JPS5928248B2 - Holographic plane diffraction grating creation device - Google Patents

Holographic plane diffraction grating creation device

Info

Publication number
JPS5928248B2
JPS5928248B2 JP11872276A JP11872276A JPS5928248B2 JP S5928248 B2 JPS5928248 B2 JP S5928248B2 JP 11872276 A JP11872276 A JP 11872276A JP 11872276 A JP11872276 A JP 11872276A JP S5928248 B2 JPS5928248 B2 JP S5928248B2
Authority
JP
Japan
Prior art keywords
diffraction grating
light source
reference point
holographic
plane diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11872276A
Other languages
Japanese (ja)
Other versions
JPS5344044A (en
Inventor
浩 永田
輝郎 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP11872276A priority Critical patent/JPS5928248B2/en
Publication of JPS5344044A publication Critical patent/JPS5344044A/en
Publication of JPS5928248B2 publication Critical patent/JPS5928248B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【発明の詳細な説明】 本発明は、モンク・ギルソンマウンテイングに適したホ
ログラフィック平面回折格子の作成装置及び、上記マウ
ンティング装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing a holographic plane diffraction grating suitable for Monk-Gilson mounting, and improvements to the mounting apparatus.

従来モンク・ギルソンマウンテイングではかなり大きな
収差が生じていたので、それを改善するのに、平面回折
格子の中心以外の点を回動中心としてその格子を回動さ
せる方法が提案されているが、しかしこの方法では分光
装置が複雑化するとともに、或る特定波長以外の波長で
は依然として、かなりのコマ収差が残存する。本発明の
目的は、モンク・ギルソンマウンテイングに適した、収
差の極めて少ないホログラフィック平面回折格子の作成
装置を提供することである。
Conventional Monk-Gilson mounting has caused quite large aberrations, and in order to improve this, a method has been proposed in which the grating is rotated around a point other than the center of the flat diffraction grating. However, with this method, the spectroscopic device becomes complicated, and considerable comatic aberration still remains at wavelengths other than a certain specific wavelength. An object of the present invention is to provide an apparatus for producing a holographic plane diffraction grating with extremely few aberrations, which is suitable for Monk-Gilson mounting.

また別の目的は、収差の極めて少ないモンク・ギルソン
マウンテイング装置を提供することである。
Another object is to provide a Monk-Gilson mounting device with extremely low aberrations.

モンク・ギルソンマウンテイングを示す第1図において
、入口スリット1からの光は凹面鏡2で反射集光され、
平面回折格子3に入射しそこで回折され、出口スリツト
4に結像する。
In FIG. 1 showing the Monk-Gilson mounting, light from an entrance slit 1 is reflected and focused by a concave mirror 2.
The light enters the plane diffraction grating 3, is diffracted there, and forms an image on the exit slit 4.

この格子3の中心Gを中心にして格子3を回転させて波
長走査を行う。今入口及び出口スリツト1及び4の中心
を夫々AとB、格子3の中心をG、凹面鏡2の中心をO
とし凹面鏡上の点P、格子3上の点Qを通る光線につい
て光路関数Fを求めると、F=AP+PQ+QB+n−
m・λ (1)となる。
The grating 3 is rotated around the center G of the grating 3 to perform wavelength scanning. Now, the centers of the entrance and exit slits 1 and 4 are A and B, respectively, the center of the grid 3 is G, and the center of the concave mirror 2 is O.
If we calculate the optical path function F for a ray passing through point P on the concave mirror and point Q on the grating 3, we get F=AP+PQ+QB+n-
m・λ (1).

ここでAP,PQ及びQBは夫々AとP間、PとQ間及
びQ(5B間の距離、mは回折の次数λは波長であり、
そしてnは中心GからQまでの格子の刻線数であり、ホ
ログラフイツク回折格子の記録定数で決まる。ホログラ
フイツク回折格子の記録系即ち作成装置を示す第2図に
おいて、回折格子の素材となるフオトレジストの如き感
光材3′の面にその中心Gが座標原点となる様に互に直
角にZ軸、Y軸を、そして両軸に垂直にX軸をとる。こ
のXY平面に存する2つの点光源C及びDからの光が感
光材3′に干渉縞を記録し格子を作成する。nを格子素
材3′TI.の中心GからQまでの格子の数とするとこ
こでλrは記録に用いるレーザ波長である。
Here, AP, PQ, and QB are the distances between A and P, between P and Q, and between Q(5B), m is the order of diffraction, λ is the wavelength,
And n is the number of grating lines from the center G to Q, which is determined by the recording constant of the holographic diffraction grating. In FIG. 2, which shows a recording system or production device for a holographic diffraction grating, Z-axes are arranged at right angles to each other on the surface of a photosensitive material 3' such as a photoresist, which is the material of the diffraction grating, with the center G serving as the coordinate origin. , the Y axis, and the X axis perpendicular to both axes. Light from two point light sources C and D existing on the XY plane records interference fringes on the photosensitive material 3' to create a grating. n as the grid material 3′TI. where λr is the laser wavelength used for recording.

