JPS5928137B2 - DC rotating electric machine - Google Patents

DC rotating electric machine

Info

Publication number
JPS5928137B2
JPS5928137B2 JP49103371A JP10337174A JPS5928137B2 JP S5928137 B2 JPS5928137 B2 JP S5928137B2 JP 49103371 A JP49103371 A JP 49103371A JP 10337174 A JP10337174 A JP 10337174A JP S5928137 B2 JPS5928137 B2 JP S5928137B2
Authority
JP
Japan
Prior art keywords
magnetic
rotor
magnetic flux
winding
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49103371A
Other languages
Japanese (ja)
Other versions
JPS5132907A (en
Inventor
松夫 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAIKURO TEKUNOROJII KENKYUSHO KK
Original Assignee
MAIKURO TEKUNOROJII KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAIKURO TEKUNOROJII KENKYUSHO KK filed Critical MAIKURO TEKUNOROJII KENKYUSHO KK
Priority to JP49103371A priority Critical patent/JPS5928137B2/en
Publication of JPS5132907A publication Critical patent/JPS5132907A/en
Publication of JPS5928137B2 publication Critical patent/JPS5928137B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Dc Machiner (AREA)

Description

【発明の詳細な説明】 本発明は、直流回転電機、特に円墳状無鉄心回転子を有
する直流回転電機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DC rotating electrical machine, and particularly to a DC rotating electrical machine having a circular, iron-free rotor.

高速応答特性を改善する為に無鉄心回転子を用いた直流
回転電機が知られている。
A DC rotating electric machine using a coreless rotor to improve high-speed response characteristics is known.

このような直流回転電機は、例えば極めて薄いカップ状
に巻線を構成してその一方の端部を軸に固定し、そのカ
ップ状回転子の内側に永久磁石界磁を固定している。
Such a DC rotating electric machine has, for example, a very thin cup-shaped winding, one end of which is fixed to a shaft, and a permanent magnet field fixed inside the cup-shaped rotor.

しかし回転子巻線の容積を極めて小さくしているので、
巻線量に制約を受けることになり、トルクファクターが
低く比較的小型のものに限られるものであった。
However, since the volume of the rotor winding is extremely small,
Due to restrictions on the amount of winding, it was limited to those with a low torque factor and relatively small size.

又回転子巻線を比較的厚く構成したカップ状回転子も採
用されているが、これは巻線量を多くすることによりト
ルク慣性比が低下する。
Cup-shaped rotors with relatively thick rotor windings have also been adopted, but this increases the amount of windings, resulting in a decrease in torque-to-inertia ratio.

又回転子巻線の一端部のみを軸に固定した片持状の構成
であるから磯波的強度が低い欠点がある。
Furthermore, since it has a cantilevered structure in which only one end of the rotor winding is fixed to the shaft, it has the disadvantage of low surf strength.

又高速応答直流電動機として、平滑鉄心の外聞に巻線を
巻回或はプリント配線技術による巻線を怖じた回転子を
有するものが採用されているが、空隙の磁束密度が大き
い場合に回転子鉄心の鉄損失が大きく効率が低下する欠
点があり、且つ平滑鉄心外用に薄く回転子巻線を固定す
る為の製造技術上の問題がある。
In addition, as a high-speed response DC motor, a rotor with a winding wound around the outer surface of a smooth iron core or a winding made by printed wiring technology is used, but when the magnetic flux density in the air gap is large, the rotor There is a drawback that the iron loss of the iron core is large and the efficiency is reduced, and there is also a problem in manufacturing technology for fixing the rotor winding thinly for use outside the smooth iron core.

更に高速応答性を得る為には、巻線の温度上昇を高く許
容しなければならないものであった。
Furthermore, in order to obtain high-speed response, it was necessary to tolerate a high temperature rise in the winding.

本発明は前述の如き従来の欠点を改善した新規な発明で
あり、その目的は高効率且つ高速応答性の直流回転電機
を提供することにある。
The present invention is a novel invention that improves the conventional drawbacks as described above, and its purpose is to provide a highly efficient and fast-responsive DC rotating electric machine.

以下実癩例について詳細に説明する。Leprosy cases will be explained in detail below.

第1図は本発明の一実帷例の概略断面図を示すもので、
回転子1はステンレス鋼等の非磁性体の回転軸2上に絶
縁物を介して回転子巻線1aを設けたものであり、完全
な無鉄心回転子を構成しているものである。
FIG. 1 shows a schematic cross-sectional view of an example of the present invention.
The rotor 1 has a rotor winding 1a provided on a rotating shaft 2 made of a non-magnetic material such as stainless steel through an insulator, and constitutes a completely ironless rotor.

