JPS5928079A - Refrigerating method - Google Patents

Refrigerating method

Info

Publication number
JPS5928079A
JPS5928079A JP57138156A JP13815682A JPS5928079A JP S5928079 A JPS5928079 A JP S5928079A JP 57138156 A JP57138156 A JP 57138156A JP 13815682 A JP13815682 A JP 13815682A JP S5928079 A JPS5928079 A JP S5928079A
Authority
JP
Japan
Prior art keywords
refrigerant
lubricant
compressor
carbon atoms
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57138156A
Other languages
Japanese (ja)
Other versions
JPS6125918B2 (en
Inventor
Keisuke Kasahara
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP57138156A priority Critical patent/JPS5928079A/en
Publication of JPS5928079A publication Critical patent/JPS5928079A/en
Publication of JPS6125918B2 publication Critical patent/JPS6125918B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • F04B39/062Cooling by injecting a liquid in the gas to be compressed

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To improve the lubricating and cooling performance, by admixing a lubricant consisting of a particular carboxylate compounded with an aliphatic acid to a coolant consisting of a chlorinated fluoric hydrocarbon circulated in a refrigerating cycle, and feeding a part of the coolant to an oil feed port of a compressor. CONSTITUTION:A refrigerating cycle is constituted by connecting a compressor 1, a condenser 2, a liquid receiver 3, a solenoid valve 16, an expansion valve 4 and a dry type evaporator 5 in the manner of forming a loop, and a branch pipe is branched from a portion of a high-pressure liquid pipe 15 located between the liquid receiver 3 and the solenoid valve 16. The branch pipe has a solenoid valve 20 and a temperature sensitive type automatic flow-rate control valve 21 at its intermediate portions, and the branch pipe is connected to an oil feed port 22 of the compressor 1. Further, a pocket 30 is formed at an intermediate portion of a suction gas pipe 17, and a lubricant intake pipe 35 extended from a lubricant reservoir 33 is connected to an ejector 31 disposed in the vicinity of a suction port 18. As the coolant, it is preferable to use one consisting of a chlorinated fluoric hydrocarbon mixed with a lubricant obtained by admixing an aliphatic acid having 10-20 of carbon atoms to a carboxylate having 16-60 of carbon atoms.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、冷凍方法に係り、冷凍またはヒートポンプサ
イクルに挿入された圧縮機の潤滑手段に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a refrigeration method, and relates to a means for lubricating a compressor inserted into a refrigeration or heat pump cycle.

〔発明の技術的背量とその問題点〕[Technical burden of the invention and its problems]

従来、冷凍またはヒートポンプサイクルに用いられる圧
縮機の回転軸やピストンの摺動部分には潤滑油が用いら
れるが、この潤滑油が冷媒に混入したものを除去するた
めKは例えば矛1図に示すように圧縮機(1)、凝#l
?i器(2)、受液器(3;、膨張弁(41、蒸発器(
5)よりなる冷凍サイクルにおいて、吐出ガス管(6)
の途中に油分離器(刀を設けて冷媒から油を分離し、分
離した油な管路(8)により再び圧舶磯(11の潤滑部
分に戻すようにしたものである1、このため油分離器(
7)の外にギヤ式油ポンプ(9)、油吐出フィルタ00
)、油吸入フィルタoa、オイルクーラ旧)。
Conventionally, lubricating oil is used for the sliding parts of the rotating shaft and piston of compressors used in refrigeration or heat pump cycles, but in order to remove this lubricating oil from the refrigerant, K is shown in Figure 1, for example. Compressor (1), coagulation #l
? i device (2), liquid receiver (3;, expansion valve (41), evaporator (
5) In a refrigeration cycle consisting of a discharge gas pipe (6)
An oil separator (sword) is installed in the middle of the refrigerant to separate oil from the refrigerant, and the separated oil pipe (8) returns it to the lubricating part of the pressure vessel (11). Separator (
7) Gear type oil pump (9) and oil discharge filter 00
), oil suction filter OA, oil cooler old).

油圧力計、サイトグラス、調節弁、油圧保循ik [F
t、クランクヒータ、油配管等一式の油を循環させる装
置およびオイルクーラθυの冷却水の配+14?等も必
要とし、またクランクケース(12(内に適量の油溜(
1;〜を作るために圧縮機(1;が大型化゛するという
問題もあった。しかも塩化ふっ化炭化水素(新開フロン
)等の冷媒には収清油が浴げ易く、相当b(浴解し、油
分!l1lL器(7)での分離が不光全となり、@滑油
が凝縮器(2)や蒸発器(5)に附心して伝熱効率を低
下する久々があり、特に低温度の蒸発器においては油の
粘度が高(なり、コイル内に耐着して熱交換効率を大巾
に低下させるという欠点があった。
Hydraulic pressure gauge, sight glass, control valve, hydraulic protection ik [F
t, crank heater, oil piping and other equipment for circulating oil, and cooling water distribution for oil cooler θυ +14? etc., and a suitable amount of oil reservoir (inside the crankcase (12)).
There was also the problem that the compressor (1;) had to become larger in order to make ~1;~.Furthermore, refrigerants such as chlorofluorinated hydrocarbons (Shinkai Freon) are easily exposed to purified oil, and the However, the separation in the l1lL vessel (7) is not complete, and the lubricating oil is attached to the condenser (2) and evaporator (5), reducing heat transfer efficiency, especially in the low-temperature evaporator. However, there was a drawback that the oil had a high viscosity and could easily adhere to the inside of the coil, greatly reducing heat exchange efficiency.

