光がブ
ラッグ角で入射するような向きに設けられており、その
格子周期は5μm、幅は2mmである。
The thin film diffraction grating 6 is oriented such that the light diffracted by the surface acoustic wave 4 is incident at a Bragg angle, and has a grating period of 5 μm and a width of 2 mm.

この場合回折格子6は約7.5mmr a dの入射角
度選択性を有し、前記弾性表面波4による回折光と非回
折光の角度差8.4f[[[tl”ad J:り小さい
ので弾性表面波4による回折光だけを再び回折すること
が可能である。
In this case, the diffraction grating 6 has an incident angle selectivity of approximately 7.5 mm r a d, and the angular difference between the diffracted light and the undiffracted light due to the surface acoustic wave 4 is 8.4 f[[[tl''ad J:]. It is possible to diffract only the light diffracted by the surface acoustic wave 4 again.

また回折格子6の回折角度は入射方向に対し約84mm
radであるので回折格子6を通過後の回折光9と非回
折光10の角度差は約92mmrad となる。
In addition, the diffraction angle of the diffraction grating 6 is approximately 84 mm with respect to the incident direction.
rad, the angular difference between the diffracted light 9 and the undiffracted light 10 after passing through the diffraction grating 6 is approximately 92 mmrad.

入射光3の広がり角は約1 、1 mmradであるの
で薄膜回折格子6と光導波路の入射端11,11約6m
m離して設置することにより回折光9と非回折光10は
独立にそれぞれ光導波路7,8に導くことができる。
Since the spread angle of the incident light 3 is about 1.1 mmrad, the distance between the thin film diffraction grating 6 and the incident ends 11 and 11 of the optical waveguide is about 6 m.
By disposing them at a distance of m, the diffracted light 9 and the undiffracted light 10 can be guided independently to the optical waveguides 7 and 8, respectively.

いま仮に上記と同様の構成で回折格子6を用いずに弾性
表面波4による回折光と非回折光を空間的に分離しヨウ
とするならば光導波路の入射端11,12は弾性表面波
4が励振されている部分より60mm以上離さなければ
ならないことになる。
Now, if the diffraction grating 6 is not used in the same configuration as above and the diffracted light and undiffracted light due to the surface acoustic wave 4 are spatially separated, the incident ends 11 and 12 of the optical waveguide will be the surface acoustic wave 4. This means that it must be at least 60 mm away from the part that is being excited.

また、本例では上述の、c5に光導波路の入射端11,
12では非回折光と回折光は0.54mm程度分離され
ているが光導波路7,8によってその分離幅はさらに拡
大される。
In addition, in this example, the input end 11 of the optical waveguide is connected to c5, as described above.
12, the undiffracted light and the diffracted light are separated by about 0.54 mm, but the separation width is further expanded by the optical waveguides 7 and 8.

以上のように回折格子6を設置した場合にはそれがない
場合に比べて回折光と非回折光を分離して同一基板上に
設置した他の光集積回路素子に結合することが容易とな
るが、本考案では以下に述べるようにさらに分離が容易
となる。
When the diffraction grating 6 is installed as described above, it becomes easier to separate the diffracted light and the undiffracted light and couple them to other optical integrated circuit elements installed on the same substrate than when the diffraction grating 6 is not installed. However, in the present invention, separation becomes easier as described below.

すなわち、本考案を用いた場合には、薄膜回折格子6が
弾性表面波による回折光を回折させると同時に非回折光
も光の入射方向に関し回折光と反対の方向に回折させる
機能を有するように設置することができる。
That is, when the present invention is used, the thin film diffraction grating 6 has the function of diffracting the diffracted light due to the surface acoustic wave and simultaneously diffracting the undiffracted light in the direction opposite to the diffracted light with respect to the incident direction of the light. can be installed.

この場合には回折光9と非回折光10の角度差を前記の
構成よりさらに増大せしめ、回折格子6と光導波路7,
8の入射端11゜12の間隔をさらにせばめることか可
能である。
In this case, the angular difference between the diffracted light 9 and the undiffracted light 10 is further increased than in the above configuration, and the diffraction grating 6 and the optical waveguide 7,
It is possible to further narrow the distance between the incident ends 11° and 12 of 8.

