JPS5927314A - Operation controlling method in detecting obstacle, of unattended cargo work vehicle - Google Patents

Operation controlling method in detecting obstacle, of unattended cargo work vehicle

Info

Publication number
JPS5927314A
JPS5927314A JP57136488A JP13648882A JPS5927314A JP S5927314 A JPS5927314 A JP S5927314A JP 57136488 A JP57136488 A JP 57136488A JP 13648882 A JP13648882 A JP 13648882A JP S5927314 A JPS5927314 A JP S5927314A
Authority
JP
Japan
Prior art keywords
obstacle
vehicle
speed
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57136488A
Other languages
Japanese (ja)
Inventor
Seijiro Iwaoka
岩岡 聖二郎
Mineo Ozeki
尾関 「峰」夫
Masaru Kawamata
川俣 勝
Takashi Noda
野田 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Meidensha Corp
Priority to JP57136488A priority Critical patent/JPS5927314A/en
Publication of JPS5927314A publication Critical patent/JPS5927314A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

PURPOSE:To raise the work efficiency, by controlling an operation of a vehicle in accordance with a distance between a vehicle and an obstacle, and a car speed, so that it does not occur that the vehicle stops whenever an obstacle is detected. CONSTITUTION:A distance signal S1 between a vehicle and an obstacle, from an obstacle detecting sensor 6 installed to the vehicle, and a car speed signal S2 from a car speed detecting sensor 9 are supplied to a CPU 10, and are compared and discriminated. Subsequently, the CPU 10 decelerates a car speed in accordance with the distance signal and the car speed signal, and thereafter, outputs a damping signal and stops the vehicle. Also, when the obstacle is shunted in the course of deceleration or in the course of damping, the vehicle is reset to its original running state. By controlling an operation of the vehicle in this way, it is unnecessary to stop the vehicle whenever an obstacle is detected, therefore, the work efficiency can be raised.

Description

【発明の詳細な説明】 この発明は無人荷役作業車両における障害物検出時の運
転制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a driving control method when an obstacle is detected in an unmanned cargo handling vehicle.

従来、予め作業現場に敷設した誘導ケーブルに沿って無
人誘導される無人フォークリフトにおいては、その後端
部にバンパーを設けておき、このバンパーが障害物にあ
たるとリミットスイッチ等が作動して車両停止を行なう
ようにしていた。ところが、この障害物検出時における
停止装置は、特に高速で後進中にバンパーが障害物に当
ってから停止動作を行なうと、制動距離が長くなって車
体が障害物に衝突するという危険があった。又、バンパ
ーが左右及び上下の幅の制約を受けるので、障害物の検
出領域を広くできず、このため車両が後進中に非制動状
態のまま障害物に致突するという危険性があった。
Conventionally, unmanned forklifts that are guided automatically along guidance cables that have been laid out in advance at work sites have a bumper installed at the rear end, and when this bumper hits an obstacle, a limit switch or the like is activated to stop the vehicle. That's what I was doing. However, this stopping device when detecting an obstacle poses a risk of the vehicle body colliding with the obstacle due to a longer braking distance, especially if the vehicle stops after the bumper hits an obstacle while reversing at high speed. . Furthermore, since the bumper is subject to constraints on the horizontal and vertical widths, it is not possible to widen the area for detecting obstacles, and there is therefore a risk that the vehicle will collide with an obstacle while the vehicle is in an unbraked state while traveling backwards.

この欠陥を解消するため、従来、車両の後部に障害物を
検出する超音波式の障害物センサを設けておき、障害物
が検出されたとき車両を停止させるようにした装置があ
った。ところが、この装置には障害物を検出するたびに
車両停止を行なうので、停止頻度が高くなって作業能率
が低下するばかりでなく高速から急激に停止に切換えら
れた場合には、フォーク上の積荷が荷くずれを起すとい
う欠陥があった。
In order to solve this problem, there has conventionally been a device in which an ultrasonic obstacle sensor for detecting an obstacle is provided at the rear of a vehicle, and the vehicle is stopped when an obstacle is detected. However, since this device stops the vehicle every time it detects an obstacle, not only does the frequency of stops increase and work efficiency decreases, but also the load on the forks may be damaged if the system suddenly switches from high speed to stop. However, there was a defect that caused the load to collapse.

