JPS5927757B2 - Vapor phase epitaxial growth method - Google Patents

Vapor phase epitaxial growth method

Info

Publication number
JPS5927757B2
JPS5927757B2 JP1021078A JP1021078A JPS5927757B2 JP S5927757 B2 JPS5927757 B2 JP S5927757B2 JP 1021078 A JP1021078 A JP 1021078A JP 1021078 A JP1021078 A JP 1021078A JP S5927757 B2 JPS5927757 B2 JP S5927757B2
Authority
JP
Japan
Prior art keywords
gas
reactor
epitaxial growth
substrate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1021078A
Other languages
Japanese (ja)
Other versions
JPS54102295A (en
Inventor
晋平 茅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1021078A priority Critical patent/JPS5927757B2/en
Publication of JPS54102295A publication Critical patent/JPS54102295A/en
Publication of JPS5927757B2 publication Critical patent/JPS5927757B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 この発明は、半導体装置の製造法に関し、特に気相エピ
タキシャル成長法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a vapor phase epitaxial growth method.

半導体装置の製造に於て、エピタキシャル成長によるも
のとしては、例えば第1図に示すものがある。第1図に
於て、1は導電性を与える不純物を高濃度に含むシリコ
ン単結晶基板、2は基板1に接し、基板1と結晶学的な
つながりによりほゞ同一の結晶構造を持つが、不純物の
濃度は基板1に比して低濃度であるシリコンエピタキシ
ャル層であり、上記エピタキシャル層はエピタキシャル
成長により得られるものである。他の例としては第2図
に示すものがある。
In the manufacture of semiconductor devices, there is one shown in FIG. 1, for example, which uses epitaxial growth. In FIG. 1, 1 is a silicon single crystal substrate containing a high concentration of impurities that provide conductivity, and 2 is in contact with the substrate 1 and has almost the same crystal structure as the substrate 1 due to its crystallographic connection. The silicon epitaxial layer has an impurity concentration lower than that of the substrate 1, and the epitaxial layer is obtained by epitaxial growth. Another example is shown in FIG.

第2図に於て、1は比較的低濃度の不純物を含むシリコ
ン単結晶基板、2はエピタキシャル層、3は高濃度の不
純物を選択的に含む埋込み層で、この埋込み層3はエピ
タキシャル成長の前に選択的に導入したものである。第
1図、第2図に於けるエピタキシャル層2の製造法とし
て従来第3図に示すエピタキシャル成長法がある。
In Figure 2, 1 is a silicon single crystal substrate containing relatively low concentration of impurities, 2 is an epitaxial layer, and 3 is a buried layer that selectively contains high concentration of impurities, and this buried layer 3 is formed before epitaxial growth. It was introduced selectively. As a method for manufacturing the epitaxial layer 2 shown in FIGS. 1 and 2, there is a conventional epitaxial growth method shown in FIG.

第3図に於て、1は高温に加熱された基板、4は基板1
を保持するサセプタ、5は反応炉であり、この反応炉5
にはキャリヤーガス6と、エピタキシャル層を成長させ
るためのソースガスTと、エピタキシャル層の不純物を
添加するためのドーピングガス8が導入され、エグゾス
ト9に排出される。
In Figure 3, 1 is a substrate heated to a high temperature, 4 is a substrate 1
5 is a reactor, and this reactor 5
A carrier gas 6, a source gas T for growing an epitaxial layer, and a doping gas 8 for adding impurities to the epitaxial layer are introduced and discharged to an exhaust 9.

反応炉5に於ける反応としては、例えばキヤリヤガス6
としてH2.ソースガス7としてSlH4、ドーピング
ガス8としてAsH3を夫々ほゾ常圧(760t0rr
)に近い圧力で導入し、基板1としてAsを高濃度に含
んだ埋込層を持つシリコン単結晶を1050℃に加熱す
ると次の熱分解反応が起る。上記反応により基板1の上
にはSiのエピタキシヤル層が成長し、同時に不純物と
してAsが添加される。
The reaction in the reactor 5 includes, for example, a carrier gas 6
As H2. SlH4 was used as the source gas 7, and AsH3 was used as the doping gas 8 at normal pressure (760t0rr).
) and heat a silicon single crystal having a buried layer containing a high concentration of As to 1050° C. as the substrate 1, the following thermal decomposition reaction occurs. As a result of the above reaction, an epitaxial layer of Si grows on the substrate 1, and at the same time As is added as an impurity.