〔発明の目的〕[Purpose of the invention]

本発明は、前述の問題に鑑み、潤滑油に代えて炭素a1
6〜60のカルボン酸エステルに溶解した炭素数10〜
20の脂肪酸を塩化ふつ化炭化水素系冷媒に分散させ、
この冷媒の一部を冷媒循環路の途中より分岐して圧縮機
の給油部分へ供給し、前記脂肪酸を前記圧縮機の潤滑部
分に吸着させることKより潤滑作用をさせるとともに脂
肪酸とカルボン酸エステルの混合物の粘性が低いことに
より、凝縮器や蒸発器に耐着して熱交換を妨害しないよ
うKL、さらにカルボン酸エステルに溶解して冷媒中に
分散された脂肪酸が微細な核となって冷媒中に分散され
ることKより、蒸発器における冷媒の沸騰を促進させよ
うとするものである。
In view of the above-mentioned problems, the present invention provides carbon a1 instead of lubricating oil.
10 to 60 carbon atoms dissolved in 6 to 60 carboxylic acid ester
20 fatty acids are dispersed in a chlorofluorinated hydrocarbon refrigerant,
A part of this refrigerant is branched from the middle of the refrigerant circulation path and supplied to the oil supply part of the compressor, and the fatty acid is adsorbed to the lubricating part of the compressor. The low viscosity of the mixture allows KL to resist adhesion to the condenser and evaporator and prevent heat exchange, and the fatty acids dissolved in the carboxylic acid ester and dispersed in the refrigerant form fine nuclei that form in the refrigerant. The aim is to accelerate the boiling of the refrigerant in the evaporator by dispersing K into the evaporator.

〔発明の概要〕[Summary of the invention]

本発明は、圧縮機を備えた冷凍またはヒートポンプサイ
クルを循環する塩化ふつ化炭化水素系冷媒に、炭素数1
6〜60のカルボン酸エステルに炭素数lO〜20の脂
肪酸を配合した潤滑剤を混合し、この潤滑剤を含む冷媒
の一部を冷媒循環路より分岐して前Ili己圧締圧縮機
油孔に尋人し、前記圧縮機の潤滑部分にAtI記脂肪酸
を吸着させるとともに冷媒を蒸発させて前記冷媒循環路
に戻すことにより、冷媒中に分散された脂肪酸を冷媒と
ともに冷媒循環路から圧締機の給油部分に専入して潤滑
作用をさせようとするものである。さらに本発明は、圧
縮機に溜った潤滑剤を吸入ガス管のエジェクタ作用によ
り冷媒循環路に吸入させようとするものである。
The present invention uses a chlorinated fluorinated hydrocarbon refrigerant circulating in a refrigeration or heat pump cycle equipped with a compressor with a carbon number of 1
A lubricant containing a carboxylic acid ester having 6 to 60 carbon atoms and a fatty acid having 10 to 20 carbon atoms is mixed, and a part of the refrigerant containing this lubricant is branched from the refrigerant circulation path to the oil hole of the front Ili self-compacting compressor. By adsorbing AtI fatty acids on the lubricating part of the compressor and evaporating the refrigerant and returning it to the refrigerant circuit, the fatty acids dispersed in the refrigerant are removed from the refrigerant circuit together with the refrigerant of the compressor. It is designed to provide lubrication to the oil supply area. Furthermore, the present invention attempts to draw the lubricant accumulated in the compressor into the refrigerant circulation path by the ejector action of the suction gas pipe.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の詳細な説明する。 Next, the present invention will be explained in detail.

1・2図に装置の一例を示す。Figures 1 and 2 show an example of the device.