この発明の目的は無人荷役作業車両に装着された超音波
式の障害物センサから出力された車両と障害物間の距離
信号と、車速センサから出力された車速信号とをコンピ
ュータにより比較判別し、前記両信号に応じて車速を減
速してから停止させ、障害物が減速途中あるいは制動途
中で退避したときにはもとの走行状態に復帰させること
により、障害物検出時の停止動作を少くして作業能率を
向−ヒさせ、荷くずれをなくして安全性を向上させるこ
とができる無人荷役作業車両における障害物検出時の運
転制御方法を提供することにある。
The purpose of this invention is to use a computer to compare and determine a distance signal between the vehicle and the obstacle output from an ultrasonic obstacle sensor attached to an unmanned cargo handling vehicle and a vehicle speed signal output from a vehicle speed sensor. By decelerating the vehicle speed in response to both of the above signals and then stopping the vehicle, and returning to the original running state when an obstacle retreats during deceleration or braking, work can be done with fewer stopping operations when an obstacle is detected. It is an object of the present invention to provide a driving control method when an obstacle is detected in an unmanned cargo handling vehicle, which can improve efficiency, prevent cargo from collapsing, and improve safety.

以下、この発明を無人フォークリフトに具体化した一実
施例を第1図及び第2図について説明すると、図面中1
は予め地面Eに敷設した誘導ケーブル(図示略)に沿っ
て無人誘導される無人フォークリフトであって、その車
体2の前部にはマスト3が立設されており、該マスト3
にはリフトシリンダ4により昇降動作されるフォーク5
が装着されている。このフォークリフト1は制動時の積
荷の安定性を良くするため、通常の走行時には後進され
るようになっている。
Hereinafter, one embodiment of this invention in an unmanned forklift truck will be explained with reference to FIGS. 1 and 2.
is an unmanned forklift that is guided unmanned along a guidance cable (not shown) laid in advance on the ground E, and has a mast 3 erected at the front of the vehicle body 2;
A fork 5 is moved up and down by a lift cylinder 4.
is installed. This forklift 1 is designed to move backward during normal driving in order to improve the stability of the load during braking.

前記車体2の後部には、フォークリフトの後進中に障害
物Mが後方にあるか否かを検出するための障害物センサ
6が設置されている。この障害物センサ6は第2図に示
すように超音波を照射する発信器7と、障害物Mからの
反射波を受ける受信器8とを備え、発信から受信までの
時間を計測することにより、車体2の後端から障害物M
までの距離りに応じた信号を出力するようにしている。
An obstacle sensor 6 is installed at the rear of the vehicle body 2 to detect whether or not an obstacle M is present while the forklift is moving backward. As shown in FIG. 2, this obstacle sensor 6 includes a transmitter 7 that emits ultrasonic waves and a receiver 8 that receives reflected waves from the obstacle M, and measures the time from transmission to reception. , an obstacle M from the rear end of the vehicle body 2
It outputs a signal depending on the distance.

一方、フォークリフト1の駆動モータ(図示略)には、
その回転数を計測して車速を検出するための車速センサ
9が設けられている。前記障害物センサ6と車速センサ
9にはコンピュータ10が接続されていて、前記距離信
号S1と車速センサ9から出力される車速信号S2とを
比較判別して各種の動作信号を出力するようにしている
。該コンピュータ10にはオートアクセル11が接続さ
れていて、コンピュータ10からの変速信号S3により
車速を低速(0,5&肩/11)、中速(21m/11
)および高速(4km/ f+ )の3段階に切換える
ことができるようにしている。
On the other hand, the drive motor (not shown) of the forklift 1 includes
A vehicle speed sensor 9 is provided to measure the rotational speed and detect the vehicle speed. A computer 10 is connected to the obstacle sensor 6 and the vehicle speed sensor 9, and compares and discriminates the distance signal S1 with a vehicle speed signal S2 output from the vehicle speed sensor 9, and outputs various operation signals. There is. An auto accelerator 11 is connected to the computer 10, and the vehicle speed is changed from low speed (0, 5 & shoulder/11) to medium speed (21 m/11) according to the speed change signal S3 from the computer 10.
) and high speed (4km/f+).

又、前記コンピュータ10にはフートブレーキ12を作
動するためのソレノイド13が接続され、コンピュータ
10からの制動信号S4により作動されるようにしてい
る。
Further, a solenoid 13 for operating the foot brake 12 is connected to the computer 10, and is operated by a braking signal S4 from the computer 10.

