JPS5927546B2 - Video equipment - Google Patents

Video equipment

Info

Publication number
JPS5927546B2
JPS5927546B2 JP15584779A JP15584779A JPS5927546B2 JP S5927546 B2 JPS5927546 B2 JP S5927546B2 JP 15584779 A JP15584779 A JP 15584779A JP 15584779 A JP15584779 A JP 15584779A JP S5927546 B2 JPS5927546 B2 JP S5927546B2
Authority
JP
Japan
Prior art keywords
signal
scanning
wave
optical
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15584779A
Other languages
Japanese (ja)
Other versions
JPS5678276A (en
Inventor
佳規 辻野
洋之 石崎
正昭 中村
宏 瀧川
正二 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15584779A priority Critical patent/JPS5927546B2/en
Publication of JPS5678276A publication Critical patent/JPS5678276A/en
Publication of JPS5927546B2 publication Critical patent/JPS5927546B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N3/00Scanning details of television systems; Combination thereof with generation of supply voltages
    • H04N3/02Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only
    • H04N3/08Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector
    • H04N3/09Scanning details of television systems; Combination thereof with generation of supply voltages by optical-mechanical means only having a moving reflector for electromagnetic radiation in the invisible region, e.g. infrared

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Details Of Television Scanning (AREA)
  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 本発明は映像装置とくに往復回転を行う光偏向器を有す
る映像装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an imaging device, and particularly to an imaging device having an optical deflector that performs reciprocating rotation.

赤外線を利用した映像装置、探知追跡装置等は一般に赤
外線検知器としては光量子型のものを用い、これと光学
走査系とを組み合わせて物面走査を行なつている。
Imaging devices, detection and tracking devices, etc. that utilize infrared rays generally use a photon type infrared detector, and scan the object surface by combining this with an optical scanning system.

第1図に従来の赤外線映像装置の簡略系統図を示した。
第1図において、物面1上のl点Pから発した光は、結
像用光学系たとえば凸レンズ2によつて実像となつて赤
外線検知器3(以下単に検知器と言う)上に投射される
が、光路の一部に光偏向器、図の場合には平面鏡4を設
置して光路を曲げ、この曲げられた光路イ上に検知器3
を置く。
FIG. 1 shows a simplified system diagram of a conventional infrared imaging device.
In FIG. 1, light emitted from a point P on an object surface 1 is turned into a real image by an imaging optical system, such as a convex lens 2, and is projected onto an infrared detector 3 (hereinafter simply referred to as the detector). However, an optical deflector, in the case of the figure, a plane mirror 4 is installed in a part of the optical path to bend the optical path, and a detector 3 is placed on this bent optical path.
put

このように配置して平面鏡4を矢印5のように回転させ
れば物面1の実像が検知器3上を移動するので、物面走
査が行われる。上述した映像装置において、矢印5で示
したように平面鏡4を往復回転させる場合には、該平面
鏡4の慣性のために回転角速度ωを常に一定に保つこと
が困難であつて、上記ωの値は時間とともに正弦波状に
変化する。
If the plane mirror 4 is arranged in this manner and rotated as shown by the arrow 5, the real image of the object surface 1 will move on the detector 3, so that object surface scanning will be performed. In the above-mentioned imaging device, when the plane mirror 4 is rotated back and forth as shown by the arrow 5, it is difficult to keep the rotational angular velocity ω constant due to the inertia of the plane mirror 4, and the value of ω is difficult to maintain. changes sinusoidally over time.

