JPS5927991A - Prevention of spontaneous ignition of slack coal - Google Patents

Prevention of spontaneous ignition of slack coal

Info

Publication number
JPS5927991A
JPS5927991A JP57137276A JP13727682A JPS5927991A JP S5927991 A JPS5927991 A JP S5927991A JP 57137276 A JP57137276 A JP 57137276A JP 13727682 A JP13727682 A JP 13727682A JP S5927991 A JPS5927991 A JP S5927991A
Authority
JP
Japan
Prior art keywords
pulverized coal
tank
valve
storage tank
slack coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57137276A
Other languages
Japanese (ja)
Other versions
JPS636434B2 (en
Inventor
Noriharu Sasaki
佐々木 典令
Hideyuki Suwa
諏訪 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP57137276A priority Critical patent/JPS5927991A/en
Publication of JPS5927991A publication Critical patent/JPS5927991A/en
Publication of JPS636434B2 publication Critical patent/JPS636434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To prevent spontaneous ignition of slack coal under air-borne transport from a feed tank at the bottom of a storage tank, by detecting leak of high- pressure air in the feed tank through valves and introducing an inert gas into the tank whenever the leakage exceeds a predetermined limit. CONSTITUTION:Slack coal is fed from a slack coal tank 2 via valves 4 and 4A into a feed tank 3 for temporary storage. Then valves 4 and 4A are closed and a valve 6 is opened to send slack coal 1 into a transport pipe 7 through a rotary valve 5 so that the coal may be carried by high-pressure air from a compressor 8. The flow rate of the high-pressure air leaking from the valves 4 and 4A and flowing into a storage tank 2 is detected by a flow rate detector 9. When the flow rate exceeds a predetermined limit, the slack coal 1 in the storage tank 2 can generate heat leading to spontaneous ignition and therefore a control valve 12 is opened by a control device 10 and an inert gas is sent into the storage tank 2 through an inert gas supply pipe 11 to prevent the heat generation of the slack coal 1.

Description

【発明の詳細な説明】 に供給タンク内の高圧空気がバルブから漏れる漏出量が
一定値を越える場合に不活性カスを送入することにより
,a粉炭の自然発火を防止する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for preventing spontaneous ignition of pulverized coal by feeding inert scum when the amount of high-pressure air leaking from a valve in a supply tank exceeds a certain value.

従来,微粉炭を空気・自送により長距離にわたり・自送
する際には,微粉炭貯槽から1」1、給夕/りへ(阪粉
炭を送入したのち, DI;給タンクを輸iy:.管内
と同一の高圧となし,ロータリバルブにより微粉炭をβ
1,給タンクから輸送管内へ切り出して,高圧空気によ
り輸送することが行なわれている。この従来方法では,
1)攻粉炭貯槽に多量の微粉炭を庚1サ1間貯留する場
合に,微粉炭の酸化による反応熱が蓄,)vして次第に
〃1度が」一荷し,自然発火する恐れがあった。
Conventionally, when transporting pulverized coal over long distances by air or self-transport, it was necessary to transport pulverized coal from a pulverized coal storage tank to a supply tank (after transporting pulverized coal, DI; transport a supply tank). :.The same high pressure as inside the pipe is maintained, and the pulverized coal is pumped through the rotary valve.
1. The material is cut out from the supply tank into the transport pipe and transported using high-pressure air. In this conventional method,
1) When a large amount of pulverized coal is stored in a pulverized coal storage tank for a period of time, the reaction heat due to oxidation of the pulverized coal accumulates, and the pulverized coal gradually accumulates, causing a risk of spontaneous combustion. there were.

jXe来,この自然発火を防止する方法としては。Since jXe, there is a method to prevent this spontaneous combustion.

微粉炭貯槽内に不活性カスを常時吹き込むことが行なわ
れている。しかしながら、この方法は多量の不活性ガス
を必要とし,不経済であるといつ欠点を有していた。
Inert sludge is constantly blown into the pulverized coal storage tank. However, this method has the disadvantage of requiring large amounts of inert gas and being uneconomical.

一方,微粉炭貯槽内の温度を検出し,この温度が1吸粉
炭の発火温度である180〜250℃に達する前に不活
性カスを送入する方法もある。
On the other hand, there is also a method of detecting the temperature in the pulverized coal storage tank and feeding inert scum before this temperature reaches 180 to 250°C, which is the ignition temperature of one pulverized coal.

しかしながら、微粉炭貯槽内には温度分イ1jがあるた
め,最高温度を検出することがきわめてψIC l。
However, since there is a temperature component i1j in the pulverized coal storage tank, it is extremely difficult to detect the maximum temperature.

