JPS5927531A - Sample board for vapor growth - Google Patents

Sample board for vapor growth

Info

Publication number
JPS5927531A
JPS5927531A JP13605282A JP13605282A JPS5927531A JP S5927531 A JPS5927531 A JP S5927531A JP 13605282 A JP13605282 A JP 13605282A JP 13605282 A JP13605282 A JP 13605282A JP S5927531 A JPS5927531 A JP S5927531A
Authority
JP
Japan
Prior art keywords
gas
substrate
growth
mgo
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13605282A
Other languages
Japanese (ja)
Inventor
Masao Mikami
三上 雅生
Chuji Igarashi
五十嵐 忠二
Nobuo Fukuda
福田 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13605282A priority Critical patent/JPS5927531A/en
Publication of JPS5927531A publication Critical patent/JPS5927531A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To protect substrate surface until the time immediately before start of growth by allowing desired gas to flow into the space formed by the cover and substrate mounting surface of substrate boared independent of the gas which flows into external space of sample board. CONSTITUTION:Aluminum Al 17 and MgCl2 18 are placed within the raw material chamber 16. Aluminum reacts with HCl gas introduced from the gas inlet hole 19 and changes to AlCl3. This gas is transported to the growth chamber 20 together with the MgCl2 gas by the N2 gas of carrier gas. These gases are mixed in the growth chamber with the carbonic acid gas and hydrogen gas transported through the gas carrying tube 21. Thereby the magnesia spinnel MgO.Al2O3 is produced and formed on the silicon single crystal 24 by the epitaxial growth method. A silicon substrate 24 is protected by allowing the N2 gas to flow from the gas inlet hole 23 during the condition reaching period up to the optimum growth condition of MgO.Al2O3 using the sample board 22. After obtaining the optimum growth condition, supply of N2 gas for protection is suspended, the cover 25 is opened. Thereafter, growth is started again. Thereby, MgO.Al2O3 film having the surface flatness of mirror surface can be formed by growth method.

Description

【発明の詳細な説明】 本発明は気相成長方法において基板を搭載する試料台に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sample stage on which a substrate is mounted in a vapor phase growth method.

半導体材料、誘電体材料、磁性材料などの各測材料の膜
が気相成長方法によって形成されており、気相法はきわ
めて重要な膜形成技術である。気相成長方法において膜
はそれぞれの目的に応じた基板上に形成される。そして
基板表面は一般には鏡面状に精密研磨され、清浄にされ
ている。そして良質の膜を基板上に形成するために、基
板は、表面平坦性、清浄性、結晶性等の表面状態が膜形
成に必要な条件を満足していなければならない。そして
この基板の表面状態は気相法で膜を形成する場合には膜
形成温度、成分ガス濃等が膜形成条件として所望の定常
状態に達して膜形成が開始される直前まで保持されなけ
ればならない。しかし気晴間(以下、条件到達期間と称
する)に長時間を要し、基板設定と同時に定常状態で直
ちに膜形成をするということは不可能である。
Films of various measurement materials such as semiconductor materials, dielectric materials, and magnetic materials are formed by vapor phase growth, and vapor phase growth is an extremely important film formation technique. In the vapor phase growth method, a film is formed on a substrate depending on its purpose. The surface of the substrate is generally precisely polished to a mirror surface and cleaned. In order to form a high-quality film on a substrate, the surface condition of the substrate, such as surface flatness, cleanliness, and crystallinity, must satisfy the conditions necessary for film formation. When forming a film using a vapor phase method, the surface condition of this substrate must be maintained until just before the film formation temperature, component gas concentration, etc. reach the desired steady state as film formation conditions and film formation begins. No. However, the distraction period (hereinafter referred to as the condition attainment period) takes a long time, and it is impossible to immediately form a film in a steady state at the same time as setting the substrate.

条件到達期間においては成長領域は最適の膜形成条件か
らずれており、この期間に気相の成分ガスが基板表面に
接触すると異相物質が析出したり、腐食を受けたりして
、基板表面状態が変質してし才い、良質の膜を形成する
ことができなくなる。
During the period when the conditions are reached, the growth region deviates from the optimal film formation conditions, and when component gases in the gas phase come into contact with the substrate surface during this period, foreign phase substances may precipitate or be corroded, causing the substrate surface condition to change. It deteriorates and becomes unable to form a good quality film.