このように平面鏡4の回転角速度ωが変化すればこれに
伴い前述した実像の移動速度も一定でなくなるため、検
知器3の出力を映像表示装置たとえばブラウン管6に加
えて画像とした場合に表示画像に歪みを生ずる不都合が
ある。そこで従来の装置においては平面鏡4をトーシヨ
ンバー7に固定して該トーシヨンバー7にねじり振動を
行わせ、その際トーシヨンバー7を駆動するための電磁
力を制御してある角度範囲に亘つてωが一定になるよう
にしていた。なお第1図において検知器3およびブラウ
ン管6の周辺の電子回路系統は省略されている。しかし
ながら上述の従来の映像装置においてはトーシヨンバ一
およびこれの駆動手段(ねじり力付与手段)を必要とし
、また騒音を発生する、電力消費が大きい等の欠点があ
つた。
If the rotational angular velocity ω of the plane mirror 4 changes in this way, the moving speed of the real image described above will no longer be constant. This has the disadvantage of causing distortion. Therefore, in the conventional device, the plane mirror 4 is fixed to the torsion bar 7, and the torsion bar 7 is caused to vibrate torsionally. At this time, the electromagnetic force for driving the torsion bar 7 is controlled to keep ω constant over a certain angular range. I was trying to make it happen. In FIG. 1, the electronic circuit system around the detector 3 and the cathode ray tube 6 is omitted. However, the above-mentioned conventional imaging device requires a torsion bar and its driving means (twisting force applying means), and has drawbacks such as generation of noise and large power consumption.

本発明は前述の点に鑑みなされたもので、トーシヨンバ
一を必要とせず、電子回路系統の工夫のみにより歪みの
ない映像を得ることを可能とする新規な映像装置を提供
せんとするものである。
The present invention has been made in view of the above-mentioned points, and it is an object of the present invention to provide a new video device that does not require a torsion bar and is capable of obtaining distortion-free video only by devising an electronic circuit system. .

以下図面を用いて本発明に係る映像装置の一実施例につ
いて詳細に説明する。なお以下各図において同等の部分
には同一符号を用いる。第2図は本発明の一実施例の構
成を簡略系統図として示したもので、検知器3の出力す
る電気信号の増幅器等は便宜上省略した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a video device according to the present invention will be described in detail below with reference to the drawings. Note that the same reference numerals are used for equivalent parts in each figure below. FIG. 2 shows the configuration of an embodiment of the present invention as a simplified system diagram, and the amplifier for the electric signal output from the detector 3 and the like are omitted for convenience.

本実施例の電気系統はタイミング信号発生回路70を中
心として形成されている。この信号発生回路70は、こ
れにつながる各プロツク8,9,10の動作のタイミン
グを規制する。このうちプロツク8は水平方向走査信号
を、プロツク9は垂直方向走査信号をそれぞれ発生し、
この両信号はブラウン管6の偏向板にそれぞれ印加され
て、周知の掃引動作を行わせる。
The electrical system of this embodiment is formed around a timing signal generation circuit 70. This signal generating circuit 70 regulates the timing of the operations of the respective blocks 8, 9, and 10 connected thereto. Of these, block 8 generates a horizontal scanning signal, and block 9 generates a vertical scanning signal.
These two signals are respectively applied to the deflection plates of the cathode ray tube 6 to perform a well-known sweeping operation.

ただし本実施例においては水平方向走査信号として通常
の掃引波形と異なる波形のものを用いるが、この点につ
いては後に詳述する。上記両プロツク8,9(以後それ
ぞれ水平方向掃引回路および垂直方向掃引回路と呼ぶ)
に対する同期信号はタイミング信号発生回路70から供
給される。
However, in this embodiment, a waveform different from the normal sweep waveform is used as the horizontal scanning signal, and this point will be described in detail later. Both of the above-mentioned processes 8 and 9 (hereinafter referred to as horizontal sweep circuit and vertical sweep circuit, respectively)
A synchronizing signal for the timing signal generating circuit 70 is supplied from the timing signal generating circuit 70.

また該タイミング信号発生回路はプロツク10に対して
動作タイミング規制用信号を供給する。つぎに本図のプ
ロツク10は、回転鏡4を回転させる駆動機構と、これ
に供給する電力信号の発生回路とを便宜上一括して1プ
ロツクとして示したもので、上記電力信号の発生のタイ
ミングはタイミング信号発生回路70によつて制御され
る。
The timing signal generation circuit also supplies an operation timing regulation signal to the block 10. Next, the block 10 in this figure shows the drive mechanism that rotates the rotary mirror 4 and the generation circuit of the power signal supplied thereto as one block for convenience, and the timing of generation of the power signal is shown as one block. It is controlled by a timing signal generation circuit 70.