圧縮機(1)、吐出ロ叱吐出ガス管(6)、凝縮器(2
)、受液器(31、高圧液管o埠、電磁弁OQ、膨張弁
(4)、乾式蒸発器(5)、吸入ガス管aη、吸入口Q
IH?:より冷凍サイクルが構成され、さらに高圧液管
□9の途中より分岐した分岐液管01が途中傾電磁弁(
2旬と温度式自動流量調整弁αυ(または温度式自動膨
張弁)を介して圧縮機filの給油孔(2りに連通され
ている。そして給油孔(2)から麹常の手段によってク
ランク軸、ピストン、メカニカルシール等の@溝部分c
l!illに分配されるようになっている。さらに吸入
ガス管aDの途中にはポケット部間が形成されるととも
に吸入口賭近くに形成されたエジェクタ6υに低圧側ク
ランクケース04の底部の@滑剤溜り(331より2h
、出し途中に電磁弁QDを有する潤滑剤吸入管田が連通
され、潤滑剤が吸入ガス菅07)に吸入されるようにな
っている。
Compressor (1), discharge gas pipe (6), condenser (2)
), liquid receiver (31, high pressure liquid pipe o pier, solenoid valve OQ, expansion valve (4), dry evaporator (5), suction gas pipe aη, suction port Q
IH? : A refrigeration cycle is constructed, and the branch liquid pipe 01 branched from the middle of the high-pressure liquid pipe □9 is connected to a tilting solenoid valve (
The oil supply hole (2) of the compressor fil is connected to the oil supply hole (2) through the temperature-type automatic flow rate adjustment valve αυ (or temperature-type automatic expansion valve). , piston, mechanical seal, etc.@Groove part c
l! It is distributed to ill. Furthermore, a pocket is formed in the middle of the suction gas pipe aD, and a lubricant reservoir (2h from 331) is placed in the ejector 6υ formed near the suction port.
, A lubricant suction pipe field having a solenoid valve QD is communicated with the lubricant suction pipe in the middle of the discharge, so that the lubricant is sucked into the suction gas pipe 07).

以上の冷凍サイクルを循環する塩化ぶつ化炭化水素系冷
媒としては、フレオンの商品名で市販されているCHC
lF2、CCl2F、 CCI、F−CCl2F 等が
用いられる。
The chlorinated butomerated hydrocarbon refrigerant that circulates in the above refrigeration cycle is CHC, which is commercially available under the trade name Freon.
IF2, CCl2F, CCI, F-CCl2F, etc. are used.

ン[・ぼエステルに炭素数10〜20の脂肪酸を溶解し
たものが用いられ、冷媒と@滑剤との配合比は重財比で
85/15〜99/Iである。冷媒に対する潤滑剤の配
合比が15φ以上になると、凝縮器(2)や蒸発器(5
)において器壁に吸着された(IAi’lt剤が熱交換
の妨害をする。また潤滑剤が1チ以下になると、圧縮機
(11の潤滑部分Eに対する潤滑作用が不足する。さら
にカルボン酸エステルに対する脂肪酸の溶解量は重址比
で96/4〜99.981002である。この場合も脂
肪酸が1J祉比4%以上になると、蒸発器(5)の内壁
に脂肪酸が析出して熱交換効率を低下させる。また00
2%以下では潤滑作用が不足する。
A solution of a fatty acid having 10 to 20 carbon atoms in a carbon ester is used, and the blending ratio of refrigerant and lubricant is 85/15 to 99/I in terms of heavy weight ratio. When the blending ratio of lubricant to refrigerant exceeds 15φ, the condenser (2) and evaporator (5)
), the lubricant (IAi'lt agent) adsorbed on the vessel wall interferes with heat exchange.If the lubricant is less than 1 tch, the lubricating effect on the lubricating part E of the compressor (11) will be insufficient.In addition, the carboxylic acid ester The amount of dissolved fatty acids in the evaporator (5) is 96/4 to 99.981002 in weight ratio.In this case as well, when the fatty acid 1J ratio exceeds 4%, the fatty acids precipitate on the inner wall of the evaporator (5), reducing the heat exchange efficiency. decreases.Also 00
If it is less than 2%, the lubricating effect will be insufficient.

炭素数16〜60のカルボン酸エステルは塩化ふつ化炭
化水素に町沼であるとともに炭素数10〜20の脂肪酸
を溶解するため、冷媒中に脂肪酸を分散させる担体の作
用をし、脂肪酸を冷媒液によって輸送させることかり能
になる。また炭素数16〜60のカルボン酸エステルは
それ自f4c 潤滑作用を有するため潤滑部分の金属に
耐着した場合に脂肪酸のγ閉溝作用を妨害することがな
(、かつ粘着力が小であるため凝縮器、蒸発器、その他
の管壁1(耐着して熱交換の妨害、その他をすることが
ない。以上のようなカルボン岐エステルとしては、例え
ばアジピン酸ジイソデシル〔C1oH2,C00(CH
2)、C00C,、H2,)等が用いられる。
Carboxylic acid esters having 16 to 60 carbon atoms dissolve fatty acids having 10 to 20 carbon atoms in chlorinated fluorinated hydrocarbons, and therefore act as carriers to disperse fatty acids in the refrigerant. It becomes possible to transport it by means of transportation. In addition, carboxylic acid esters having 16 to 60 carbon atoms themselves have f4c lubricating properties, so when they adhere to metals in lubricated parts, they do not interfere with the gamma-closing action of fatty acids (and have low adhesive strength). Therefore, it resists adhesion to condensers, evaporators, and other pipe walls 1 and does not interfere with heat exchange or cause other problems. Examples of the above carbon branched esters include diisodecyl adipate [C1oH2, C00(CH
2), C00C,, H2,), etc. are used.