く、従ってこの方法も満足すべきものではない。Therefore, this method is also not satisfactory.

本発明の目的は、上6ピ従来方法の欠点を解消し。The purpose of the present invention is to eliminate the drawbacks of the conventional method of upper 6 pins.

不活性ガスを多殿に使用せず、しかも確実に微粉炭の自
然発火を防止する方法を提供することにある。
To provide a method for surely preventing spontaneous combustion of pulverized coal without using too much inert gas.

本発明は、@粉炭の温度上昇が1敢粉炭と酸素との発熱
反応において酸素の1共給律速であることに着目してな
されたものである。すなわら、微粉炭の空気輸送に際し
ては、微粉炭It’;’槽の下部に設置した供給タンク
が高圧であるため、空気がバルブから誦れて微粉炭貯槽
内に流入し、@粉炭が部分酸化し、このため微A4)炭
の湿度が酸fヒ熱の蓄積により9時間と共に上昇する。
The present invention was made by focusing on the fact that the temperature rise of pulverized coal is rate-determining due to co-supply of oxygen in the exothermic reaction between pulverized coal and oxygen. In other words, when transporting pulverized coal by air, the supply tank installed at the bottom of the pulverized coal tank is under high pressure, so air flows through the valve into the pulverized coal storage tank, and the pulverized coal is Partially oxidizes and thus the humidity of the fine A4) charcoal increases over the course of 9 hours due to the accumulation of acid and arsenic.

しかしながら2本発明者らの知見によれば、高温では酸
素の消費速IWが速くなるため、流入する空気の流速が
例えば1m / /rの条件では約2時間後に貯槽内部
の酸素がなくなり2発熱しなくなる。寸だこの際空気の
一成分である4素ガスにより冷却されたり、外気との温
度勾配が大きくなり、貯4vJI壁からの放熱も火とな
るため、微粉炭の温度は平衡となり2例えば約80℃と
一定となる。この温度は微粉炭の発火湯度」80℃より
低いため自然ざI−火には到らない。
However, according to the findings of the present inventors, the oxygen consumption rate IW increases at high temperatures, so if the flow rate of the incoming air is, for example, 1 m//r, the oxygen inside the storage tank runs out after about 2 hours and heat generation occurs. I won't. At this point, the pulverized coal is cooled by the four-element gas, which is a component of the air, and the temperature gradient with the outside air becomes large, and the heat radiated from the stored 4VJI wall also becomes fire, so the temperature of the pulverized coal becomes equilibrium and reaches a temperature of about 80℃, for example. It becomes constant at ℃. This temperature is lower than the ignition temperature of pulverized coal (80°C), so it does not reach natural ignition.

木つレ明者らは、このように微粉炭貯槽下部の空気のb
lし速が一定値以下の場合には酸素の供給が不足し、自
然発火しないことを見出し、この知見に基づ−て本発明
を完成した。
In this way, Kitsure Akira et al.
It was discovered that when the leach rate is below a certain value, oxygen supply is insufficient and spontaneous combustion does not occur, and based on this knowledge, the present invention was completed.

本発明は、微粉炭’Fl’ 4!:々の下部にバルブを
介して設置した1共給タンクから、微粉炭をロークリバ
ルブに、より切り出して空気j論送するに際し、l(給
タンク内の高圧空気がバルブから漏れるC4行出量を。
The present invention uses pulverized coal 'Fl' 4! : When pulverized coal is cut out from the co-supply tank installed via a valve at the bottom of each tank and air is sent to the low-liquid valve, l (the amount of high-pressure air in the feed tank leaking from the valve is calculated as follows: .

微粉炭貯槽とバルブとの間に設置した検出器で[(出し
、該漏出量が一定値を毬える場合に不活性カスを送入す
ることを特徴とする。微粉炭の自然発火防止方法である
A detector installed between the pulverized coal storage tank and the valve discharges the pulverized coal, and when the amount of leakage remains at a certain value, inert scum is introduced.A method for preventing spontaneous ignition of pulverized coal. be.

上記漏出量の検出は2例えば微粉炭貯槽と、その下部の
バルブとの間での空気圧や流速等を検出す−ることによ
り行なわれる。
The amount of leakage is detected by, for example, detecting the air pressure, flow rate, etc. between the pulverized coal storage tank and a valve located below the pulverized coal storage tank.

本発明方法は、上d己漏出量が一定値を越える」局舎に
、不活性ガスを送入してバルブからの漏れ空気を遮断す
ると同時に、微粉炭貯槽内への酸素の流入を防止して発
熱反応を阻止し、さらに不活性カスにより1改粉炭を冷
却するようにしたものである。
In the method of the present invention, an inert gas is introduced into a station building where the amount of leakage exceeds a certain value to block air leaking from the valve and at the same time prevent oxygen from flowing into the pulverized coal storage tank. The pulverized coal is further cooled by inert scum to prevent exothermic reactions.