ゆえに本実施例においてはすべての信号の同期関係は上
記タイミング発生回路70内で保証され、駆動機構から
同期信号を取る必要がない。プロツク10を以後駆動部
と呼ぶ。さて本発明の主要な特徴の一つとして、片方の
走査信号、第2図の実施例においては水平方向走査信号
として、通常用いられるのこぎり波に1周期分の正弦波
を重畳した波形の電圧を使用する。
Therefore, in this embodiment, the synchronization of all signals is guaranteed within the timing generation circuit 70, and there is no need to obtain a synchronization signal from the drive mechanism. The block 10 will hereinafter be referred to as the drive. Now, one of the main features of the present invention is that one of the scanning signals, in the embodiment shown in FIG. use.

この波形については後に詳述することとし、第3図に水
平方向掃引回路8の基本的構成を示した。本図中で11
はのこぎり波発生回路、12は正弦波発生回路、13は
正弦波のレベル調整回路、14は上記両回路11,12
の出力を加え合わせる加算回路であり、15aおよび1
5bは同期信号入力端子、16は出力端子である。同期
信号入力端子15aに加えられる同期信号によつてのこ
ぎり波発生回路11は通常ののこぎり波を発生し、また
一方正弦波発生回路12は端子15bに加えられる別個
の同期信号と同期する=定周波数の正弦波を連続的に出
力する。この正弦波の周波数はのこぎり波の繰返し周波
数の2倍に設定されており、これがレベル調整回路13
を介して加算回路14に印加される。このようにして上
記のこぎり波および正弦波の両者を加算することにより
、電圧の上昇速度が中央で速く両端で低い変形のこぎり
波が形成され、この波形を出力端子16から取り出す。
This waveform will be described in detail later, and FIG. 3 shows the basic configuration of the horizontal sweep circuit 8. 11 in this figure
A sawtooth wave generation circuit, 12 a sine wave generation circuit, 13 a sine wave level adjustment circuit, 14 both of the above circuits 11 and 12
This is an adder circuit that adds the outputs of 15a and 1.
5b is a synchronizing signal input terminal, and 16 is an output terminal. The sawtooth wave generation circuit 11 generates a normal sawtooth wave by the synchronization signal applied to the synchronization signal input terminal 15a, while the sine wave generation circuit 12 is synchronized with a separate synchronization signal applied to the terminal 15b = constant frequency. Continuously outputs a sine wave. The frequency of this sine wave is set to twice the repetition frequency of the sawtooth wave, and this is set to the level adjustment circuit 13.
The signal is applied to the adder circuit 14 via. In this way, by adding both the sawtooth wave and the sine wave, a modified sawtooth wave is formed in which the voltage rises faster in the center and lower at both ends, and this waveform is taken out from the output terminal 16.

この出力は前述したようにブラウン管の水平偏向板に印
加される。第4図は第3図に示した回路の要部に現れる
信号の波形を示したものであつて、Aはのこぎり波発生
回路11の、Bは正弦波発生回路12のそれぞれ出力電
圧波形であり、Cは出力端子16に現れる水平方向走査
信号の波形である。
This output is applied to the horizontal deflection plate of the cathode ray tube as described above. FIG. 4 shows the waveforms of signals appearing in the main parts of the circuit shown in FIG. 3, where A is the output voltage waveform of the sawtooth wave generation circuit 11 and B is the output voltage waveform of the sine wave generation circuit 12. , C is the waveform of the horizontal scanning signal appearing at the output terminal 16.