このとき、エピタキシヤル層の成長速度と厚さの制御は
、ソースガス7の単位時間当りの供給量と供給時間を制
御することにより行われ、エピタキシヤル層の不純物濃
度はドーピングガス6の単位時間当りの供給量によつて
制御される。上記従来のエピタキシヤル成長法に於て、
高濃度不純物を含む基板1の表面からガス中に不純物が
放出され、放出された不純物が、エピタキシヤル成長に
伴い再び成長層に取込まれるというオートドーピングが
起り、エピタキシヤル層2の不純物濃度の制御はドーピ
ングガスの制御のみでは出来なくなるという欠点を有す
る。更に詳しくは、ガス中に放出された不純物の平均自
由行程tは次の式で表される。
At this time, the growth rate and thickness of the epitaxial layer are controlled by controlling the supply amount and supply time of the source gas 7 per unit time, and the impurity concentration of the epitaxial layer is controlled by controlling the supply amount per unit time of the source gas 7. Controlled by the amount of feed per unit. In the above conventional epitaxial growth method,
Autodoping occurs in which impurities are released into the gas from the surface of the substrate 1 containing high concentration impurities, and the released impurities are incorporated into the growth layer again during epitaxial growth, resulting in a decrease in the impurity concentration of the epitaxial layer 2. This has the disadvantage that control cannot be achieved only by controlling the doping gas. More specifically, the mean free path t of impurities released into the gas is expressed by the following equation.

こ\でTは絶対温度CK)、Pは圧力(TOrr)、σ
は分子衝突直径(?)である。
Here, T is absolute temperature CK), P is pressure (TOrr), and σ
is the molecular collision diameter (?).

圧力760T0rr、温度1050℃、分子衝突直径を
10−8CTfLとすると、平均自由行程t=3.6X
10−4い、即ち3,6μm程度と考えられる。従つて
基板1近傍のガス中に、高濃度に不純物分子が存在し、
エピタキシヤル成長はこのガス中で行なわれることにな
る。上記欠点を補うものとして、第4図に示すエピタキ
シヤル成長法が提案されている。第4図に於ては、反応
炉5とエグゾスト9に間に真空ポンプ10を設けて反応
炉5の内部の圧力を100T0rr以下の低圧に保つて
エピタキシヤル成長を行う。第4図に示すエピタキシヤ
ル成長法に於ては、基板1より放出された不純物分子の
平均自由行程は、25μm以上となり、基板1から放出
されたガス中の不純物の濃度は、基板1近傍では低くな
り、又、反応炉5に導入されるガスの総量を一定とした
場合は、反応炉5内部に於けるガスの流速はガス圧に反
比例して速くなり、平均自由行程の伸長との相乗効果に
より、基板1から放出された不純物分子の反応炉5から
の排出速度が速くなるという利点がある。
When the pressure is 760T0rr, the temperature is 1050℃, and the molecular collision diameter is 10-8CTfL, the mean free path t=3.6X
It is considered to be about 10-4 μm, that is, about 3.6 μm. Therefore, impurity molecules exist at a high concentration in the gas near the substrate 1,
Epitaxial growth will take place in this gas. In order to compensate for the above drawbacks, an epitaxial growth method shown in FIG. 4 has been proposed. In FIG. 4, a vacuum pump 10 is provided between the reactor 5 and the exhaust 9 to maintain the internal pressure of the reactor 5 at a low pressure of 100T0rr or less to perform epitaxial growth. In the epitaxial growth method shown in FIG. 4, the mean free path of impurity molecules released from the substrate 1 is 25 μm or more, and the concentration of impurities in the gas released from the substrate 1 is In addition, if the total amount of gas introduced into the reactor 5 is constant, the gas flow rate inside the reactor 5 increases in inverse proportion to the gas pressure, and the synergistic effect with the elongation of the mean free path increases. This effect has the advantage that the rate at which impurity molecules released from the substrate 1 are discharged from the reactor 5 becomes faster.