炭素数16〜60カルボン酸エステルに溶解された炭素
数10〜20の脂肪酸は冷媒液中に分散され、−coo
nが潤滑部分の金属の表面に吸着され、潤滑作用をする
。また凝縮器や蒸発器、配管中におい−(吸着された場
合も微細粒子であり、かつ従来の潤滑油)井に比べて倣
駄であるため、熱交換効率を低下したり、冷媒の流通に
支障を来したりすることがない。また蒸発器(5)が満
液式である楊ばは低温の蒸発器(5)内において低温の
ため微粒子状−になった潤滑剤中の脂肪酸の微粒子が沸
騰の核となり、蒸発器(5)内の冷媒の沸騰を促し、蒸
発温度だけ下って沸騰が起らないという過冷却現象を防
1トする。炭素数10〜20の脂肪酸としては、例えば
ステアリン酸が用いられる。
A fatty acid having 10 to 20 carbon atoms dissolved in a carboxylic acid ester having 16 to 60 carbon atoms is dispersed in the refrigerant liquid, and -coo
n is adsorbed on the metal surface of the lubricated part and acts as a lubricant. In addition, odor in the condenser, evaporator, and piping (even when adsorbed, it is in the form of fine particles, and conventional lubricating oil) is more dense than in wells, reducing heat exchange efficiency and hindering the flow of refrigerant. It will not cause any trouble. In addition, in Yangba, where the evaporator (5) is a liquid-filled type, fine particles of fatty acids in the lubricant, which have become fine particles due to the low temperature in the evaporator (5), become boiling nuclei. ) to prevent the supercooling phenomenon in which boiling does not occur when the evaporation temperature drops by the same amount as the evaporation temperature. As the fatty acid having 10 to 20 carbon atoms, for example, stearic acid is used.

先 前述の塩化ぶつ化炭化水素冷媒に前述の潤滑剤溶解また
は分散させたものを矛2図に示す冷凍サイクルに導入し
、圧縮機(1)で圧縮され吐出された冷媒は凝縮器(2
)に導入されて凝縮される。この際途中に油分離器がな
いため冷媒中に分散された潤滑剤はそのまま冷媒ととも
に凝縮器(2)に導入されるが、潤滑油のように凝縮器
(2)の管壁に附着して熱交換を妨害するようなことは
ない。次に凝縮した冷媒は受液@%(3)に貯留され、
高圧液管(旧より膨張弁(41を経て蒸発器(5)へ送
られる。そして蒸発器(5)にiいても冷媒中の潤滑剤
は管壁にも附着して熱交換を妨害することがなく、さら
に管壁等に薄く吸着して附着することは防錆作用もする
効果がある。蒸発した冷媒ガスは圧縮機(11に導入さ
れて再び圧縮されて循環する。またカルボン酸エステル
と脂肪酸よりなる潤滑剤はガスとともに圧縮機(1)に
吸入される。
The aforementioned lubricant dissolved or dispersed in the aforementioned chlorinated hydrocarbon refrigerant is introduced into the refrigeration cycle shown in Figure 2, and the refrigerant compressed and discharged by the compressor (1) is passed through the condenser (2).
) and condensed. At this time, since there is no oil separator in the middle, the lubricant dispersed in the refrigerant is introduced into the condenser (2) as it is together with the refrigerant, but like lubricating oil, it adheres to the pipe wall of the condenser (2). It does not interfere with heat exchange. Next, the condensed refrigerant is stored in the receiving liquid @% (3),
The high-pressure liquid is sent to the evaporator (5) through the expansion valve (41) in the high-pressure liquid pipe (formerly). Even in the evaporator (5), the lubricant in the refrigerant may adhere to the pipe wall and interfere with heat exchange. Furthermore, the fact that it adsorbs and adheres to the pipe wall thinly has the effect of preventing rust.The evaporated refrigerant gas is introduced into the compressor (11), where it is compressed again and circulated. A lubricant made of fatty acids is sucked into the compressor (1) together with the gas.