このようにするには弾性表面波4による回折光と非回折
光それぞれに対して回折格子を光波の進行方向に順次並
べて設置してもよいが、本考案のようにそれら2つの回
折格子を同一領域に重ね合せて設置した方が小形の素子
を得ることができる。
In order to do this, diffraction gratings may be arranged sequentially in the direction of propagation of the light wave for each of the diffracted light and non-diffracted light by the surface acoustic wave 4, but as in the present invention, these two diffraction gratings are placed in the same It is possible to obtain a smaller element by overlapping the elements in the area.

第2図は本考案を説明するための一実施例で5偏向点を
有する1次元光走査素子會示す平面図である。
FIG. 2 is a plan view showing a one-dimensional optical scanning element assembly having five deflection points in one embodiment for explaining the present invention.

第2図において1は薄膜光導波体、2は4種類の異なっ
た周波数の弾性表面波を電気的に発生し得る弾性表面波
変換器、3は入射光ビームを示す。
In FIG. 2, 1 is a thin film optical waveguide, 2 is a surface acoustic wave converter capable of electrically generating surface acoustic waves of four different frequencies, and 3 is an incident light beam.

6は薄膜回折格子で4種類の回折格子から成っており、
それぞれ前記4種類の周波数の弾性表面波による回折光
および非回折光のうちの特定の4つの光波に一対一に対
応し、その特定の回折光または非回折光だけがブラッグ
角度で入射して回折されるように設けられている。
6 is a thin film diffraction grating, which consists of four types of diffraction gratings.
Each corresponds one-to-one to four specific light waves among the diffracted light and non-diffracted light due to the surface acoustic waves of the four types of frequencies, and only the specific diffracted light or non-diffracted light enters at the Bragg angle and is diffracted. It is set up so that

また、薄膜回折格子6の周期は5種類の角度の入射光、
すなわち弾性表面波4による4種類の回折光および非回
折光のそれぞれのなす角度を増大させるように選ばれて
いる。
Furthermore, the period of the thin film diffraction grating 6 is determined by the incident light at five different angles.
That is, it is selected so as to increase the angle formed by each of the four types of diffracted light and undiffracted light by the surface acoustic wave 4.

薄膜回折格子6を通過後の互いになす角度を増大させら
れた回折光および非回折光はそれぞれ分離され、光導波
路21,22,23゜24.25に独立に導かれる。
After passing through the thin film diffraction grating 6, the diffracted light and the undiffracted light whose angles to each other are increased are separated and guided independently to optical waveguides 21, 22, 23°24.25.

第3図は薄膜回折格子6として、本考案を用いないで、
異なる領域に4つの回折格子を設置した例を示す。
FIG. 3 shows a thin film diffraction grating 6 without using the present invention.
An example is shown in which four diffraction gratings are installed in different areas.

薄膜光導波体1の等価的な屈折率k1.50、入射光3
の真空中での波長16328°A、弾性表面波4の速度
を3000m/seq 、弾性表面波の取り得る周波数
音60ME(z、120MHz、180MHz、240
MHzとする。
Equivalent refractive index k1.50 of thin film optical waveguide 1, incident light 3
The wavelength in vacuum of
MHz.

第3図において、44.43.42.41はそれぞれ6
0ME(z、120MHz、180MHz、240MH
z の弾性表面波による回折光、45は非回折光を示す
In Figure 3, 44, 43, 42, 41 are each 6
0ME(z, 120MHz, 180MHz, 240MHz
z indicates diffracted light due to surface acoustic waves, and 45 indicates undiffracted light.

46,47,48,49は全体で第2図における回折格
子6を構成しており、それぞれ入射光波41,42,4
4,45に対してブラッグ角となるように設置され、該
光波のみを回折しそれぞれの入射光に対し回折光51,
52,54゜55に生ずる。
46, 47, 48, and 49 collectively constitute the diffraction grating 6 in FIG.
4, 45, and diffracts only the light wave, and generates diffracted lights 51, 45 for each incident light.
52,54°55.