従って、条件到達期間には何らかの手段によって気相ガ
ス成分が接触しないように基板表面を保護しなければな
らない。従来、この基板保栃方法として第1図に示した
ような二つの方向が知られている。第一の方法は第1図
<a)に示す方法で、反応管1に設置した試料台2に基
板3を載せて、試料台にM4を被せて気相中の成分ガス
から基板を保護する方法である。この方法では気相の膜
形成条件が最適の定常状態に達してから蓋を開いて成長
を開始し、蓋を閉じることによって成長を終了すること
によって膜形成をするものである。第2の方法は第1図
(b)に示す方法で反応管5の内部に内管6を設けて二
重構造とし、内管内に試料台7を設置し、内管に不活性
ガス等の保護ガスを流して基板表面を保護する方法であ
る。定常状態に到達後保護ガスを止めることによって気
相成分ガスを内管内に導入して成長を開始する。
Therefore, it is necessary to protect the substrate surface by some means so that the vapor phase gas components do not come into contact with it during the period when the conditions are reached. Conventionally, two methods of preserving the substrate as shown in FIG. 1 are known. The first method is the method shown in Figure 1<a), in which the substrate 3 is placed on the sample stand 2 installed in the reaction tube 1, and the sample stand is covered with M4 to protect the substrate from the component gases in the gas phase. It's a method. In this method, the film is formed by opening the lid to start growth after the gas phase film formation conditions reach an optimal steady state, and closing the lid to end the growth. The second method is the method shown in Fig. 1(b), in which an inner tube 6 is provided inside the reaction tube 5 to create a double structure, a sample stage 7 is installed inside the inner tube, and an inert gas or the like is supplied to the inner tube. This method protects the substrate surface by flowing a protective gas. After reaching a steady state, the protective gas is stopped and the vapor phase component gas is introduced into the inner tube to start growth.

しかし、上述の二つの方法はそれぞれ欠点を有する。第
1の蓋を皺せる方法は外部から蓋の開閉が容易に操作で
きなければならないため、完全な密封状態屹して、気相
中のガスの混入を完全に防止する構造にすることは不可
能であり、伺んらかの間隙がふたと試料台の接触部分に
できるためにそこからガスが混入しt基板表面を変質さ
ぜることが多い。また第2の保護ガスを用いる方法は反
応管を2′N構造にしなければならず、反応管の成長領
域が狭くなり、その分反応管を大きくしなければならな
い。才た反応管の内部構造が複雑になり、ガスの均一な
流れを達成することがむつかしく均一な膜を形成するこ
とが出来ない。
However, each of the above two methods has drawbacks. The method of wrinkling the first lid requires that the lid can be easily opened and closed from the outside, so it is impossible to create a structure that completely seals and completely prevents gas from entering the gas phase. However, since a small gap is formed at the contact area between the lid and the sample stage, gas often enters from there and alters the quality of the substrate surface. Further, in the method using the second protective gas, the reaction tube must be made into a 2'N structure, and the growth region of the reaction tube becomes narrower, so that the reaction tube must be made larger accordingly. The internal structure of a conventional reaction tube becomes complicated, making it difficult to achieve a uniform flow of gas and making it impossible to form a uniform film.

本発明は気相成長における基板表面保護に関する従来方
法の欠点を克服して基板表面を成長開始直前まで保護ず
忘基板搭載用の試料台を提供するものである。
The present invention overcomes the drawbacks of conventional methods for protecting the substrate surface during vapor phase growth and provides a sample stage for mounting a substrate without protecting the substrate surface until immediately before the start of growth.

本発明による試料台は基板を搭載する基板台と蓋とから
なる試料台で、蓋と基板台の基板搭載面とのなす空間に
必要な任意のガスを試料台の外部空間を流れるガスとは
独立に流すことができる構造のもので、第2図に具体例
の概略断面図を示す。
The sample stage according to the present invention is a sample stage consisting of a substrate stage on which a substrate is mounted and a lid, and any gas required for the space formed between the lid and the substrate mounting surface of the substrate stage is supplied to the gas flowing in the external space of the specimen stage. It has a structure that allows it to flow independently, and a schematic cross-sectional view of a specific example is shown in FIG.