前述したように該波形Cがブラウン管の水平偏向板に印
加される。なお波形Cにおいて斜めの点線aは加算前の
のこぎり波を比較対照のために示したものである。該波
形Cは波形Aと波形Bとの加算により形成された変形の
こぎり波である。ただしその変形の程度はのこぎり波A
と正弦波Bとの混合比によつて調整される。本実施例で
は理解の便宜のために正弦波発生回路12の出力レベル
をレベル調整回路13で以つて調整することにより上述
の混合比調整を行うものとしたが、場合によりのこぎり
波発生回路11の出力側にも別個にレベル調整回路を設
けても差支えない。第4図Cに示した波形を水平方向走
査信号として用いることにより、本明細書の最初の部分
に述べた回転平面鏡の回転速度不均一に基因する画像の
歪みを防ぐことができる。
As mentioned above, the waveform C is applied to the horizontal deflection plate of the cathode ray tube. Note that in waveform C, a diagonal dotted line a shows a sawtooth wave before addition for comparison. The waveform C is a modified sawtooth wave formed by adding waveform A and waveform B. However, the degree of deformation is a sawtooth wave A
It is adjusted by the mixing ratio of sine wave B and sine wave B. In this embodiment, for convenience of understanding, the above-mentioned mixing ratio adjustment is performed by adjusting the output level of the sine wave generation circuit 12 using the level adjustment circuit 13. A separate level adjustment circuit may also be provided on the output side. By using the waveform shown in FIG. 4C as a horizontal scanning signal, it is possible to avoid image distortion due to non-uniform rotational speed of the rotating plane mirror described in the first part of this specification.

この点につき以下に説明する。前述したように、平面鏡
を往復回転させる場合には該平面鏡の有する慣性のため
に該平面鏡の回転角速度が正弦波状に変化する。
This point will be explained below. As described above, when the plane mirror is rotated back and forth, the rotational angular velocity of the plane mirror changes sinusoidally due to the inertia of the plane mirror.

すなわち回転角速度は平面鏡の変位極大点付近では低く
、2つの変位極大点の中間では高くなる。ただし便宜上
[極大点」とはこの場合には偏位角の絶対値が最大とな
る時点を意味するものとする。ゆえに物面上で一定の幅
を走査するに要する時間は上記変位極大点付近では長く
、その中間では短くなる。このとき水平方向走査信号が
第4図Aに示したような直線的のこぎり波であれば、ブ
ラウン管面における電子ビームの水平方向走査速度、換
言すればスポツトの移動速度は一定であるから、同じ幅
の物体でも画面の左右両端付近にあるときには中央部付
近にあるときに比し幅広く表示されるという不都合を生
ずる。そこで第4図Cに示したような変形のこぎり波を
水平方向走査信号として使用すれば、ブラウン管面上に
おけるスポツトの移動速度は中央で高く、端縁部付近で
低くなる。
That is, the rotational angular velocity is low near the maximum displacement point of the plane mirror, and high in the middle between the two maximum displacement points. However, for convenience, the term "maximum point" in this case means the point in time when the absolute value of the deviation angle is maximum. Therefore, the time required to scan a constant width on the object surface is long near the maximum displacement point and short in the middle. At this time, if the horizontal scanning signal is a linear sawtooth wave as shown in Figure 4A, the horizontal scanning speed of the electron beam on the CRT surface, in other words, the moving speed of the spot is constant, so Even if the object is located near both the left and right edges of the screen, it will appear wider than when it is near the center. Therefore, if a modified sawtooth wave as shown in FIG. 4C is used as a horizontal scanning signal, the moving speed of the spot on the cathode ray tube surface will be high at the center and low near the edges.