以下2本発明を図面によりさらに詳細に説明する。The following two inventions will be explained in more detail with reference to the drawings.

第1図は1本発明方法の一実施例を示す装置系統図であ
る。図において、微粉炭1をn、:蚊する微粉炭貯槽2
.供給タンク3.前記・微粉炭貯槽と供給タンクの間に
二暇に設置されたバルブ4.バルブ4A、供給タンク下
部に設けられたロータリハ/l/ 7’ 5 、  。
FIG. 1 is a system diagram of an apparatus showing an embodiment of the method of the present invention. In the figure, pulverized coal 1 is n: pulverized coal storage tank 2
.. Supply tank 3. 4. Valves installed at intervals between the pulverized coal storage tank and the supply tank. Valve 4A, rotary valve/l/7'5, provided at the bottom of the supply tank.

−2す2.7.ブエ部(7) /C/L/ 7’ 6 
+ 輸送管゛なる。
-2 2.7. Bue part (7) /C/L/ 7' 6
+ Becomes a transport pipe.

微粉炭1は微粉炭貯槽2がら、バルブ4およびバルブ4
Aを開けることにより供給タンクδ内に供給され、一時
貯留される。次いでバルブ4および4Aを閉じて、ロー
タリバルブFWIS (7)パルフロを開けて、輸送管
7内と供給タンク3内を同一の圧力としたのち、 @粉
炭]をロータリバルブ5により、輸送管7内に切り出し
て、ゴングレソサ8からの高圧空気により輸送する。
Pulverized coal 1 is contained in pulverized coal storage tank 2, valve 4 and valve 4.
By opening A, it is supplied into the supply tank δ and temporarily stored. Next, close the valves 4 and 4A, and open the rotary valve FWIS (7) to make the inside of the transport pipe 7 and the supply tank 3 the same pressure, and then pump @pulverized coal into the transport pipe 7 with the rotary valve 5. The material is cut into pieces and transported by high pressure air from the gong resorator 8.

この輸送管7は通常a KI++と長いため、その圧力
損失により9μm、給タンク内が救!(g/ζIn”G
の高圧となり、その結果、その上部に役16シたバルブ
4および4Aから空気が漏出する。この際、バルブ4お
よび4 Aは微粉炭のかみ込み等によって摩耗するため
、1具給タンク3からの空気の漏出をノールす、ること
かできない。
This transport pipe 7 is usually a KI++ long, so the pressure loss caused by 9 μm inside the supply tank was saved! (g/ζIn”G
, resulting in air leaking from the valves 4 and 4A located above them. At this time, since the valves 4 and 4A are worn out due to the pulverized coal being trapped, it is impossible to prevent air from leaking from the one-equipment supply tank 3.

そこで本発明方法にお−では、バルブから漏出する空気
の流速を流速検出器9で検出し、その値が設定1直を毬
えた場合には、 ?I7’J仰器10圧器10定直に近
ずくように制御バルブ12を開け、不活性カス導入管1
1から窒素ガス等の不活性カスを1;攻粉炭貯憎2内に
送入して、微粉炭の発熱を防止する。この間の適当な時
期にバルブ4を閉じて。
Therefore, in the method of the present invention, the flow velocity of the air leaking from the valve is detected by the flow velocity detector 9, and when the value exceeds the set one shift, ? I7'J elevator 10 Pressure vessel 10 Open the control valve 12 so that it approaches steady state, and open the inert gas introduction pipe 1.
Inert gas such as nitrogen gas is introduced from 1 into the pulverized coal storage 2 to prevent the pulverized coal from generating heat. Close valve 4 at an appropriate time during this time.

バルブ4Aの7−ル性を改善し、以後、不活性カスを送
しなり通常の運転に切替える。
The valve 4A's 7-ring property is improved, and from then on, the inert scum is not fed and the operation is switched to normal operation.