また高圧液W(151の途中から分岐液管■へ分岐され
た潤滑剤を含む高圧液は途中で流Wを調整されて圧縮4
fi (11の給油孔(221に注入され、高圧液の圧
力によって圧縮機(1)の軸受やシリンダ、メカニカル
シール等の潤滑部分囚に分配され、液中に分散された潤
滑剤(脂肪酸)がこれらに供給される。そして潤滑剤中
の脂肪酸はこれらの潤滑部分Qlの金楓と吸着結合によ
って摩擦金属面に吸着され、潤滑作用をする。潤滑剤を
伴って摩擦面に導入された冷媒は摩擦熱によって蒸発し
、軸受やシリンダの隙間から圧縮機filの低圧側クラ
ンクケース国内圧放出され、吸入された低圧ガスととも
に再び圧縮されて冷凍サイクルに復帰する。
In addition, the high-pressure liquid W (151) is branched from the middle of the pipe to the branch liquid pipe ■, and the flow W of the high-pressure liquid containing the lubricant is adjusted in the middle and compressed 4.
fi (It is injected into the oil supply hole (221) of 11, and the pressure of the high-pressure liquid is distributed to the lubricating parts such as the bearings, cylinders, and mechanical seals of the compressor (1), and the lubricant (fatty acid) dispersed in the liquid is The fatty acids in the lubricant are adsorbed to the friction metal surfaces by adsorption bonding with the gold maple of these lubricating portions Ql, and have a lubricating effect.The refrigerant introduced into the friction surfaces with the lubricant It evaporates due to frictional heat, is released from the internal pressure of the low-pressure side crankcase of the compressor fil through gaps between the bearings and cylinders, is compressed again together with the sucked low-pressure gas, and returns to the refrigeration cycle.

またクランクケースC34内の底部に溜ったカルボン酸
エステルと脂肪酸よりなる潤滑剤は吸入ガス管(171
の途中に設けたエジェクタ6υに吸引され、潤fv#剤
吸入管田より吸入ガス管Q?+に吸入され、吸入ガスと
ともに冷凍サイクルに合流する。
In addition, the lubricant consisting of carboxylic acid ester and fatty acid accumulated at the bottom of the crankcase C34 is used in the intake gas pipe (171
It is sucked into the ejector 6υ installed in the middle of the fluid, and the suction gas pipe Q? +, and joins the refrigeration cycle together with the intake gas.

次に冷媒とカルボン酸エステル、脂肪酸との配合例をあ
げる。
Next, an example of a combination of a refrigerant, a carboxylic acid ester, and a fatty acid will be given.

フロン22 CCHCl2F)    95   (m
1部)アジピン酸ジイソデシル     4.95(#
  )ステアリン酸        0.05(#  
)次に3部3図は他の実施例を示す装置であり、高圧液
管0ωの膨張弁(4)の先方に液分離器C2ツを連結し
、この液分離器レフから導出した低圧液′#!(′!J
の途中に液ポンプ(2)を挿入するとともrCMポンプ
(2(イ)の先方を分岐し、途中に電磁弁(叫と温度式
自動流星調整弁(21+ (または温度式自動膨張弁)
を介して圧縮機(11に導入される分岐液管Q91と、
途中に流M調整弁(2勺を介して満液式蒸発器(5)K
連通される低圧送液管c!6)とが形成されている。さ
らに蒸発器(5)より導出した液ガスm4合管し7)が
液力離器發の気相部に尋人され、この気相部より導出さ
れた吸入ガス管u71が圧縮機(IIに連通されている
Freon 22 CCHCl2F) 95 (m
1 part) Diisodecyl adipate 4.95 (#
) Stearic acid 0.05 (#
) Next, Figure 3 in Part 3 shows a device showing another embodiment, in which two liquid separators C are connected to the front of the expansion valve (4) of the high-pressure liquid pipe 0ω, and the low-pressure liquid drawn out from this liquid separator LE '#! (′!J
When inserting the liquid pump (2) in the middle, branch off the end of the rCM pump (2 (a)), and install a solenoid valve (crystal) and a temperature-type automatic meteor adjustment valve (21+ (or temperature-type automatic expansion valve) in the middle).
A branch liquid pipe Q91 is introduced into the compressor (11) through the
In the middle, the flooded evaporator (5) K is connected via the flow M adjustment valve (2).
Connected low-pressure liquid pipe c! 6) is formed. Furthermore, the liquid gas m4 led out from the evaporator (5) is transferred to the gas phase part of the hydraulic separator, and the suction gas pipe u71 led out from this gas phase part is transferred to the compressor (II). It is communicated.

そして液分離器C4中の潤滑剤を含む低圧冷媒は低圧液
管C23)より液ボンブレ滲で分岐液管QIK圧送され
、流址調整弁QOを経て圧縮機(1)の給油孔Qりに注
入され、さらに軸受、その他の潤滑部分CHIに分配さ
れる。また送液管C2Qまり液ポンプc24で圧送され
たn1滑剤を含む液は蒸発器(5)に導入されて低温の
蒸発器(5)内で微粒子状になった脂肪酸が沸騰の核と
なって蒸発を促進させ、ガスは液およびf4滑剤ともに
液ガス混合管CDより液分離器C4に2厚入され、ここ
で分離されたガスは吸入ガス管Q71より再び圧縮機(
1)に吸入され、液と潤滑剤は液ポンプf24)で圧縮
機(1)の給油孔(2)と蒸発器(5)へ送られる。
The low-pressure refrigerant containing lubricant in the liquid separator C4 is then pumped from the low-pressure liquid pipe C23) to the branch liquid pipe QIK by liquid bomber leakage, and is injected into the oil supply hole Q of the compressor (1) via the flow control valve QO. It is further distributed to bearings and other lubricated parts CHI. In addition, the liquid containing the n1 lubricant pumped by the liquid feed pipe C2Q and the liquid pump c24 is introduced into the evaporator (5), where the fatty acids that become fine particles in the low-temperature evaporator (5) become boiling nuclei. Evaporation is promoted, and both the liquid and the F4 lubricant are introduced into the liquid separator C4 through the liquid-gas mixing pipe CD, and the gas separated here is returned to the compressor (
1), and the liquid and lubricant are sent to the oil supply hole (2) of the compressor (1) and the evaporator (5) by a liquid pump f24).