それゆえ平面鏡の同一回転角度に対応するブラウン管上
のスポツトの移動距離は全画面に亘つて均一化され、し
たがつて上述した画像の歪みを防止することができる。
第5図は第2図に示した回路の各部に現れる信号波形と
、回転する平面鏡の運動との時間的関係を示したもので
、Iは平面鏡の回転を表しており、このグラフだけは縦
軸が電圧でなく回転角度である。方形波は端子15aに
現れる信号であつて、これが平面鏡駆動用の同期信号と
なる。波形は方形波の2倍の繰返し周波数を有する方形
波であり、波形は方形波と等しい繰返し周波数を有する
が衝撃比が若干小さい方形波である。この方形波はブラ
ンキング信号として使用され、ブラウン管上の画面の表
示期間を定める。のこぎり波は方形波の立ち上がりと同
時に始まる直線的のこぎり波であつて、第4図の波形A
にほかならない。同様に波形は第4図の正弦波Bに該当
する。上述の各波形を発生させるには、たとえば方形波
をまず発生させ、これの分周により方形波を作り、該方
形波を基としてブランキング信号およびのこぎり波を発
生させ、また方形波から基本波を抽出して正弦波を得れ
ばよい。
Therefore, the moving distance of the spot on the cathode ray tube corresponding to the same rotation angle of the plane mirror is made uniform over the entire screen, and the above-mentioned image distortion can therefore be prevented.
Figure 5 shows the temporal relationship between the signal waveforms appearing in each part of the circuit shown in Figure 2 and the movement of the rotating plane mirror.I represents the rotation of the plane mirror, and only this graph is vertical. The axis is not voltage but rotation angle. The square wave is a signal appearing at the terminal 15a, and serves as a synchronization signal for driving the plane mirror. The waveform is a square wave with a repetition frequency twice that of the square wave, and the waveform is a square wave with a repetition frequency equal to the square wave but with a slightly lower impulse ratio. This square wave is used as a blanking signal to determine the display period of the screen on the cathode ray tube. A sawtooth wave is a linear sawtooth wave that starts at the same time as the square wave rises, and is shown in waveform A in Figure 4.
Nothing but. Similarly, the waveform corresponds to sine wave B in FIG. To generate each of the above-mentioned waveforms, for example, first generate a square wave, divide the frequency to create a square wave, generate a blanking signal and a sawtooth wave based on the square wave, and generate a fundamental wave from the square wave. All you have to do is extract it and get a sine wave.

別の方法として水晶発振器等によりまず正弦波を発振さ
せ、これを波形整形して方形波を得て、あとは前述した
のと同様に方形波から波形,およびVを得ることもでき
る。以上は便宜上検知器が単素子の場合について説明し
たが、多数の検知素子を一直線上に配列した検知器を使
用する場合においても、光学的走査を実施例と同様に反
射鏡の往復回転で行う限り、本発明を同様に適用するこ
とができる。
Another method is to first oscillate a sine wave using a crystal oscillator or the like, shape the waveform to obtain a square wave, and then obtain the waveform and V from the square wave in the same manner as described above. For convenience, the case where the detector is a single element has been explained above, but even when using a detector in which a large number of detecting elements are arranged in a straight line, optical scanning is performed by reciprocating rotation of the reflecting mirror as in the embodiment. The present invention can be applied in the same way.

なおこれまでの説明においては理解の便宜のために光偏
向器としては平面鏡を用いるものとしたが、もちろん凹
面鏡または凸面鏡を用いる場合においても画像の歪みに
関しては何ら本質的差異はなく、したがつて平面鏡を用
いたときに比し、格別の配慮を要しない。
In the explanations so far, a plane mirror has been used as the optical deflector for the convenience of understanding, but of course there is no essential difference in image distortion when using a concave mirror or a convex mirror. No special consideration is required compared to when a plane mirror is used.

また反射鏡に代えてプリズム等を用いる場合も同様であ
る。さらに、上述した直線形の多素子検知器を使用して
、素子の配列線の方向における走査を、電荷転送素子等
を用いて行い、これと垂直な方向の走査を光学的に行う
場合、また1枚の反射鏡を用いて水平および垂直両方向
の走査をともに行う場合等においては垂直方向に画像の
歪みを生ずるが、このような場合にも実施例と同様に第
4図Cに示したような波形を垂直方向走査信号として使
用すればよく、単にのこぎり波の周期が1フレームにつ
き1回、または2回(飛越し走査の場合)となるにすぎ
ない。
The same applies when a prism or the like is used instead of a reflecting mirror. Furthermore, when using the linear multi-element detector described above, scanning in the direction of the array line of the elements is performed using a charge transfer element, etc., and scanning in the direction perpendicular to this is performed optically; When scanning both horizontally and vertically using a single reflecting mirror, distortion of the image occurs in the vertical direction, but in such a case, as shown in Figure 4C, as in the embodiment. It is sufficient to use a similar waveform as the vertical scanning signal, and the period of the sawtooth wave is simply once or twice per frame (in the case of interlaced scanning).