以上1本発明方法によれば、微粉炭の自然発火を防止す
るために常時微粉炭I佇槽内に不活性カスを吹き込んで
IAた従東法と異なり、上記のように空気の漏出臂が一
定値を越えたときのみ不活性Jjスを送入するため、不
活性ノjスを多量に使用する必要がなく、経済的であり
、しかも確実に自然発火を防止することができる。
As mentioned above, according to the method of the present invention, unlike the Jouto method in which inert scum is constantly blown into the pulverized coal I tank to prevent spontaneous combustion of pulverized coal, air leakage is prevented as described above. Since inert gas is fed only when a certain value is exceeded, there is no need to use a large amount of inert gas, which is economical, and spontaneous combustion can be reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置系統図である。 2・・微粉炭貯槽    3 ・供給タンク4・・・バ
ルブ      5・・口〜タリバルフ7・・・輸送管
      9 ・流体検出dJ10・・・制御器  
    l」 ・・不活性カス導入管12・・・制御パ
ルプ。 第1図
FIG. 1 is a system diagram of an apparatus showing an embodiment of the present invention. 2..Pulverized coal storage tank 3..Supply tank 4..Valve 5..Port to tari valve 7..Transport pipe 9..Fluid detection dJ10..Controller
l''...Inert waste introduction pipe 12...Control pulp. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 微粉炭貯槽の下部にバルブを介L2て設置した供給タン
クから、微粉炭をロータリバルブにより切り出して空気
輸送するに際し、供給タンク内の高圧空気がバルブから
漏れる漏出量を、微粉炭貯槽とバルブとの間に設置した
検出器で検出し、該漏出量が一定値を越える場合に不活
性カスを送入することを特徴とする。微粉炭の自然発火
防止方法。
When pulverized coal is cut out by a rotary valve from a supply tank installed at the bottom of the pulverized coal storage tank via a valve L2 and transported by air, the leakage amount of high-pressure air in the supply tank from the valve is calculated between the pulverized coal storage tank and the valve. It is characterized by detecting the amount of leakage with a detector installed between the two, and injecting inert scum when the amount of leakage exceeds a certain value. Method for preventing spontaneous combustion of pulverized coal.
JP57137276A 1982-08-09 1982-08-09 Prevention of spontaneous ignition of slack coal Granted JPS5927991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57137276A JPS5927991A (en) 1982-08-09 1982-08-09 Prevention of spontaneous ignition of slack coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137276A JPS5927991A (en) 1982-08-09 1982-08-09 Prevention of spontaneous ignition of slack coal

Publications (2)

Publication Number Publication Date
JPS5927991A true JPS5927991A (en) 1984-02-14
JPS636434B2 JPS636434B2 (en) 1988-02-09

Family

ID=15194886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137276A Granted JPS5927991A (en) 1982-08-09 1982-08-09 Prevention of spontaneous ignition of slack coal

Country Status (1)

Country Link
JP (1) JPS5927991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042188A (en) * 2021-03-08 2021-06-29 碎得机械(北京)有限公司 Double-door sealed bin system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363130U (en) * 1989-10-26 1991-06-20
JPH0530845U (en) * 1991-10-03 1993-04-23 コニカ株式会社 Simple camera
JP5412418B2 (en) 2010-12-17 2014-02-12 三菱重工業株式会社 Coal inactivation processing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113042188A (en) * 2021-03-08 2021-06-29 碎得机械(北京)有限公司 Double-door sealed bin system

Also Published As

Publication number Publication date
JPS636434B2 (en) 1988-02-09

Similar Documents

Publication Publication Date Title
US8496412B2 (en) System and method for eliminating process gas leak in a solids delivery system
EP3170547B1 (en) Flue gas desulfurization apparatus and method of operating same
SU1301318A3 (en) Method for removing residue from gas generator and device for effecting same
JPS5927991A (en) Prevention of spontaneous ignition of slack coal
US4270466A (en) Method and apparatus for rendering an ignitable fuel-oxygen mixture inert
US20200165068A1 (en) Conveying a material to be conveyed
Mills An investigation of the unstable region for dense phase conveying in sliding bed flow
JPS596691B2 (en) Foreign matter removal method
US3898998A (en) Device to compensate pressure and losses of inert gas
JP2006038023A (en) Water sealing mechanism
US20160185635A1 (en) System for removing chemicals from a working fluid, and methods related to the same
CN108187452A (en) A kind of flue gas formula inert gas system suitable for crude oil carrier
US3970291A (en) Method of preventing occurrence of pulsation in a circulating liquid for evaporative cooling
US3348941A (en) Pressure balancing method
JP2005334848A (en) Pressure balance type reactor and operation method therefor
SU1229229A1 (en) Device for revealing damage of metallurgical set cooled units
JPS59158737A (en) Quantitative delivery controlling method of powdery granule
JPS60122059A (en) Method of monitoring temperature of coal mill
JPH07198269A (en) Heating device in nitrogen gas atmosphere
JPS61153218A (en) Cooling method of lance for blowing powder into blast furnace
JPS61167800A (en) Hydrogen storage device adopting hydrogen storage alloy
WO2021013756A1 (en) Mobile degasification system
JPS6050300A (en) Backup device
JPH07193020A (en) Heat treating furnace for semiconductor
JPS59156423A (en) Fluidized medium replenishing apparatus of fluidized layer furnace