なお回転軸2は通常の磁性体の鋼によって形成すること
ができることは勿論である。
It goes without saying that the rotating shaft 2 can be made of ordinary magnetic steel.

又界磁としては保磁力の大きいフェライトその他の長方
形の永久磁石5を用い、フェライト磁石では透磁率が1
.1と空間中と変らないので保一対の磁極片3は、永久
磁石5の磁束を収束するための強磁性体からなる基板4
に取付け、円墳状無鉄心回転子1の外側に対応させ2極
界磁を構成する。
In addition, as the field magnet, a ferrite or other rectangular permanent magnet 5 with a large coercive force is used, and the ferrite magnet has a magnetic permeability of 1.
.. 1 and in space, the pair of magnetic pole pieces 3 are connected to a substrate 4 made of a ferromagnetic material for converging the magnetic flux of the permanent magnet 5.
It is attached to the outside of the rounded coreless rotor 1 to form a two-pole field.

このような界磁磁石構成の磁路の一部を形成する継鉄7
には図示の如くその磁路と直角方向に薄板を積層して形
成した磁束制御磁性体6が設けられている。
The yoke 7 that forms part of the magnetic path of such a field magnet configuration
As shown in the figure, there is provided a magnetic flux controlling magnetic body 6 formed by laminating thin plates in a direction perpendicular to the magnetic path.

この磁束制御磁性体6は、例えば45%Niパーマロイ
のような成る磁化力以上で飽和特性を示す磁性体を用い
るものである。
This magnetic flux control magnetic material 6 is made of a magnetic material such as 45% Ni permalloy, which exhibits saturation characteristics at a magnetization force greater than or equal to the magnetizing force.

薄板状磁性体を磁路方向に積層すると、層間の微少空気
層の累積が磁気抵抗を示し、真の磁性材料の磁気特性が
得られなくなる。
When thin plate-like magnetic materials are stacked in the magnetic path direction, the accumulation of minute air layers between the layers exhibits magnetoresistance, making it impossible to obtain the magnetic properties of true magnetic materials.

前記の磁束制御磁性体は、磁路と直角方向に積層したの
で、磁束は層間空気層を通ることなく各薄板中を直接通
るので、磁束制御磁性体に磁性材料本来の磁気飽和特性
を発揮させることができる。
Since the above-mentioned magnetic flux controlling magnetic material is laminated in a direction perpendicular to the magnetic path, the magnetic flux passes directly through each thin plate without passing through an interlayer air layer, so that the magnetic flux controlling magnetic material exhibits the magnetic saturation characteristics inherent to the magnetic material. be able to.

ド 回転子1は殆んど回転子巻線1aにより構成された
円墳状無鉄心回転子であり、磁極片3間は空隙長を構成
するから、永久磁石5は保磁力の大きいものを採用する
ものである。
Since the rotor 1 is a circular coreless rotor made up mostly of the rotor winding 1a, and the space between the magnetic pole pieces 3 constitutes the air gap length, the permanent magnet 5 is one with a large coercive force. It is something to do.

このような保磁力の大きい永久磁石は、一般に温度によ
ってその特性が変化するものである。
The characteristics of such a permanent magnet with a large coercive force generally change depending on the temperature.

即ち永久磁石の動作点が、温度変化に伴って動作線上を
、一定の温度係数で変化するのである。
That is, the operating point of the permanent magnet changes along the operating line with a constant temperature coefficient as the temperature changes.

例えば残留磁気の温度係数の各種の永久磁石について示
すと次表のようになる。
For example, the following table shows the temperature coefficient of residual magnetism for various types of permanent magnets.

温度が一20℃〜+80℃の範囲に変化した場合の、永
久磁石の動作線上における磁化力の例を示すと、220
0−1800(Oe)のように変化するのである。
An example of the magnetizing force on the operating line of a permanent magnet when the temperature changes from -20℃ to +80℃ is 220℃.
It changes like 0-1800 (Oe).

従って温度によって直流回転電機の回転子有効磁束が変
化し、その特性が異なるものとなるから、空隙磁束密度
を温度に拘らず一定にすることが必要となる。
Therefore, the effective magnetic flux of the rotor of a DC rotating electric machine changes depending on the temperature, and its characteristics become different, so it is necessary to keep the air gap magnetic flux density constant regardless of the temperature.