試料台は基板を搭載する中空の基板台9と蓋10からな
り、基板台はガス導入管11を備えており、また基板搭
載面12に通気穴13がおいており、ガス導入管によっ
て中空部分14に導入されたガスは矢印で示すように通
気穴13より基板搭載面と蓋との間に流れて基板15を
保護するものである。また通気穴は複数形成することも
可能である。なお第2図において基板搭載面は勾配を有
しているが、これは膜の均一性を良(するためのもので
ある。
The sample stand consists of a hollow substrate stand 9 on which a substrate is mounted and a lid 10. The substrate stand is equipped with a gas introduction pipe 11, and a ventilation hole 13 is provided on the substrate mounting surface 12. The gas introduced into 14 flows through the ventilation hole 13 between the substrate mounting surface and the lid, as shown by the arrow, and protects the substrate 15. It is also possible to form a plurality of ventilation holes. Note that although the substrate mounting surface has a slope in FIG. 2, this is to improve the uniformity of the film.

本発明による試料台を用いれば保護ガスと蓋とによって
完全に基−板が保護される上に反応管を2重管をこする
ということもなく、均一で良質の膜形成が達成できる。
By using the sample stage according to the present invention, the substrate is completely protected by the protective gas and the lid, and there is no need to rub the reaction tube twice, making it possible to achieve uniform and high-quality film formation.

以下実施例によって説明する。This will be explained below using examples.

実施例 シリコン単結晶上にマグネシアスピネルMgO・M、0
3の単結晶膜を成長させた。
Example Magnesia spinel MgO.M, 0 on silicon single crystal
A single crystal film of No. 3 was grown.

第3図に、本実施例において用いた反応管とその内部に
設置された本発明による試料台の概略断面図を示す。
FIG. 3 shows a schematic cross-sectional view of the reaction tube used in this example and the sample stage according to the present invention installed inside the reaction tube.

原料室16にアルミニウム(Al)17と塩化マグネシ
ウムMgC1t18を設置し、Alはガス導入口19か
ら導入されたHClガスと反応してへec、e3ガスに
なり、蒸発したMgCd、カスと伴にキA・リアガスの
N、ガスによって成長室20に輸送され、成長室で、ガ
ス輸送管21を通して輸送されてきた炭酸ガス、及び水
素ガスと混合されて、次式の反応 2AIC1ls+MgC4+ 4CO+4#:% =>
 R4gO−AA’、O,−1−4Co +5l−J、
Clによって、マグネジ)′スピネルMgO・U、Ol
が生成されると考えられ、シリコン11(結晶上にエピ
タキシャル成長)”る。しかしこのとき気相条件がMg
O,kltO,の、/it適生酸生成条件ずれたときに
気相中の成分カスと基板表面が接触すると基板表面は腐
食を受り℃その上に生成される膜は表面平坦性の悪い白
濁した膜になる。才たMg0−AAi2(J、の生成前
に8i基板が酸化されて非晶質の二酸化シリコンSin
、ができるために、Mg0−IU、 0.は単結晶膜と
ならず多結晶膜になってし才う。
Aluminum (Al) 17 and magnesium chloride MgC1t18 are installed in the raw material chamber 16, and the Al reacts with the HCl gas introduced from the gas inlet 19 to become ec, e3 gas, and the gas is removed along with evaporated MgCd and scum. A.N in the rear gas is transported to the growth chamber 20 by the gas, and mixed with carbon dioxide gas and hydrogen gas transported through the gas transport pipe 21 in the growth chamber, resulting in the reaction of the following formula: 2AIC1ls+MgC4+ 4CO+4#:% =>
R4gO-AA', O,-1-4Co +5l-J,
By Cl, Magnesium)' Spinel MgO U, Ol
It is thought that silicon 11 (epitaxially grown on the crystal) is generated.However, at this time, the gas phase conditions are
O, kltO, /it When the suitable acid generation conditions are deviated and the component residue in the gas phase comes into contact with the substrate surface, the substrate surface will be corroded and the film formed on it will have poor surface flatness. It becomes a cloudy film. Before the formation of Mg0-AAi2(J), the 8i substrate is oxidized to form amorphous silicon dioxide Sin.
, Mg0-IU, 0. The film becomes a polycrystalline film instead of a single crystal film.