一方、反応炉5に於いて、基板1と衝突する分子の数は
圧力に反比例することが知られており、ソースガス7の
分子の基板1と衝突する数が減り、例えばソースガス7
としてSiH4を用いて、減圧により分解反応を加速し
たとしても実質的なエピタキシヤル層2の成長速度は減
少する。成長速度の減少は、相対的に成長時間の延長を
もたらし基板1の内部に含まれる不純物が基板1の表面
に移動する速度は一定であつても移動する総量、従つて
ガス中への放出量の総計は多くなり、低圧に於けるエピ
タキシヤル成長の利点を減じている。本発明は上記のよ
うな従来の成長法の欠点を除去するためになされたもの
で、基板より放出された不純物の炉外排出を速かに行い
オートドーピングを抑えることができると共に、エピタ
キシヤル層の成長速度の減少をも防ぐようにした気相エ
ピタキシヤル成長法を提供するものである。
On the other hand, in the reactor 5, it is known that the number of molecules that collide with the substrate 1 is inversely proportional to the pressure, and the number of molecules of the source gas 7 that collide with the substrate 1 decreases, for example, the number of molecules that collide with the substrate 1 decreases.
Even if SiH4 is used as the material and the decomposition reaction is accelerated by reducing the pressure, the substantial growth rate of the epitaxial layer 2 will decrease. A decrease in the growth rate leads to a relative extension of the growth time, and even if the rate at which impurities contained inside the substrate 1 move to the surface of the substrate 1 is constant, the total amount of impurities moved, and therefore the amount released into the gas, decreases. , which reduces the advantages of epitaxial growth at low pressures. The present invention was made to eliminate the drawbacks of the conventional growth method as described above, and it is possible to quickly discharge impurities released from the substrate to the outside of the furnace, suppress autodoping, and improve the growth of the epitaxial layer. The object of the present invention is to provide a vapor phase epitaxial growth method that also prevents a decrease in the growth rate of the .

本発明は、基板から放出された不純物のガス中での移動
および炉外への排出速度は炉内の圧力の影響を多大に受
けるが、一方、基板内部に含まれる不純物が基板表面に
移動する速さは固体中の移動速度であり、ガスの圧力の
影響は少いこという不純物の移動速度に与えるガスの圧
力の影響の差に着目したものである。
In the present invention, the movement of impurities released from the substrate in the gas and the rate of discharge to the outside of the furnace are greatly affected by the pressure inside the furnace, while the impurities contained inside the substrate move to the surface of the substrate. Speed is the speed of movement in a solid, and the influence of gas pressure is small, which focuses on the difference in the effect of gas pressure on the movement speed of impurities.

具体的には、炉内のガスの圧力を周期的に変化させ、低
圧時に基板より放出された不純物のガス中の移動を行な
わしめ、基板に含まれる不純物の移動の遅れの間に、炉
内のガスの圧力に変え、エピタキシヤル成長を速かに行
うことを周期的に繰返すものである。
Specifically, the pressure of the gas in the furnace is changed periodically, and the impurities released from the substrate at low pressure are moved in the gas, and during the delay in the movement of the impurities contained in the substrate, In this method, epitaxial growth is performed rapidly by changing the gas pressure to

以下、この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.

第5図に於て、1は基板、4はサセプタ、5は反応炉、
6はキヤリヤガス、7はソースガス、8はドーピングガ
ス、9はエグゾスト、10は真空ポンプ、11は反応炉
5と真空ポンプ10の間に設けた低圧用バルブ、12は
低圧用バルブと並列に設けられた高圧用バルブである。
第5図の本発明による気相エピタキシヤル成長法では、
反応炉5に導入するガスと、真空ポンプ10の排気につ
いては、従来の成長法と同様であるが、新たに設けられ
た低圧用バルブ12は周期的に開閉し、高圧用バルブ1
2は常時開いた状態を保持させる。
In FIG. 5, 1 is a substrate, 4 is a susceptor, 5 is a reactor,
6 is a carrier gas, 7 is a source gas, 8 is a doping gas, 9 is an exhaust, 10 is a vacuum pump, 11 is a low pressure valve provided between the reactor 5 and the vacuum pump 10, and 12 is provided in parallel with the low pressure valve. This is a high pressure valve.
In the vapor phase epitaxial growth method according to the present invention shown in FIG.
The gas introduced into the reactor 5 and the exhaust from the vacuum pump 10 are the same as in the conventional growth method, but the newly provided low-pressure valve 12 is periodically opened and closed, and the high-pressure valve 1 is opened and closed periodically.
2 keeps it open at all times.