同じく前記コンピュータ10には、前記駆動モータ(図
示路)に装着された無励磁作動型の電磁ブレーキ14の
ソレノイド15が接続されている。
Similarly, a solenoid 15 of a non-excited electromagnetic brake 14 mounted on the drive motor (the path shown) is connected to the computer 10.

そして、ツー1゛ブレーキ12が作動すると一定時間後
電磁ブレーキ14の励磁が解かれ車両の制動をこのフー
トブレーキ12及び電磁ブレーキ14にて行なう2重安
全ブレーキになっている。
When the second brake 12 is activated, the electromagnetic brake 14 is de-energized after a certain period of time, and the vehicle is braked by the foot brake 12 and the electromagnetic brake 14, creating a dual safety brake.

さらに、前記コンピュータ10にはホーン16が接続さ
れ、でいて、前記障害物センサ6により障害物が検出さ
れたとき、該コンピュータから警報信号s6が出力され
、危険状態を報知するようになっている。
Furthermore, a horn 16 is connected to the computer 10, and when an obstacle is detected by the obstacle sensor 6, the computer outputs an alarm signal s6 to notify a dangerous situation. .

なお、フォークリフトの後端下側にはバンパー17が装
着され、該バンパー17が障害物に接触すると、車両の
制動停止が行なわれるようにしている。
A bumper 17 is attached to the lower rear end of the forklift, and when the bumper 17 comes into contact with an obstacle, the vehicle is braked to a stop.

次に、前記のように構成した制御装置についてその作用
を説明する。
Next, the operation of the control device configured as described above will be explained.

今、フォークリフトが高速で後進しているときに車体2
の後方と障害物Mとの距離りが2mになると、コンピュ
ータ10から変速(減速)信号S3が出力されてオート
アクセル11により高速から低速に減速されるとともに
、警報信号S6によりホーン16が作動され、危険が報
知される。又、フォークリフトが低速で後進して前記距
離りが1mになると、コンピュータ10から駆動モータ
(図示路)へ停止信号が出力されるとともに制動信号S
4が出力されてフートブレーキ12と電磁ブレーキ14
が作動され、このためフォークリフトは一定距離進んで
停止される。
Now, when the forklift is reversing at high speed,
When the distance between the rear of the vehicle and the obstacle M becomes 2 m, the computer 10 outputs a speed change (deceleration) signal S3, the auto accelerator 11 decelerates the vehicle from high speed to low speed, and the alarm signal S6 activates the horn 16. , the danger is announced. Further, when the forklift moves backward at low speed and the distance becomes 1 m, the computer 10 outputs a stop signal to the drive motor (as shown in the diagram) and also outputs a brake signal S.
4 is output and the foot brake 12 and electromagnetic brake 14
is activated, so that the forklift truck travels a certain distance and then stops.

一方、前記障害物センサ6から2mの距離信号S1が出
力されて、高速から低速に切換えられた状態で、障害物
が車体2から再び2m以上離れると、コンピュータ10
から変速(増速)信号S3が出力されオートアクセル1
1が低速から高速へ切換えられ、元の高速状態に復帰さ
れ、これと同時に警報信号S6も解除されてホーン16
が停止される。同様に障害物センサ6から1mの距離信
号81が出力されてフォークリフトが制動状態にあると
きに、障害物が車体から1m以上離れると、制動信号S
4が解除されるとともに、コンピュータ10から駆動モ
ータへ作動信号が出力されて低速走行に復帰され、さら
に@1lILが2m以上離れると、変速(増速)信号S
8により中速から高速へと復帰され、これと同時に警報
信号86が解除されホーン16が停止される。
On the other hand, when the distance signal S1 of 2 m is output from the obstacle sensor 6 and the obstacle is again separated from the vehicle body 2 by 2 m or more while the high speed is switched to the low speed, the computer 10
A gear change (speed increase) signal S3 is output from the auto accelerator 1.
1 is switched from low speed to high speed and returned to the original high speed state, and at the same time, the alarm signal S6 is also canceled and the horn 16 is switched from low speed to high speed.
will be stopped. Similarly, when the obstacle sensor 6 outputs a distance signal 81 of 1 m and the forklift is in a braking state, if the obstacle is 1 m or more away from the vehicle body, a braking signal S
4 is released, an operating signal is output from the computer 10 to the drive motor to return to low-speed driving, and when @1lIL is further away by 2 m or more, a speed change (speed increase) signal S is released.
8, the speed is returned from medium speed to high speed, and at the same time, the alarm signal 86 is canceled and the horn 16 is stopped.