なおその他の構成および作用は矛2図に示した実施例と
同様である。
Note that the other configurations and functions are the same as those of the embodiment shown in Figure 2.

また以上は何れも冷凍サイクルの圧縮機の潤滑方法につ
いて説明したが、ヒートポンプサイクルの圧縮機の潤滑
方法も同様にして行われる。さらに以上の実施例では圧
縮機がレシプロ型のものについて説明したが、他の型式
例えばスクリュー型、ターボ型、ロータリー型の圧縮機
にも適用させることができる。
Furthermore, although the method for lubricating the compressor of the refrigeration cycle has been described above, the method of lubricating the compressor of the heat pump cycle is performed in the same manner. Further, in the above embodiments, the compressor is of a reciprocating type, but the present invention can also be applied to other types of compressors such as screw type, turbo type, and rotary type.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、冷凍またはヒートポンプサイクルを循
環する塩化ふつ化炭化水素系冷媒に、炭素数10〜20
の脂肪酸を炭素数16〜60のカルボン酸エステルvc
 ta解した潤滑剤を分散させ、この潤滑剤を溶解また
は分散させた冷媒の一部を冷媒潤滑路より分岐して前記
冷凍またはヒートポンプサイクルの圧縮機の給油部分に
導入したから、カルボン酸エステルを担体として冷媒中
に分散された脂肪酸が軸受やシリンダ等の潤滑部分の金
属に吸着されて潤滑作用をするため、従来のような特別
に1N8Il渭油回路を作って使用する必要がない。
According to the present invention, the chlorinated fluorinated hydrocarbon refrigerant circulating in the refrigeration or heat pump cycle has carbon atoms of 10 to 20.
carboxylic acid ester with 16 to 60 carbon atoms vc
The dissolved lubricant was dispersed, and a part of the refrigerant in which the lubricant was dissolved or dispersed was branched from the refrigerant lubricating path and introduced into the oil supply section of the compressor of the refrigeration or heat pump cycle. Since the fatty acid dispersed in the refrigerant as a carrier is adsorbed to the metal of lubricated parts such as bearings and cylinders and has a lubricating effect, there is no need to create and use a special 1N8Il oil circuit as in the past.

また炭素数16〜60のカルボン酸エステルは炭素数1
0〜20の脂肪酸と塩化ふつ化炭化水素系冷媒とに相溶
性があるため脂肪酸は溶解状態↑冷媒中に分散されてい
る。したがって凝縮器や蒸発器、その仙の胃壁等に従来
の潤滑油のように厚く組着して熱交換の伝熱を妨害をす
るようなことがない。このため冷媒循環系に@滑剤を混
合したまま循環させても支障がないから、従来潤滑油を
除去するために用いらJまた油分離器、油冷却器、フィ
ルタ、ポンプ、油圧管、油圧保験装置等や油分離のため
の一連の配管を冷媒循環路を別個に設ける必要がなく、
冷凍またはヒートポンプ装置を大11JK簡易化するこ
とができる。さらに@滑剤な給油部分から圧縮機の金属
摩擦部分に違んだ冷媒は摩擦部分の摩擦熱によって蒸発
し、そのとぎ蒸発潜熱により発生熱を除去する役目を果
し、ガスは再び冷媒循環路に戻されるため潤滑剤の担体
としての冷媒が消耗することがなく、かつ冷媒の蒸発に
よってJ41擦部分が冷却される。また蒸発器内におい
てを1冷媒中に分散された炭素数10〜20の脂肪酸の
微細粒子が核となって冷媒の沸騰を促進させ、冷媒の過
冷却による蒸発の遅滞即ち蒸発温度は下るが、冷凍効果
は上らない如き現象を防止することができる。
In addition, carboxylic acid esters having 16 to 60 carbon atoms have 1 carbon number.
Since the fatty acids of 0 to 20 are compatible with the chlorofluorinated hydrocarbon refrigerant, the fatty acids are in a dissolved state ↑ dispersed in the refrigerant. Therefore, unlike conventional lubricating oils, the lubricating oil does not become thickly attached to the condenser, evaporator, or the stomach wall of the evaporator, thereby interfering with heat transfer during heat exchange. For this reason, there is no problem even if the lubricant is mixed in the refrigerant circulation system and circulated, so conventionally used for removing lubricating oil, oil separators, oil coolers, filters, pumps, hydraulic pipes, hydraulic maintenance, etc. There is no need to install a separate refrigerant circulation path for testing equipment, a series of piping for oil separation, etc.
Refrigeration or heat pump equipment can be simplified by 11JK. Furthermore, the refrigerant transferred from the lubricant oil supply part to the metal friction part of the compressor evaporates due to the frictional heat of the friction part, and the latent heat of evaporation serves to remove the generated heat, and the gas returns to the refrigerant circulation path. Since the refrigerant is returned, the refrigerant serving as a lubricant carrier is not consumed, and the J41 rubbing portion is cooled by evaporation of the refrigerant. In addition, in the evaporator, fine particles of fatty acids having 10 to 20 carbon atoms dispersed in the refrigerant act as nuclei and promote the boiling of the refrigerant, and the retardation of evaporation due to supercooling of the refrigerant, that is, the evaporation temperature decreases. It is possible to prevent a phenomenon in which the freezing effect does not improve.