入射光43は回折されずに進行し光波53となる。The incident light 43 travels without being diffracted and becomes a light wave 53.

回折格子46,47,48゜49の周期はそれぞれ2.
5μm15μm15μm、 2.5μmであり幅はすべ
て2mmである。
The periods of the diffraction gratings 46, 47, 48°49 are 2.
They are 5 μm, 15 μm, 15 μm, and 2.5 μm, and the widths are all 2 mm.

該回折格子への入射光41と42,42と43,43と
44゜44と45のなす角は全て約8−4 mradで
回折格子の有する角度選択性、約7−5mrad J、
り大きい。
The angles formed by the incident lights 41 and 42, 42 and 43, 43 and 44 degrees, 44 and 45 to the diffraction grating are all about 8-4 mrad, and the angle selectivity of the diffraction grating is about 7-5 mrad J.
It's big.

それゆえ入射光4L42,43,44,45は独立に回
折される。
Therefore, the incident lights 4L42, 43, 44, and 45 are independently diffracted.

回折格子通過後の光波51と52.52と53.53と
54.54と55のなす角度は全て約92nmlrad
に増大する。
The angles formed by the light waves 51, 52, 52, 53, 53, 54, 54, and 55 after passing through the diffraction grating are all about 92 nmlrad.
increases to

第4図は第3図に示す回折格子46,47,48,49
を同一領域に重ね合せて製作した本考案に用いる回折格
子の実施例を示す図であり、第4図を構成している4種
類の格子の周期と配向が第3図に示す回折格子と全く同
じであれば第3図に示す回折格子と同一の機能を有する
Figure 4 shows the diffraction gratings 46, 47, 48, 49 shown in Figure 3.
4 is a diagram showing an example of a diffraction grating used in the present invention manufactured by superimposing the gratings on the same area, and the periods and orientations of the four types of gratings composing FIG. 4 are completely different from those of the diffraction grating shown in FIG. 3. If they are the same, they have the same function as the diffraction grating shown in FIG.

但し、第4図の回折格子は第3図の回折格子と同じ回折
効率を得るためにはその光進行方向の長さは第3図の回
折格子の1/4でよいので非常に小形にできるという特
徴がある。
However, in order to obtain the same diffraction efficiency as the diffraction grating shown in Fig. 3, the length of the diffraction grating shown in Fig. 4 in the light traveling direction needs to be 1/4 of that of the diffraction grating shown in Fig. 3, so it can be made very small. There is a characteristic that

66.67.68,69は4種類の回折格子のそれぞれ
の一周期を示す。
66, 67, 68, and 69 indicate one period of each of the four types of diffraction gratings.

第2図で薄膜光導波体中の入射光3の幅を0.5mmと
すれば前記の例に示した構成では回折格子6と光導波路
21゜22.23,24,25の入射端を約6mm離す
ことにより弾性表面波4による回折光および非回折光は
互いに分離され、それぞれ独立に光導波路に導かれる。
If the width of the incident light 3 in the thin film optical waveguide is 0.5 mm in FIG. By separating them by 6 mm, the diffracted light and undiffracted light by the surface acoustic wave 4 are separated from each other and guided to the optical waveguide independently.

上記の原理に従い、入射光3は弾性表面波2への電気入
力の周波数を順次切換えることにより順次出力光31,
32,33,34となり、変換器2への電気入力がない
ときには出力光35となる。
According to the above principle, the incident light 3 is sequentially converted into output light 31, by sequentially switching the frequency of electrical input to the surface acoustic wave 2.
32, 33, and 34, and when there is no electrical input to the converter 2, the output light is 35.

また、変換器2への入力の加え方により出力光は31,
32,33,34,35の中の任意の一つとすることが
でき、本実施例に示す装置は光学的な記録読出し装置な
どにおける光走査素子として用いることができる。
Also, depending on how the input is added to the converter 2, the output light is 31,
32, 33, 34, and 35, and the device shown in this embodiment can be used as an optical scanning element in an optical recording/reading device.

弾性表面波の周波数範囲を広げることにより分離すべき
偏向点の数をさらに増加させることも可能である。
It is also possible to further increase the number of deflection points to be separated by widening the frequency range of the surface acoustic waves.