本実施例において、本発明による試料台22を用いてM
g0−AI、 O8の最適成長条件までの条件到達期間
にガス導入口23よりN、ガスを流してシリコン基板2
4を保護し、最適成長条件になったあとで、保護用のN
2ガスを止めて蓋25を開いて成長を開始した。その結
果、成長温度9800Gで、面方位(100)シリコン
単結晶上に鏡面の表面平坦性のよいMgO、Al、 0
3膜を成長することができ、X線回折法によって単結晶
膜であることを確認した。なお保護用のガスはN2ガス
に限定されることはなく他種のガスも場合によっては使
用可能である。
In this example, using the sample stage 22 according to the present invention, M
During the period when the optimum growth conditions for g0-AI and O8 are reached, N gas is flowed through the gas inlet 23 to form the silicon substrate 2.
4 and after reaching the optimal growth conditions, add protective N.
2 gas was stopped, the lid 25 was opened, and growth was started. As a result, at a growth temperature of 9800G, MgO, Al, 0 with good mirror surface flatness were grown on (100) silicon single crystal.
Three films could be grown, and it was confirmed by X-ray diffraction that they were single crystal films. Note that the protective gas is not limited to N2 gas, and other types of gas may be used depending on the case.

しかし、本発明の試料台の代りに、第1図(a)で示し
たような蓋を被せるだけの従来方法の試料台を用いた場
合には成長開始前にシリコン表面が腐食されたうえに、
5iO7層が形成されてしまい、Mg0JV、0.膜は
白濁した多結晶膜になってしまった。
However, if a conventional sample stage with a lid such as that shown in FIG. 1(a) is used instead of the sample stage of the present invention, the silicon surface is corroded before the growth starts. ,
5iO7 layer is formed, Mg0JV, 0.5iO7 layer is formed. The film became a cloudy polycrystalline film.

本発明は上記実施例のみに限定されるものでなく、各種
薄膜形成を気相法において生成する場合において適用で
きることは明らかでありきわめて汎用性のある気相成長
用試料台でありその工業的価値は大きい。
It is clear that the present invention is not limited to the above embodiments, but can be applied to various thin film formations using the vapor phase method, and is an extremely versatile sample stage for vapor phase growth, and its industrial value. is big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は気相成長において従来方法の試料台を用いた場
合の概略断面図、第2図は本発明に係る気相成長用試料
台の概略断2面図、第3図は本発明による試料台を用い
てシリコン単結晶基板上にマグネシアスピネルをエピタ
キシャル成長した本実施例の概略の説明図である。
FIG. 1 is a schematic cross-sectional view of a conventional sample stage used in vapor phase growth, FIG. 2 is a schematic cross-sectional view of a sample stage for vapor phase growth according to the present invention, and FIG. 3 is a schematic cross-sectional view of a sample stage according to the present invention. FIG. 2 is a schematic explanatory diagram of this example in which magnesia spinel was epitaxially grown on a silicon single crystal substrate using a sample stage.

Claims (1)