(1)式と(2)式からnを消去すると1r− こうして光路関数Fを分光系の定数と記録系の定数とで
表わすことができる。
If n is deleted from equations (1) and (2), 1r- Thus, the optical path function F can be expressed by a constant of the spectroscopic system and a constant of the recording system.

今このFを回折格子(又はその素材)の点Qの座標(ω
,t)で展開すると(Rは凹面鏡の曲率半径とする)こ
こで、 ω又はtの係数FiJは更に と書ける。
Now, let this F be the coordinate of point Q of the diffraction grating (or its material) (ω
, t) (R is the radius of curvature of the concave mirror), where the coefficient FiJ of ω or t can be further written as.

ここでMiJは(1)式のAP+PQ+QBによる係数
即ち分光系に起因する係数で、Hijが即ち記録系に起
因する係数である。
Here, MiJ is a coefficient based on AP+PQ+QB in equation (1), that is, a coefficient caused by the spectroscopic system, and Hij is a coefficient caused by the recording system.

分光系で回折格子の収差が無い条件はフエルマUEUr
一の原理より 一=O −=0 aω ”At である。
The condition that there is no aberration of the diffraction grating in the spectroscopic system is Ferma UEUr.
From the principle of unity, 1=O −=0 aω ”At.

従つて、(3)式のω又はtの係数FlO,F2O,F
O2・・・が零となるか又はできるだけ小さな値となる
様に記録定数及び分光系の装置定数を定めればよい。
Therefore, the coefficients FlO, F2O, F of ω or t in equation (3)
The recording constant and the device constant of the spectroscopic system may be determined so that O2... becomes zero or as small as possible.

次にこの目的の為にFlO,F2O,FO2,F3O,
Fl2を具体的に求める。第1図において、AO=R,
OG=RO,GB=r′、凹面鏡の曲率半径をR.ZA
OG=2θ、ZOGB=2α01回折格子への入射角を
α回折角をβとする。
Next, for this purpose, FlO, F2O, FO2, F3O,
Find Fl2 specifically. In FIG. 1, AO=R,
OG=RO, GB=r', the radius of curvature of the concave mirror is R. ZA
OG=2θ, ZOGB=2α01 The angle of incidence on the diffraction grating is α and the diffraction angle is β.

ただしα−β=2αぃα,αoく0、β〉0とする。回
折の式よりここでσは格子定数である。
However, it is assumed that α−β=2αぃα, αo×0, and β>0. According to the diffraction equation, σ is the lattice constant.

また第2図において、CG=Rc,DG=Rd,れρd
=−とする。
In addition, in Fig. 2, CG=Rc, DG=Rd, and ρd
=-.

Rd これらの変数を用いるとFijは次の如く表わせる。Rd Using these variables, Fij can be expressed as follows.

ただし 1r0乙RO a=−一{−μsθ+COsθ−一} ――愚′Un である。however 1r0OtsuRO a=-1 {-μsθ+COsθ-1} --Gu'Un It is.

FlOは(5)式を考慮して とすると常に零とすることができる。FlO is calculated by considering equation (5) Therefore, it can always be zero.

次にF2O}FO2)F3OjFl2はいずれも(4)
式から分る様にmλ=0では夫々M2O,MO2,M3
O,Ml2と等しくなる。
Next, F2O}FO2)F3OjFl2 are both (4)
As can be seen from the formula, when mλ=0, M2O, MO2, and M3 are respectively
It becomes equal to O, Ml2.

即ち、mλ=0で、F2O,FO2,F3O,Fl2は
分光系の定数のみで決定される。そこで、分光系として
はF2O,F3Oなどのω2,ω3の項の係数がなるべ
く小さいことが望ましいので、まずmλ=0でF2O=
F3O=0とする。即ちλ=0を(6)式のF2O,F
3Oに代入してF2O=F3O=0とするとr=RcO
sθ,r′=r−RO(8)となる。次にα。
That is, when mλ=0, F2O, FO2, F3O, and Fl2 are determined only by the constants of the spectroscopic system. Therefore, in a spectroscopic system, it is desirable that the coefficients of the ω2 and ω3 terms such as F2O and F3O are as small as possible, so first mλ=0 and F2O=
Let F3O=0. That is, λ=0 is F2O,F in equation (6)
Substituting into 3O and setting F2O=F3O=0, r=RcO
sθ, r'=r-RO (8). Next is α.