ただしこの場合には走査線の密度が不均一となる結果、
表示画像の輝度に不均一を生ずる。
However, in this case, the density of the scanning lines becomes non-uniform, resulting in
This causes non-uniformity in the brightness of the displayed image.

すなわち走査線の密度が高い部分では輝度が高く、走査
線の密度が低い部分ではこの逆になる。この不都合を防
止するには、映像信号に付加する直流分に補正用の交流
信号を重畳すればよい。この交流信号としては第5図中
の正弦波と同一周波数の正弦波でよいが、該正弦波に対
し位相をπ/2ラジアン(1/4周期)ずらす必要があ
る。換言すれば輝度補正用交流信号としては余弦波を用
いるわけである。もつとも観測者は再生画像の辺縁部に
おける明るさには=般にあまり敏感でないから、輝度補
正用交流信号は正しい余弦波形でなくても差支えない。
以上説明した本発明に係る映像装置は、電子回路の簡単
な工夫のみによつてトーシヨンバ一を使用せずに歪みの
ない良質の画像が得られるから、トーシヨンバ一使用に
伴うトラブルを完全に免れることができるとともに光学
走査機構を簡易安価にすることができるという優れた利
点がある。
That is, the brightness is high in areas where the density of scanning lines is high, and the opposite is true in areas where the density of scanning lines is low. To prevent this inconvenience, a correction alternating current signal may be superimposed on the direct current component added to the video signal. This AC signal may be a sine wave having the same frequency as the sine wave in FIG. 5, but it is necessary to shift the phase by π/2 radians (1/4 period) with respect to the sine wave. In other words, a cosine wave is used as the brightness correction alternating current signal. However, since the observer is generally not very sensitive to the brightness at the edges of the reproduced image, the brightness correction AC signal does not need to have a correct cosine waveform.
The video device according to the present invention as described above can obtain high-quality images without distortion without using a torsion bar by simply devising an electronic circuit, so it can completely avoid troubles associated with the use of a torsion bar. This has the advantage that the optical scanning mechanism can be made simple and inexpensive.

ゆえに光偏向器の往復回転により光学的走査を行う赤外
線映像装置等に適用してきわめて有利である。
Therefore, it is extremely advantageous to apply it to an infrared imaging device or the like that performs optical scanning by reciprocating rotation of an optical deflector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の赤外線映像装置の構成を示す簡略系統図
、第2図は本発明に係る映像装置の一実施例の簡略系統
図、第3図は前図中の水平走査信号発生回路の構成を示
すプロツク図、第4図は第3図に示した回路中の要部に
現れる信号の波形を示す線図、第5図は第2図中の要部
に現れる信号の波形と平面鏡の回転運動との関係を説明
するための線図である。 1:物面、2:凸レンズ、3:赤外線検知器、4:平面
鏡、6:ブラウン管、7リトーシヨンバー。
FIG. 1 is a simplified system diagram showing the configuration of a conventional infrared imaging device, FIG. 2 is a simplified system diagram of an embodiment of the imaging device according to the present invention, and FIG. 3 is a diagram of the horizontal scanning signal generation circuit shown in the previous figure. Figure 4 is a block diagram showing the configuration, Figure 4 is a diagram showing the waveforms of signals appearing in the main parts of the circuit shown in Figure 3, and Figure 5 is a diagram showing the waveforms of signals appearing in the main parts of the circuit in Figure 2 and the plane mirror. FIG. 3 is a diagram for explaining the relationship with rotational motion. 1: object surface, 2: convex lens, 3: infrared detector, 4: plane mirror, 6: cathode ray tube, 7 retortion bar.