さらに炭素数16〜60のカルボン酸エステルは炭素数
10〜20の脂肪酸を溶解させることができ、かつ塩化
ぶつ化炭化水素とも相溶性があるから、粉末状の脂肪酸
を溶解して冷媒中圧均質に分散させ、冷媒によってこれ
を円滑に輸送させることができる。
Furthermore, carboxylic acid esters having 16 to 60 carbon atoms can dissolve fatty acids having 10 to 20 carbon atoms, and are also compatible with chlorinated butomerated hydrocarbons. It can be dispersed in water and transported smoothly using a refrigerant.

次に圧縮機のケース内に粘結油部分から導入され潤滑部
分に供給された潤滑剤を含む冷媒は摩擦熱により蒸発し
てガスとなり、吸入ガスともに吸入され、吸潰に余分な
潤滑剤はクランクケース内に捕るが、冷媒循環路のエジ
ェクタ作用によって低圧側に吸入されるから、冷媒、潤
滑剤ともに消耗させることなく循環使用することができ
る。
Next, the refrigerant containing the lubricant introduced into the case of the compressor from the caking oil part and supplied to the lubricating part evaporates due to frictional heat and becomes gas, which is sucked together with the suction gas, and the excess lubricant is removed by suction. Although it is trapped in the crankcase, it is sucked into the low-pressure side by the ejector action of the refrigerant circulation path, so both the refrigerant and lubricant can be circulated and used without being consumed.

【図面の簡単な説明】[Brief explanation of the drawing]

矛1図は従来の冷凍装置のフローシート図、矛2図、〕
・8図はそれぞれ本発明の実施に用いられる冷凍装置の
異なるフローシート図、3・4図はレシプロ型圧輸磯の
潤滑部分の説明図である。 (1+・・圧縮機、tZ21・・給油孔、Q(2)・・
潤滑部分。
Figure 1 is a flow sheet diagram of a conventional refrigeration system, Figure 2 is
・Figure 8 is a flow sheet diagram of a different refrigeration system used to carry out the present invention, and Figures 3 and 4 are explanatory diagrams of the lubricating part of a reciprocating pressure transporter. (1+...Compressor, tZ21...Oil supply hole, Q(2)...
Lubrication part.

Claims (1)