予め磁束制御磁性体6に、数lO〔009以上の所求の
磁化力が配分されるように構成しておく、次に前記の温
度変化による永久磁石の磁化力の変化分400(Oe)
は、飽和特性により磁束密度が一定である磁束制御磁性
体6の磁化力の増分に対応する透磁率の減少として調整
されるので、空隙磁束密度を一定とすることができる。
The magnetic flux control magnetic body 6 is configured in advance so that a desired magnetizing force of several lO[009 or more is distributed. Next, the change in the magnetizing force of the permanent magnet due to the temperature change is 400 (Oe).
is adjusted as a decrease in magnetic permeability corresponding to an increment in the magnetizing force of the flux control magnetic body 6 whose magnetic flux density is constant due to saturation characteristics, so the air gap magnetic flux density can be kept constant.

第2図は本発明の他の実施例の概略断面図であり、第1
図と同一符号は同一部分を示し、8は、図示の如く磁束
制御磁性体を磁路と直角方向(紙面横方向)に積層した
長方形の磁極片で、該磁束制御磁性体8の磁束と、空隙
有効磁束との差違が少ないから、有効な磁束制御を行な
える利点がある。
FIG. 2 is a schematic sectional view of another embodiment of the present invention;
The same reference numerals as in the figure indicate the same parts, and 8 is a rectangular magnetic pole piece in which magnetic flux controlling magnetic bodies are laminated in the direction perpendicular to the magnetic path (horizontal direction in the paper) as shown in the figure, and the magnetic flux of the magnetic flux controlling magnetic body 8 and Since there is little difference from the air gap effective magnetic flux, there is an advantage that effective magnetic flux control can be performed.

9は継鉄である。この実施例は、磁極片8をパーマロイ
等の磁束制御磁性体によって構成しているが作用効果に
ついては第1図に示す実施例と同様である。
9 is a yoke. In this embodiment, the magnetic pole pieces 8 are made of a flux controlling magnetic material such as permalloy, but the operation and effect are similar to the embodiment shown in FIG. 1.

又第3図は磁束制御磁性体の一例としての45%Niパ
ーマロイの磁化曲線を示すもので、磁化力が数L 0(
Oc)以上では飽和し、その磁束密度はほぼ15(KG
)となり、前述の如く温度変化による永久磁石5の残留
磁気が変化しても、飽和状態を利用することにより、空
隙磁束密度を一定にすることができる。
Figure 3 shows the magnetization curve of 45% Ni permalloy as an example of a magnetic flux control magnetic material, and the magnetization force is several L 0 (
If the magnetic flux density exceeds 15 (KG), it becomes saturated.
), and even if the residual magnetism of the permanent magnet 5 changes due to temperature changes as described above, the air gap magnetic flux density can be kept constant by utilizing the saturated state.

第4図は円墳状回転子1の概略側面図であり、10は整
流子を示し、一般の回転子と同様に回転子巻線1aが整
流子10に接続されている。
FIG. 4 is a schematic side view of the circular rotor 1, where 10 indicates a commutator, and the rotor winding 1a is connected to the commutator 10 as in a general rotor.

第5図及び第6図は前述の円墳状回転子のそれぞれ異な
る実施例の断面図であり、第5図に示す実施例に於いて
は、回転軸2の外周にガラスファイバーで補強したエポ
キシ樹脂等の細い円筒状の耐熱絶縁体11に薄い突部1
2を形成し、その突部12間の溝に巻線13を晦したも
のであり、この突部12により巻線工程が容易になるの
で、自動巻線機による巻線も可能であり、又一般の回転
子巻線の如(、巻枠を用いて巻回した巻線を突部12間
に挿入することもできる。
5 and 6 are cross-sectional views of different embodiments of the above-mentioned circular mound-shaped rotor. In the embodiment shown in FIG. A thin protrusion 1 is formed on a thin cylindrical heat-resistant insulator 11 made of resin or the like.
2 is formed, and the winding 13 is placed in the groove between the protrusions 12. Since the protrusions 12 make the winding process easier, it is also possible to wind the wire with an automatic winding machine. It is also possible to insert a winding wound using a winding frame between the protrusions 12 like a general rotor winding.

又突部12は革に巻線13の位置決めの作用のみである
から極めて薄くすることも可能であり、全体をエポキシ
樹脂等によって固着することもできる。
Further, since the protrusion 12 serves only to position the winding 13 on the leather, it can be made extremely thin, and the entire protrusion 12 can be fixed with epoxy resin or the like.