【特許請求の範囲】 1、基板を搭載する基板台と該基板台の基板搭載面を被
う蓋とからなる試料台で、該蓋と該基板台の基板搭載面
のつくる空間に任意のガスを該試料台め外部空間を流れ
るガスとは独立に流すことができる構造であることを特
徴とする気相成長用試料台 2、基板台が中空で側面にガス導入[:1、基板搭載面
にガスの通気穴が備えられており、該ガス導入口から該
中空部分に導入されたガスが該通気穴を通って基板搭載
面と蓋とのつくる空間を流れる構造であることを特徴と
する特許請求の範囲第一/項記載の気相成長用試料台 3、基板台の基板搭載面が勾配を有していることを特徴
とする特許請求の範囲第1項記載の気相成長用試料台
[Claims] 1. A sample stage consisting of a substrate stage on which a substrate is mounted and a lid that covers the substrate mounting surface of the substrate stage, and a space formed by the lid and the substrate mounting surface of the substrate stage is filled with any gas. Sample stand 2 for vapor phase growth characterized by having a structure that allows gas to flow through the sample stand independently of the gas flowing in the external space, the substrate stand is hollow and gas is introduced into the side [:1, substrate mounting surface] is provided with a gas ventilation hole, and the gas introduced from the gas introduction port into the hollow portion flows through the ventilation hole into the space created by the board mounting surface and the lid. The sample stand 3 for vapor phase growth according to claim 1/claim 1, wherein the substrate mounting surface of the substrate stand has a slope, the sample for vapor phase growth according to claim 1 stand
JP13605282A 1982-08-04 1982-08-04 Sample board for vapor growth Pending JPS5927531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13605282A JPS5927531A (en) 1982-08-04 1982-08-04 Sample board for vapor growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13605282A JPS5927531A (en) 1982-08-04 1982-08-04 Sample board for vapor growth

Publications (1)

Publication Number Publication Date
JPS5927531A true JPS5927531A (en) 1984-02-14

Family

ID=15166049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13605282A Pending JPS5927531A (en) 1982-08-04 1982-08-04 Sample board for vapor growth

Country Status (1)

Country Link
JP (1) JPS5927531A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117408A (en) * 1985-11-18 1987-05-28 Casio Comput Co Ltd Auto-tuning device
WO2005106072A3 (en) * 2004-04-27 2006-06-01 Ardenne Anlagentech Gmbh Thermal vacuum deposition method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117408A (en) * 1985-11-18 1987-05-28 Casio Comput Co Ltd Auto-tuning device
WO2005106072A3 (en) * 2004-04-27 2006-06-01 Ardenne Anlagentech Gmbh Thermal vacuum deposition method and device

Similar Documents

Publication Publication Date Title
US4661176A (en) Process for improving the quality of epitaxial silicon films grown on insulating substrates utilizing oxygen ion conductor substrates
US7220314B2 (en) Single crystalline aluminum nitride film, method of forming the same, base substrate for group III element nitride film, light emitting device and surface acoustic wave device
JPS6364993A (en) Method for growing elemental semiconductor single crystal thin film
Ehrentraut et al. Reviewing recent developments in the acid ammonothermal crystal growth of gallium nitride
Sochacki et al. Examination of growth rate during hydride vapor phase epitaxy of GaN on ammonothermal GaN seeds
Paszkowicz et al. Lattice parameters, density and thermal expansion of InN microcrystals grown by the reaction of nitrogen plasma with liquid indium
US7338555B2 (en) Highly crystalline aluminum nitride multi-layered substrate and production process thereof
JPS5927531A (en) Sample board for vapor growth
Siche et al. Growth of bulk gan from gas phase
JP2007153634A (en) Aluminum nitride single crystal laminated substrate and method of manufacturing aluminum nitride single crystal laminated substrate
JPH033233A (en) Growth method for compound semiconductor single crystal thin film
Faulkner et al. Gallium nitride formed by vapour deposition and by conversion from gallium arsenide
Takekawa et al. Growth temperatures and the excess chlorine effect of N-polar GaN growth via tri-halide vapor phase epitaxy
US20110212013A1 (en) Addition of hydrogen and/or nitrogen containing compounds to the nitrogen-containing solvent used during the ammonothermal growth of group-iii nitride crystals
Lampe-Önnerud et al. Chemical vapour deposition of copper on Si (111) and SiO2 substrates
JPH0689874A (en) Manufacture of semiconductor device
JPH11246299A (en) Formation of diamond film
Ishii et al. Growth of single crystals of aluminum nitride
JPS5924760B2 (en) Vapor phase growth method of magnesia spinel
JP2007039271A (en) Hydride vapor growth system, method for producing group iii nitride semiconductor substrate and group iii nitride semiconductor substrate
JPS609143A (en) Vapor growth method for insulating material
JPS60210837A (en) Crystal substrate for semiconductor device
JPS5919917B2 (en) epitaxial epitaxy
JPS62281417A (en) Vapor phase growth device
JP2706967B2 (en) Method of forming single crystal magnesia spinel film