【特許請求の範囲】 (11圧縮機を備えた冷凍またはヒートポンプサイクル
を循環する塩化ぶつ化炭化水素系冷媒K、炭素数16〜
60のカルボン酸エステルに炭素数10〜20の脂肪酸
を配合した潤滑剤を混合し、この潤滑剤を含む冷媒の一
部を冷媒循環路より分岐して?1j記圧縮機の給油孔に
4人し2、前記圧縮機の潤を踵部分に前i1脂肪酸を吸
着さ七るとともに冷媒を蒸発させて前記冷媒循環路に戻
すことを%徴とする冷凍方法。 (2)  冷媒と潤滑剤の配合が瓜棚比で85/15〜
99/1であり、炭水数16〜60のカルボン酸エステ
ルと炭素数IQ〜2oの脂肪酸の配合が重°壜比で96
/4〜99.98 / 0.02であることを特徴とす
る特許請求の範囲矛1項gh載の冷凍方法。 (31カルボン酸エステルがアジピン酸ジイソデシル、
脂肪酸がステアリン酸であることを特徴とする%的・請
求の範囲j・l JJ記載の冷凍方法。 (4)  圧縮機を備えた冷凍またはヒートポンプサイ
クルを循環する塩化ふっ化炭化水素系冷媒に、炭水数1
6〜60のカルボン酸エステルに炭素数1θ〜20の脂
肪酸を配合した潤滑剤を混合し、この@滑剤を含む冷媒
の一部を冷媒循環路より分岐して前記圧縮機の給油孔に
前人し、前n【;圧縮機の潤滑部分に前記脂肪酸を吸着
させるとともに冷媒を蒸発させて前藺冷媒循理路に戻し
、前NrEffE縮機内に溜った潤滑剤を前記冷媒循環
路の冷媒吸入側のエジェクタ作用によって冷媒循環路に
吸入させることを特徴とする冷凍方法。
[Claims] (Chlorinated butomerated hydrocarbon refrigerant K circulating in a refrigeration or heat pump cycle equipped with 11 compressors, carbon number 16 to
A lubricant containing 60 carboxylic acid esters and a fatty acid having 10 to 20 carbon atoms is mixed, and a part of the refrigerant containing this lubricant is branched from the refrigerant circulation path. A refrigeration method comprising the steps of: 1j placing four people in the oil supply hole of the compressor, absorbing the moisture of the compressor into the heel portion to adsorb the fatty acids, and evaporating the refrigerant and returning it to the refrigerant circulation path; . (2) The ratio of refrigerant and lubricant is 85/15 ~
The ratio of carboxylic acid ester with carbon number of 16 to 60 and fatty acid with carbon number of IQ to 2o is 96/1 in terms of weight ratio.
/4 to 99.98/0.02, the freezing method according to claim 1, gh. (31 carboxylic acid ester is diisodecyl adipate,
The freezing method according to Claims j and JJ, characterized in that the fatty acid is stearic acid. (4) A chlorinated fluorohydrocarbon refrigerant circulating in a refrigeration or heat pump cycle equipped with a compressor contains 1 carbon water.
A lubricant containing a carboxylic acid ester having 6 to 60 carbon atoms and a fatty acid having 1θ to 20 carbon atoms is mixed, and a part of the refrigerant containing this lubricant is branched from the refrigerant circulation path and supplied to the oil supply hole of the compressor. Then, the fatty acid is adsorbed on the lubricated part of the compressor, and the refrigerant is evaporated and returned to the refrigerant circuit, and the lubricant accumulated in the compressor is transferred to the refrigerant suction side of the refrigerant circuit. A refrigeration method characterized by sucking refrigerant into a circulation path by an ejector action.
JP57138156A 1982-08-09 1982-08-09 Refrigerating method Granted JPS5928079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57138156A JPS5928079A (en) 1982-08-09 1982-08-09 Refrigerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57138156A JPS5928079A (en) 1982-08-09 1982-08-09 Refrigerating method

Publications (2)

Publication Number Publication Date
JPS5928079A true JPS5928079A (en) 1984-02-14
JPS6125918B2 JPS6125918B2 (en) 1986-06-18

Family

ID=15215324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57138156A Granted JPS5928079A (en) 1982-08-09 1982-08-09 Refrigerating method

Country Status (1)

Country Link
JP (1) JPS5928079A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951176B2 (en) 2003-05-30 2011-05-31 Synthes Usa, Llc Bone plate

Also Published As

Publication number Publication date
JPS6125918B2 (en) 1986-06-18

Similar Documents

Publication Publication Date Title
KR100339128B1 (en) Refrigerating device, refrigerating apparatus, air-cooling type condenser unit and compressor unit used for refrigerating device
JP4454197B2 (en) Oil return from evaporator of refrigeration system using hot oil as power
US4809515A (en) Open cycle cooled refrigerant recovery apparatus
JP4787916B2 (en) Compression system for cryogenic cooling using multi-component coolant
US6233967B1 (en) Refrigeration chiller oil recovery employing high pressure oil as eductor motive fluid
US3360958A (en) Multiple compressor lubrication apparatus
US5469713A (en) Lubrication of refrigerant compressor bearings
CN105579787B (en) Freezing cycle device
EP0852324B1 (en) Refrigerant circulating apparatus
US20070000261A1 (en) Very low temperature refrigeration system having a scroll compressor with liquid injection
JPS5927979A (en) Refrigerant additive and refrigerant composition
JPH0237256A (en) Improved refrigerator and method of improving efficiency of refrigerator
US20090126376A1 (en) Oil Separation in a Cooling Circuit
US5868001A (en) Suction accumulator with oil reservoir
US4829786A (en) Flooded evaporator with enhanced oil return means
US2223882A (en) Refrigeration
US20050072957A1 (en) Non-HCFC refrigerant mixture for an ultra-low temperature refrigeration system
JPS5928079A (en) Refrigerating method
US3779035A (en) Suction accumulators for refrigeration systems
CA1205645A (en) Method of recirculating oil in refrigerating systems
US20040124394A1 (en) Non-HCFC refrigerant mixture for an ultra-low temperature refrigeration system
JPH07286766A (en) Direct contact type cooling tank equipped with refrigerant ascending flow passage
JP2001201190A (en) Ammonia refrigerating apparatus
JPH09250821A (en) Freezer
JPH0763427A (en) Refrigerating plant