Claims (1)

【特許請求の範囲】 1 走査方向回転の前半では徐々に速度が増加し、後半
では徐々に速度が減少するように往復回転する光偏向器
により光学的走査を行う光学走査系と、該光学走査系通
過後の光による像を受けて電気信号を発生する光電変換
系と、表示用陰極線管とを有する映像装置において、各
回の走査開始点と終了点との中間において最も急峻な傾
斜を有し、該中間から離れるに伴い傾斜が徐々に緩やか
となる信号を上記陰極線管の走査信号として印加するこ
とにより、上記光偏向器の速度変動による表示像の歪を
補正することを特徴とする映像装置。 2 上記走査信号はのこぎり波と正弦波とを合成して得
ることを特徴とする特許請求の範囲第1項に記載の映像
装置。 3 走査線密度の高い部分において走査線密度の低い部
分よりも映像信号の直流レベルを低くする輝度補正手段
を具えたことを特徴とする特許請求の範囲第1または第
2項に記載の映像装置。
[Claims] 1. An optical scanning system that performs optical scanning with an optical deflector that rotates back and forth so that the speed gradually increases in the first half of rotation in the scanning direction and gradually decreases in the second half, and the optical scanning system In an imaging device having a photoelectric conversion system that receives an image of light after passing through the system and generates an electrical signal, and a cathode ray tube for display, the slope is the steepest in the middle between the start point and end point of each scan. , an imaging device that corrects distortion of a displayed image due to speed fluctuations of the optical deflector by applying a signal whose slope gradually becomes gentler as it moves away from the center as a scanning signal to the cathode ray tube. . 2. The video device according to claim 1, wherein the scanning signal is obtained by combining a sawtooth wave and a sine wave. 3. The video device according to claim 1 or 2, further comprising a luminance correction means for lowering the DC level of the video signal in a portion with a high scanning line density than in a portion with a low scanning line density. .
JP15584779A 1979-11-30 1979-11-30 Video equipment Expired JPS5927546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15584779A JPS5927546B2 (en) 1979-11-30 1979-11-30 Video equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15584779A JPS5927546B2 (en) 1979-11-30 1979-11-30 Video equipment

Publications (2)

Publication Number Publication Date
JPS5678276A JPS5678276A (en) 1981-06-27
JPS5927546B2 true JPS5927546B2 (en) 1984-07-06

Family

ID=15614792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15584779A Expired JPS5927546B2 (en) 1979-11-30 1979-11-30 Video equipment

Country Status (1)

Country Link
JP (1) JPS5927546B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604386A (en) * 1983-06-22 1985-01-10 Fujitsu Ltd Enlarged display system of video device
US6882096B2 (en) 2003-07-10 2005-04-19 Sony Corporation Active landing control system for raster based devices

Also Published As

Publication number Publication date
JPS5678276A (en) 1981-06-27

Similar Documents

Publication Publication Date Title
US7325929B2 (en) Method and apparatus for controllably modulating a laser in a laser projection display
KR100327311B1 (en) Method for compensating geometric image failure of video images and a device for conducting said method
US20060007362A1 (en) Apparatus for and method of scaling a scanning angle and image projection apparatus incorporating the same
JP3265854B2 (en) Image output device
US4358789A (en) Digital scan converter for image scanning and display system
EP0374857A1 (en) Laser display apparatus
US7746515B2 (en) Circuit for detecting a clock error in a swept-beam system and related systems and methods
JPS63313972A (en) Telecinema apparatus
US2971054A (en) Scanning devices and systems
US6091461A (en) Electronically self-aligning high resolution projection display with rotating mirrors and piezoelectric transducers
US3949167A (en) Image-projection system
GB656292A (en) Improvements relating to apparatus for generating television signals, or recording television pictures, by scanning cinematograph films
US4040087A (en) Electronic motion compensation for the pyroelectric vidicon
JPS5927546B2 (en) Video equipment
US4245253A (en) Frame-rate converting film scanner having continuously variable projection speed
US4021847A (en) Compensation circuit for pyroelectric vidicon system
JPS6211388A (en) Digital convergence device
US2485594A (en) Waveform compensating circuit for television film transmitters
JP2701471B2 (en) A trapezoidal distortion correction circuit for an image projector using a liquid crystal light valve.
JPH08505717A (en) Method and apparatus for compensating for pyramidal errors
US4004087A (en) Panning pyroelectric vidicon system
US3447026A (en) Crt scan stabilizer
RU2030842C1 (en) Picture display unit
US6067127A (en) Method and apparatus for reducing the rotation rate of mirrors in a high resolution digital projection display
JP3254314B2 (en) Display device