低圧用バルブ11が開いた状態では、反応炉5の内部の
圧力は低圧となり、基板1より放出された不純物分子の
反応炉5よりの排出は促進され、低圧用バルブ11が閉
じた状態では反応炉5の内部の圧力は常時開いている高
圧用バルブ12のバルブ径により決まる高圧状態になり
基板1に於けるエピタキシヤル成長が促進される。以上
のように、本発明によれば、反応炉5の内部のガスの圧
力は周期的に変化するため、オートドーピングが抑えら
れ、基板1に含まれる不純物の影響の少いエピタキシヤ
ル層が得られる。上記実施例では、高圧を760T0r
r、低圧を10T0rrとし、低圧用バルブ11の開閉
を30秒間隔で行い、Asの埋込層ともつSi単結晶基
板にSiH4の熱分解によるエピタキシヤル成長を行つ
たとき、エピタキシヤル層に於けるオートドープ層は0
.1μm以下となり良好な結果が得られた。なお、上記
実施例では、圧力の変化は、高圧に対して低圧は1/7
6にしてあるが、高圧に対して低圧を1/10以下にす
れば本発明の効果は得られることが確かめられた。以上
のようにこの発明の気相エピタキシヤル成長法によれば
、基板より放出されだ不純物の炉外排出を速かに行いオ
ートドーピングを抑えることができると共に、エピタキ
シヤル層の成長速度の減少も有効に防ぐことができる利
点がある。
When the low-pressure valve 11 is open, the pressure inside the reactor 5 becomes low, and impurity molecules released from the substrate 1 are accelerated to be discharged from the reactor 5. When the low-pressure valve 11 is closed, the reaction is stopped. The pressure inside the furnace 5 becomes a high pressure state determined by the diameter of the high pressure valve 12 which is always open, and epitaxial growth on the substrate 1 is promoted. As described above, according to the present invention, since the pressure of the gas inside the reactor 5 changes periodically, autodoping can be suppressed and an epitaxial layer that is less affected by impurities contained in the substrate 1 can be obtained. It will be done. In the above example, the high pressure is 760T0r.
r, the low pressure was set to 10T0rr, the low pressure valve 11 was opened and closed at 30 second intervals, and when epitaxial growth was performed by thermal decomposition of SiH4 on a Si single crystal substrate with a buried layer of As, the epitaxial layer was The autodoped layer is 0
.. Good results were obtained with a thickness of 1 μm or less. In addition, in the above example, the change in pressure is 1/7 of the low pressure compared to the high pressure.
6, it was confirmed that the effects of the present invention can be obtained by reducing the low pressure to 1/10 or less of the high pressure. As described above, according to the vapor phase epitaxial growth method of the present invention, impurities emitted from the substrate can be quickly discharged from the furnace, autodoping can be suppressed, and the growth rate of the epitaxial layer can also be reduced. There is an advantage in that it can be effectively prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエピタキシヤル成長の例を示す断面図、第2図
はエピタキシヤル成長の他の例を示す断面図、第3図は
従来のエピタキシヤル成長法の一例を示す概略図、第4
図は従来のエピタキシヤル成長法の他の例を示す概略図
、第5図は本発明による気相エピタキシヤル成長法を示
す概略図である。
FIG. 1 is a cross-sectional view showing an example of epitaxial growth, FIG. 2 is a cross-sectional view showing another example of epitaxial growth, FIG. 3 is a schematic diagram showing an example of a conventional epitaxial growth method, and FIG.
This figure is a schematic diagram showing another example of the conventional epitaxial growth method, and FIG. 5 is a schematic diagram showing the vapor phase epitaxial growth method according to the present invention.

Claims (1)