と記録定数(ρC,ρD,γ,δ)を求める。その為に
、収差を小さくする条件として、或る波長λ=λoで、
Fij=0となる様に選ぶ。即ちλ=λ0で・F2O=
0,F02=0,Fつo=0,F12=0、
(9)(7)式と(9)式の計5本の連立方程式に
よりα。
and find the recording constants (ρC, ρD, γ, δ). Therefore, as a condition for reducing aberrations, at a certain wavelength λ = λo,
Select so that Fij=0. That is, λ=λ0 and F2O=
0, F02=0, Ftsuo=0, F12=0,
(9) α by a total of five simultaneous equations, equations (7) and (9).

,ρC,ρD,γ、及びδを求めることができる。以下
に上述の連立方程式を解いた例を挙げる。例1以上の各
値が最良であるが、実用上許容できる収差を考えると上
記の各値は以下の範囲内であれば実用上光分である。
, ρC, ρD, γ, and δ can be obtained. Below is an example of solving the above simultaneous equations. The values in Example 1 and above are the best, but considering the aberrations that can be tolerated in practice, each of the above values is practically within the range of light if it is within the following range.

以上、本発明によるとモンク・ギルソンマウンテイング
に適した、収差の極めて小さいホログラフイツク平面回
折格子を作成できる。
As described above, according to the present invention, it is possible to create a holographic plane diffraction grating with extremely small aberrations, which is suitable for Monk-Gilson mounting.

更に、上で求めたα。、及び(8)式の関係を満たすモ
ンク・ギルソンマウンテイング装置に本発明の格子作成
装置で作成した回折格子を用いることにより一層収差を
少なくすることができる。
Furthermore, α obtained above. Aberrations can be further reduced by using the diffraction grating produced by the grating production apparatus of the present invention in a Monk-Gilson mounting apparatus that satisfies the relationships of , and (8).

【図面の簡単な説明】 第1図はモンク・ギルソンマウンテイング装置を示す斜
視図、第2図はホログラフイツク平面回折格子の作成装
置を示す斜視図である。 〔主要部分の符号の説明〕、3′・・・・・・感光材(
格子素材)、C,D・・・・・・点光源。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a Monk-Gilson mounting device, and FIG. 2 is a perspective view of a holographic plane diffraction grating production device. [Explanation of symbols of main parts], 3'...Photosensitive material (
Grid material), C, D... point light source.

Claims (1)