第6図に示す実施例は回転軸2の外周に細い円筒状の絶
縁体14を帷し、その外周に巻線を成形固着したもので
ある。
In the embodiment shown in FIG. 6, a thin cylindrical insulator 14 is wrapped around the outer periphery of the rotating shaft 2, and a winding wire is molded and fixed to the outer periphery.

前述の如く、本発明に於いては全く回転子鉄心を用いな
いので、極めて低慣性のものとなり、且つ回転子に占め
る巻線容積の比率が大きいのでトルク慣性比が大きく高
速応答性を得ることができる。
As mentioned above, in the present invention, since no rotor core is used at all, the inertia is extremely low, and since the ratio of the winding volume to the rotor is large, the torque-to-inertia ratio is large and high-speed response can be obtained. I can do it.

以上説明したように、本発明は1回転軸上に細い円筒状
の絶縁体を介して回転子巻線を設けた円墳状無鉄心回転
子を有するものであるから、回転子体積に対する巻線容
積の比率を大きくすることができ、回転子のトルク定数
を大きくすることができ、又円墳状無鉄心であるからイ
ンダクタンスも極めて小さく高速応答性に必要な低電気
的時定数の回転子巻線を得ることができる。
As explained above, since the present invention has a conical coreless rotor in which rotor windings are provided on one rotating shaft via a thin cylindrical insulator, the windings relative to the rotor volume are The volume ratio can be increased, the torque constant of the rotor can be increased, and since the rotor has no iron core, the inductance is extremely small and the rotor winding has a low electrical time constant, which is necessary for high-speed response. You can get the line.

又ピーク人力の繰返しに対しても回転子巻線が低インダ
クタンスであることにより、整流子の損傷が極めて少な
く、長寿命化することができる。
Furthermore, since the rotor winding has a low inductance even when subjected to repeated peak human power, damage to the commutator is extremely small and the life of the commutator can be extended.

前述の如く回転子が無鉄心であるから、磁極間が長い空
隙長を構成するが永久磁石の断面積、長さ、磁極片の形
状を選定し、且つ高保磁力の永久磁石を用いることによ
り所要の空隙磁束密度が得られる。
As mentioned above, since the rotor has no iron core, the gap length between the magnetic poles is long. However, by selecting the cross-sectional area and length of the permanent magnet, and the shape of the pole piece, and using a permanent magnet with high coercive force, The air gap magnetic flux density is obtained.

このような永久磁石を用いた場合に、温度による磁気特
性の変化が影響して、直流回転電機の特性が変化するが
、本発明に於いては、使用最高温度で永久磁石による磁
路中に於いて磁気飽和状態となるパーマロイ等の磁束制
御磁性体を設けたので、前述の如き欠点を防止して、常
に安定した特性を得ることができる。
When such permanent magnets are used, changes in the magnetic properties due to temperature affect the characteristics of the DC rotating electric machine, but in the present invention, the magnetic path of the permanent magnets changes at the maximum operating temperature. Since a magnetic flux controlling magnetic material such as permalloy which becomes magnetically saturated is provided, the above-mentioned drawbacks can be prevented and stable characteristics can always be obtained.

なお磁束側(財)磁性体としては、低価格のものを目的
とした場合に軟磁性体を用いることもできる。
As the magnetic material on the magnetic flux side, a soft magnetic material can also be used if a low-cost product is intended.

本発明の直流回転電機を電動機とした場合には、前述の
如く高応答特性を安定に得ることができると同様に、発
電機とした場合には、回転数と発生電圧との特性の直線
性に優れ、且つ温度変化に対しても安定で低リップルの
直流電圧を発生することができるものである。
When the DC rotating electrical machine of the present invention is used as an electric motor, it is possible to stably obtain high response characteristics as described above, and when it is used as a generator, it is possible to obtain linearity of the characteristics between the rotation speed and the generated voltage. It is capable of generating a direct current voltage with excellent performance and low ripple, which is stable even against temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明のそれぞれ異なる実症例の概
略断面図、第3図は磁束制御磁性体としての45%Ni
パーマロイの磁化曲線図1第4図は本発明の実症例の円
墳状無鉄心回転子の側面図、第5図及び第6図は円墳状
無鉄心回転子のそれぞれ異なる実症例の一部横断面及び
横断面である。 1は円墳状無心回転子、Ia、13.15は回転子巻線
、2は回転軸、3は磁極片、4は取付基板、5は永久磁
石、6は磁束制御磁性体、7,9は継鉄、8は磁束制御
磁性体による磁極片、10は整流子である。
1 and 2 are schematic cross-sectional views of different actual cases of the present invention, and FIG. 3 is a 45% Ni as a magnetic flux controlling magnetic material.
Magnetization curve of permalloy Fig. 1 Fig. 4 is a side view of a circular mound-shaped coreless rotor according to an actual case of the present invention, and Figs. 5 and 6 are parts of different actual cases of a circular mound-shaped coreless rotor. They are a cross section and a cross section. 1 is a circular concentric rotor, Ia, 13.15 is a rotor winding, 2 is a rotating shaft, 3 is a magnetic pole piece, 4 is a mounting board, 5 is a permanent magnet, 6 is a magnetic flux control magnetic body, 7, 9 8 is a yoke, 8 is a magnetic pole piece made of a magnetic flux controlling material, and 10 is a commutator.