上記の第1図、第2図に示した素子はそのまま単独に用
いてもよいが、分離して得られた出力光を再び他に設け
た同一の素子への入射光とし、さらにいくつかの偏向点
に分離することも可能であり、このような方法k(”J
回も繰返すことによって多数の偏向点数の光走査素子を
得ることができる。
The elements shown in Figs. 1 and 2 above may be used alone as they are, but the output light obtained by separation may be used as incident light to the same element provided elsewhere, and several It is also possible to separate the deflection points, and such a method k(”J
By repeating this process several times, optical scanning elements with a large number of deflection points can be obtained.

第5図は本考案の素子を複数個用いた例である。FIG. 5 shows an example in which a plurality of elements of the present invention are used.

71.72,73はそれぞれ本考案に示したものと類似
の光スイツチング素子であり、各素子において入射ビー
ムが存在するとき弾性表面波変換器に入力を加えたとき
には各々出力光75,77゜79となり、電気入力がな
いときには出力光74゜76.78となる。
Reference numerals 71, 72, and 73 are optical switching elements similar to those shown in the present invention, and when an input beam is present in each element and an input is applied to the surface acoustic wave converter, the output light is 75, 77°, 79, respectively. Therefore, when there is no electrical input, the output light is 74°76.78.

ただし、ここで第1図に示した回折格子6のかわりに、
分離角を大きくするために、弾性表面波による回折光と
非回折光をそれぞれ互いに逆方向に回折するような2種
類の回折格子が同一領域に重複して形成されている。
However, instead of the diffraction grating 6 shown in FIG.
In order to increase the separation angle, two types of diffraction gratings that diffract diffracted light and non-diffracted light due to surface acoustic waves in opposite directions are formed overlappingly in the same region.

素子71に光波を入射したとき各々の素子への電気入力
の加え方によって76.77.78.79の4つの出力
光のうち任意の一つをとることができる。
When a light wave is input to the element 71, any one of the four output lights 76, 77, 78, and 79 can be obtained depending on how the electrical input is applied to each element.

本実施例は4点の光走査素子として、また符号化された
電気信号’(r71,72,73の3つの素子の弾性表
面波変換器に加える周波数の信号に変換することにより
光の位置の信号に変換する被着素子として使うことも可
能である。
This embodiment uses a four-point optical scanning element and converts the encoded electrical signal (r71, 72, 73) into a frequency signal to be applied to the surface acoustic wave transducer of three elements, thereby determining the position of the light. It is also possible to use it as an adhered element that converts it into a signal.

以上いくつかの実施例について具体的数値會あげて述べ
たが、これらは−例であって何もその数値にとられれる
ものではない。
Although some embodiments have been described above using specific numerical values, these are just examples and nothing should be taken as such.

以上詳述した工5に、本考案によれば同一領域に複数の
回折格子を重複して形成することによって比較的低い周
波数の弾性表面波による回折光でも分離が可能であり、
他の光集積回路素子への結合が容易な小形の光制御素子
が得られる。
In step 5 described in detail above, according to the present invention, even diffracted light due to relatively low frequency surface acoustic waves can be separated by forming a plurality of diffraction gratings overlappingly in the same area.
A small optical control element that can be easily coupled to other optical integrated circuit elements can be obtained.