【特許請求の範囲】 1 高濃度の不純物を少なくとも表面に含む基板を反応
炉内に載置し、この基板を高温に加熱するとともに前記
反応炉内にソースガス、ドーピングガス及びキャリヤガ
スを導入することにより前記高濃度の不純物を含む基板
表面にエピタキシャル層を成長せしめる気相エピタキシ
ャル成長法において、前記反応炉内のガスの圧力を周期
的に変化させることを特徴とする気相エピタキシャル成
長法。 2 高濃度の不純物を少なくとも表面に含む基板を反応
炉内に載置し、この基板を高温に加熱するとともに前記
反応炉内にソースガス、ドーピングガス及びキャリヤガ
スを導入することにより前記高濃度の不純物を含む基板
表面にエピタキシャル層を成長せしめる気相エピタキシ
ャル成長法において、前記反応炉内のガスの圧力を高圧
に対して低圧を1/10以下の値に設定して周期的に変
化させることを特徴とする気相エピタキシャル成長法。 3 高濃度の不純物を少なくとも表面に含む基板を反応
炉内に載置し、この基板を高温に加熱するとともに前記
反応炉内にソースガス、ドーピングガス及びキャリヤガ
スを導入することにより前記高濃度の不純物を含む基板
表面にエピタキシャル層を成長せしめる気相エピタキシ
ャル成長法において、前記反応炉につながる排気路に、
高圧用バルブと低圧用バルブを並列に設け、低圧用バル
ブの周期的開閉により反応炉内のガスの圧力を変化させ
ることを特徴とする気相エピタキシャル成長法。
[Claims] 1. A substrate containing high concentration impurities at least on its surface is placed in a reactor, and while heating this substrate to a high temperature, a source gas, a doping gas, and a carrier gas are introduced into the reactor. A vapor phase epitaxial growth method for growing an epitaxial layer on the surface of a substrate containing impurities at a high concentration, the vapor phase epitaxial growth method comprising periodically changing the pressure of the gas in the reactor. 2. A substrate containing high-concentration impurities at least on its surface is placed in a reactor, and the substrate is heated to a high temperature and a source gas, doping gas, and carrier gas are introduced into the reactor. In the vapor phase epitaxial growth method for growing an epitaxial layer on the surface of a substrate containing impurities, the pressure of the gas in the reactor is set at a value of 1/10 or less of the low pressure with respect to the high pressure and is changed periodically. vapor phase epitaxial growth method. 3. A substrate containing highly concentrated impurities at least on its surface is placed in a reaction furnace, and the substrate is heated to a high temperature and a source gas, a doping gas, and a carrier gas are introduced into the reactor. In the vapor phase epitaxial growth method in which an epitaxial layer is grown on the surface of a substrate containing impurities, an exhaust path leading to the reactor is
A vapor phase epitaxial growth method characterized by installing a high-pressure valve and a low-pressure valve in parallel, and changing the gas pressure in the reactor by periodically opening and closing the low-pressure valve.
JP1021078A 1978-01-31 1978-01-31 Vapor phase epitaxial growth method Expired JPS5927757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1021078A JPS5927757B2 (en) 1978-01-31 1978-01-31 Vapor phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1021078A JPS5927757B2 (en) 1978-01-31 1978-01-31 Vapor phase epitaxial growth method

Publications (2)

Publication Number Publication Date
JPS54102295A JPS54102295A (en) 1979-08-11
JPS5927757B2 true JPS5927757B2 (en) 1984-07-07

Family

ID=11743900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1021078A Expired JPS5927757B2 (en) 1978-01-31 1978-01-31 Vapor phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS5927757B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238686Y2 (en) * 1984-10-26 1990-10-18
CN102618923A (en) * 2012-04-11 2012-08-01 浙江金瑞泓科技股份有限公司 Quasi-reduced-pressure epitaxial growth method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496424A (en) * 1982-03-30 1985-01-29 Agency Of Industrial Science & Technology Method for manufacture of III-V compound semiconducting single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238686Y2 (en) * 1984-10-26 1990-10-18
CN102618923A (en) * 2012-04-11 2012-08-01 浙江金瑞泓科技股份有限公司 Quasi-reduced-pressure epitaxial growth method
CN102618923B (en) * 2012-04-11 2015-09-02 浙江金瑞泓科技股份有限公司 A kind of accurate reduced pressure epitaxy growth method

Also Published As

Publication number Publication date
JPS54102295A (en) 1979-08-11

Similar Documents

Publication Publication Date Title
JP3265042B2 (en) Film formation method
KR930005115A (en) Silicon deposition method at low temperature and high pressure
JP2004529489A (en) Method of forming high dielectric constant gate insulating layer
JP2007516599A (en) Surface preparation before deposition on germanium
JPH01162326A (en) Manufacture of beta-silicon carbide layer
JP2004523885A (en) Surface adjustment method before deposition
KR20020095194A (en) Method of forming a dielectric film
JPS5927757B2 (en) Vapor phase epitaxial growth method
US3765960A (en) Method for minimizing autodoping in epitaxial deposition
KR960013526B1 (en) Chemical vapor phase growth method and chemical vapor phase growth apparatus
JPH04291714A (en) Manufacture of integrated circuit using amorphous layer
JPS59138332A (en) Manufacture of semiconductor device
JP2002525841A (en) High-speed silicon deposition at low pressure
US20040007185A1 (en) Method of manufacturing a semiconductor device and a semiconductor manufacture system
US7244667B2 (en) Method and device for the production of thin epitaxial semiconductor layers
JPS58135633A (en) Epitaxial growth of silicon
KR20070037503A (en) Method for the deposition of layers containing silicon and germanium
JP3076268B2 (en) Low pressure vapor phase growth equipment
JPH06163426A (en) Chemical vapor growth method
JPH09129626A (en) Formation of thin film
JPH01313927A (en) Compound-semiconductor crystal growth method
US20010036434A1 (en) Single crystal silicon layer, its epitaxial growth method and semiconductor device
JP2007234891A (en) Substrate processor
JPS6369220A (en) Manufacture of group iv semiconductor thin film
JPS63164424A (en) Vapor growth method