Claims (1)

【特許請求の範囲】[Claims] 1 高保磁力の長方形の永久磁石に強磁性体の基板及び
磁極片を装着した一対の界磁磁石構成と、回転軸に円筒
状の絶縁体を介して回転子巻線を推した円墳状無鉄心回
転子を前記一対の界磁磁石構成の間に回転可能に支持す
ると共に、界磁磁石構成の磁路中に磁気飽和状態となる
磁束制御磁性体を配設したことを特徴とする直流回転電
機。
1 A pair of field magnets consisting of a rectangular permanent magnet with a high coercive force attached to a ferromagnetic substrate and a magnetic pole piece, and a cylindrical magnet with a rotor winding attached to the rotating shaft via a cylindrical insulator. A direct current rotation characterized in that an iron core rotor is rotatably supported between the pair of field magnet structures, and a magnetic flux controlling magnetic body that is in a magnetically saturated state is disposed in a magnetic path of the field magnet structure. Electric machine.
JP49103371A 1974-09-07 1974-09-07 DC rotating electric machine Expired JPS5928137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49103371A JPS5928137B2 (en) 1974-09-07 1974-09-07 DC rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49103371A JPS5928137B2 (en) 1974-09-07 1974-09-07 DC rotating electric machine

Publications (2)

Publication Number Publication Date
JPS5132907A JPS5132907A (en) 1976-03-19
JPS5928137B2 true JPS5928137B2 (en) 1984-07-11

Family

ID=14352238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49103371A Expired JPS5928137B2 (en) 1974-09-07 1974-09-07 DC rotating electric machine

Country Status (1)

Country Link
JP (1) JPS5928137B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120228A (en) * 1981-01-19 1982-07-27 Matsushita Electric Ind Co Ltd Manufacture of magnetic recording medium

Also Published As

Publication number Publication date
JPS5132907A (en) 1976-03-19

Similar Documents

Publication Publication Date Title
JP4312245B2 (en) Rotor / stator structure for electric machines
US4633149A (en) Brushless DC motor
US4710667A (en) Brushless D.C. dynamoelectric machine with decreased magnitude of pulsations of air gap flux
US7294948B2 (en) Rotor-stator structure for electrodynamic machines
US5289066A (en) Stator for dynamoelectric machine
JP3745884B2 (en) Motor structure and manufacturing method thereof
JP2003061326A (en) Vernier-type brushless motor
US4376903A (en) Direct current dynamo electric machine
US3909645A (en) Permanent magnet motor-tachometer having a single non-ferrous armature wound with two mutually-insulated windings each connected to a separate commutator
JPH08126277A (en) Flat rotating machine
WO1991009442A1 (en) Magnetic flux return path for an electrical device
US5907205A (en) Constant reluctance rotating magnetic field devices with laminationless stator
JPS5928137B2 (en) DC rotating electric machine
JPS6217470B2 (en)
WO1994007295A1 (en) Dynamoelectric machine and stators therefor
JPH05111229A (en) Converter for electric energy and mechanical energy
JPS60141157A (en) Brushless core type motor
KR900003985B1 (en) Brushless motor
KR20230069450A (en) Axial permanent magnet motor with two-layer magnet structure
JPS61247263A (en) Voice coil motor
JPH05176510A (en) Rotary electric machine
JPS5815461A (en) Controlled dc coreless motor
JPS5855746B2 (en) Chiyokuriyukaitendenkinokoshi
JPS63206143A (en) Permanent magnet generator
JPH07255137A (en) Core for rotating machine, and disk type rotating machine using the core