この光制御素千金いくつか組合せて複雑な機能を有する
素子を構成することができ、これらは光集積回路の素子
として、また光情報処理の分野においても符号器、被着
器、光走査素子として利用される。
Several of these optical control elements can be combined to form elements with complex functions, and these can be used as elements of optical integrated circuits, as well as encoders, adherents, and optical scanning elements in the field of optical information processing. used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案會説明するための光スイツチング素子を
示す図、第2図は本考案による一実施例の5点の光走査
素子會示す図、第3図、第4図は第2図の薄膜回折格子
の部分の拡大図、第5図は本考案による4点の光走査素
子を示す図である。 図において、1は薄膜光導波体、2は弾性表面波変換器
、3は入射光、6は薄膜回折格子、7および8は光導波
路である。
Fig. 1 is a diagram showing an optical switching element for explaining the present invention, Fig. 2 is a diagram showing a five-point optical scanning element assembly of an embodiment of the present invention, and Figs. 3 and 4 are Fig. 2. FIG. 5 is an enlarged view of a portion of a thin film diffraction grating, and FIG. 5 is a diagram showing a four-point optical scanning element according to the present invention. In the figure, 1 is a thin film optical waveguide, 2 is a surface acoustic wave converter, 3 is incident light, 6 is a thin film diffraction grating, and 7 and 8 are optical waveguides.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 固体基板上に設けた薄膜光導波体と、該光導波体中を伝
搬する光波に作用する弾性表面波を発生させろための弾
性表面波変換器と、上記弾性表面波によって回折された
少なくとも1つ以上の光波成分を更に回折し、光波成分
間の進行方向の角度差を増大せしめる少なくとも1組以
上の回折格子と、上記角度差を増大せしめられた複数の
光波成分會それぞれ独立に導びく光導波路と會有し、さ
らに、前記回折格子として、格子ベクトルの大きさ又は
方向のうち少なくとも一方が互いに異なる複数の回折格
子を同一領域に重複して形成した回折格子を用いたこと
を特徴とする薄膜光制御素子。
a thin film optical waveguide provided on a solid substrate; a surface acoustic wave transducer for generating a surface acoustic wave acting on a light wave propagating in the optical waveguide; and at least one surface acoustic wave transducer diffracted by the surface acoustic wave. At least one or more sets of diffraction gratings that further diffract the above light wave components and increase the angular difference in the traveling direction between the light wave components, and an optical waveguide that independently guides each of the plurality of light wave component groups whose angular differences are increased. and further characterized in that a diffraction grating is used as the diffraction grating, in which a plurality of diffraction gratings in which at least one of the magnitude or direction of the grating vector is different from each other are formed overlappingly in the same area. Light control element.
JP16858481U 1981-11-12 1981-11-12 Thin film light control element Expired JPS5928413Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16858481U JPS5928413Y2 (en) 1981-11-12 1981-11-12 Thin film light control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16858481U JPS5928413Y2 (en) 1981-11-12 1981-11-12 Thin film light control element

Publications (2)

Publication Number Publication Date
JPS57100728U JPS57100728U (en) 1982-06-21
JPS5928413Y2 true JPS5928413Y2 (en) 1984-08-16

Family

ID=29960626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16858481U Expired JPS5928413Y2 (en) 1981-11-12 1981-11-12 Thin film light control element

Country Status (1)

Country Link
JP (1) JPS5928413Y2 (en)

Also Published As

Publication number Publication date
JPS57100728U (en) 1982-06-21

Similar Documents

Publication Publication Date Title
CA1159916A (en) Controllably deformed elastic waveguide elements
Ninomiya Ultrahigh resolving electrooptic prism array light deflectors
JPH05188336A (en) Total-internal-reflection type electrooptical modulator
US4491384A (en) Optical switch device
KR19990001454A (en) Fiber Optic Variable Wavelength Filter
Tsai Integrated acoustooptic circuits and applications
US6400881B1 (en) Optical device having thin film formed over optical waveguide
US20020141039A1 (en) Spatial light modulation
US6295157B1 (en) Thermally balanced acousto-optic modulator
JPS5928413Y2 (en) Thin film light control element
US4941722A (en) Light beam deflector
JPH0611672A (en) Total-reflection type electron-optics modulator
US5048936A (en) Light beam deflector
US4929043A (en) Light beam deflector
JPS6150291B2 (en)
JP2839250B2 (en) Concentrator
JPS6024523A (en) Optical switch
JPH07270736A (en) Waveguide type acousto-optical element
JPS6210411B2 (en)
JP2553367B2 (en) Multiple reflection type surface acoustic wave optical diffraction element
JPH0431805A (en) Method for inputting light to optical waveguide and method for outputting light therefrom
JPS60136719A (en) Acoustooptic device
JPS59198425A (en) Ultrasonic optical modulator
JPS6024522A (en) Variable wavelength optical switch
JPS63197924A (en) Optical deflecting device