【特許請求の範囲】 1 第1光源と第2光源と平面回折格子用感光材を含む
モンク・ギルソンマウンテイング用ホログラフィック平
面回折格子作成装置において、前記第1光源と感光材の
基準点との距離をr_c、前記第2光源と前記基準点と
の拒離をr_d、前記第1光源と前記基準点とを結ぶ直
線と、前記基準点にたてた法線とからなる角度をγ、前
記第2光源と前記基準点を結ぶ直線と、前記法線とから
作られる角度をδ、そして前記マウンティング装置の凹
面鏡の曲率半径をR、前記マウンティング装置の回折格
子の入射角と回折角との和をα_0、そして前記マウン
ティング装置の使用波長をλとする場合、光路関数Fを
格子上の座標(ω、l)で展開したときのω、ω^2、
l^2、ω^3及びωl^2の係数F_1_0、F_2
_0、F_3_0及びF_1_2に対しF_1_0=0
及びλ=λ_0(λ_0は任意の波長である。 )のときF_2_0=F_0_2=F_3_0=F_1
_2=0として、R/rc、R/rd、γ、δ及びα_
0を求め、そのR/rc、R/rd、γ及びδの値をほ
ぼ満たす如く前記感光材と第1及び第2光源を配置した
ことを特徴とするホログラフィック平面回折格子作成装
置。 2 上記各値α_0、R、rc、rd、γ、δは夫々−
14°≦α_0≦−13°、2.00≦R/rc≦2.
02、1.78≦R/rd≦1.79、−6°≦γ≦−
5°、10.7°≦δ≦11.8°を満足することを特
徴とする特許請求の範囲第1項に記載のホログラフィッ
ク平面回折格子作成装置。 3 上記各値α_0、R、rc、rd、γ、δは夫々−
19.5°≦α_0≦−18.5°、1.88≦R/r
c≦1.90、1.50≦R/rd≦1.52、−8°
≦γ≦−6.8°、8.8°≦δ≦10°を満足するこ
とを特徴とする特許請求の範囲第1項に記載のホログラ
フィック平面回折格子作成装置。
[Scope of Claims] 1. In an apparatus for creating a holographic flat diffraction grating for Monk-Gilson mounting, which includes a first light source, a second light source, and a photosensitive material for a flat diffraction grating, a reference point between the first light source and the photosensitive material is provided. The distance is r_c, the separation between the second light source and the reference point is r_d, the angle between the straight line connecting the first light source and the reference point and the normal to the reference point is γ, and the angle between the first light source and the reference point is γ. δ is the angle formed by the straight line connecting the second light source and the reference point and the normal line, R is the radius of curvature of the concave mirror of the mounting device, and is the sum of the incident angle and the diffraction angle of the diffraction grating of the mounting device. When α_0 is α_0 and the wavelength used by the mounting device is λ, when the optical path function F is expanded in terms of coordinates (ω, l) on the grating, ω, ω^2,
Coefficients F_1_0, F_2 of l^2, ω^3 and ωl^2
F_1_0=0 for _0, F_3_0 and F_1_2
and when λ=λ_0 (λ_0 is an arbitrary wavelength), F_2_0=F_0_2=F_3_0=F_1
Assuming _2=0, R/rc, R/rd, γ, δ and α_
0, and the photosensitive material and the first and second light sources are arranged so as to substantially satisfy the values of R/rc, R/rd, γ and δ. 2 Each of the above values α_0, R, rc, rd, γ, and δ are −
14°≦α_0≦−13°, 2.00≦R/rc≦2.
02, 1.78≦R/rd≦1.79, −6°≦γ≦−
5°, 10.7°≦δ≦11.8°, the holographic plane diffraction grating producing device according to claim 1, wherein the holographic plane diffraction grating production device satisfies the following. 3 The above values α_0, R, rc, rd, γ, and δ are −
19.5°≦α_0≦-18.5°, 1.88≦R/r
c≦1.90, 1.50≦R/rd≦1.52, -8°
The holographic plane diffraction grating production device according to claim 1, wherein the holographic plane diffraction grating production device satisfies ≦γ≦−6.8°, 8.8°≦δ≦10°.
JP11872276A 1976-10-02 1976-10-02 Holographic plane diffraction grating creation device Expired JPS5928248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11872276A JPS5928248B2 (en) 1976-10-02 1976-10-02 Holographic plane diffraction grating creation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11872276A JPS5928248B2 (en) 1976-10-02 1976-10-02 Holographic plane diffraction grating creation device

Publications (2)

Publication Number Publication Date
JPS5344044A JPS5344044A (en) 1978-04-20
JPS5928248B2 true JPS5928248B2 (en) 1984-07-11

Family

ID=14743455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11872276A Expired JPS5928248B2 (en) 1976-10-02 1976-10-02 Holographic plane diffraction grating creation device

Country Status (1)

Country Link
JP (1) JPS5928248B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136918A (en) * 1979-04-13 1980-10-25 Hitachi Ltd Aberration correcting recess diffraction grating
JPS58208630A (en) * 1982-05-28 1983-12-05 Shimadzu Corp Spectroscope using plane diffraction grating

Also Published As

Publication number Publication date
JPS5344044A (en) 1978-04-20

Similar Documents

Publication Publication Date Title
Krist Simulation of HST PSFs using Tiny Tim
US6169613B1 (en) Planar holographic optical device for beam expansion and display
JPS6040926A (en) Linear body imaging optical system
EP0157895B1 (en) Achromatic holographic element
JPH0422442B2 (en)
JPS5928248B2 (en) Holographic plane diffraction grating creation device
JP4421683B2 (en) Method for optimizing holographic optics and monochromator configurations
JPS6219691B2 (en)
JPS6262282B2 (en)
US5455691A (en) Method of making a hologram
JPS6042733A (en) Optical scanner using hologram
JP2510191B2 (en) Concave grating spectrometer
JPH0250613B2 (en)
JP4730490B2 (en) Manufacturing method of optical fiber with display function
Bauer et al. The application of optical filtering in coherent light to the study of aerial photographs of Greenland glaciers
US4461533A (en) Forming and reading holograms
JP3155266B2 (en) Non-coherent optical holography method and apparatus
JP2500348B2 (en) Method of manufacturing diffraction grating using Young fringe grating
Chen Using a conventional optical design program to design holographic optical elements
JP3722299B2 (en) Hologram color filter evaluation method
JPS6230201A (en) Diffraction grating
JPH0521209B2 (en)
JPS61116319A (en) Optical scanner using hologram
Smith The s and t formulae for holographic lens elements
WO2023233823A1 (en) Image display device and display device