次に、フォークリフトが中速で後進しているときに、障
害物センサ6が障害物を検出した場合について説明する
と、このときは前記距離信号81が2 nlになっても
減速されず、信号S1が1mになると、コンピュータ1
0から変速(減速)信号S3が出力され中速から低速に
減速されるとともに、警報信号S6によりホーン16が
作動される。
Next, a case will be explained in which the obstacle sensor 6 detects an obstacle while the forklift is moving backward at medium speed. When becomes 1m, computer 1
A speed change (deceleration) signal S3 is output from 0 to reduce the speed from medium speed to low speed, and the horn 16 is activated by an alarm signal S6.

その後前記距離信号S1が0.5mになると、コンピュ
ータ10から停止信号が出力されて駆動モータが停止さ
れるとともに、制動信号S4が出力されフートブレーキ
12、電磁ブレーキ14が作動される。
Thereafter, when the distance signal S1 reaches 0.5 m, a stop signal is output from the computer 10 to stop the drive motor, and a braking signal S4 is output to activate the foot brake 12 and the electromagnetic brake 14.

前記障害物センサ6から1mの距離信号81が出力され
て、中速から低速に切換えられた状態で、前記距離りが
127z以上になると、コンピュータ10から変速(増
速)信号S3が出力され低速から中速に切換えられ、ホ
ーン16が停止される。同様にセンサ6から0.5 m
の距離信号S1が出力されてフォークリフトが制動状態
において前記距離信号SlがQ、5m1以上になると、
制動信号s4が解かれるとともに、コンピュータ1oが
ら駆動モーフ(図示路)へ作動信号が出力されてフォー
クリフトが低速で後進され、さらに変速(増速)信号S
3により低速から中速に増速され、これと同時にホーン
16が停止される。
When the distance signal 81 of 1 m is output from the obstacle sensor 6 and the distance is 127z or more in a state where the speed is changed from medium speed to low speed, the computer 10 outputs a speed change (speed increase) signal S3 and the speed is changed to low speed. The speed is switched from to medium speed, and the horn 16 is stopped. Similarly, 0.5 m from sensor 6
When the distance signal S1 is output and the forklift is in a braking state, when the distance signal S1 becomes Q,5m1 or more,
When the braking signal s4 is released, an operating signal is output from the computer 1o to the drive morph (the path shown) to move the forklift backwards at low speed, and a speed change (speed increase) signal S is output.
3, the speed is increased from low speed to medium speed, and at the same time, the horn 16 is stopped.

次に、フォークリフトが低速で後進しているときに、障
害物センサ6が障害物Mを検出したときには、該センサ
6から出力される距離信号s1が1772になると、コ
ンピュータ1oがら警報信号S6が出力されてホーン1
6が作動されるが、最低速度であるから減速は行なイつ
れない。その後、距離信号S1が0.5mになるとコン
ピュータ1oがら停止信号が出力されて駆動モータが停
止されるとともに、制動信号s4が出力されて制動が開
始され、フォークリフ!・は距離りが0.35mのとこ
ろで停止される。(ホーン16は作動状態を断続する。
Next, when the obstacle sensor 6 detects an obstacle M while the forklift is moving backward at low speed, when the distance signal s1 output from the sensor 6 reaches 1772, the computer 1o outputs an alarm signal S6. horn 1
6 is activated, but since it is at the lowest speed, deceleration cannot be performed. After that, when the distance signal S1 reaches 0.5 m, a stop signal is output from the computer 1o to stop the drive motor, and a braking signal s4 is output to start braking, and the forklift!・is stopped at a distance of 0.35m. (The horn 16 is intermittently activated.

)この運転制御の場合にも、障害物が車体2からQ、5
7/J以上離れると車両はホーンを鳴らしながら低速に
復帰し、17/j以上はなれるとホーンの作動を停止す
る。
) Also in the case of this driving control, the obstacles are from vehicle body 2 to Q and 5.
If the vehicle goes beyond 7/J, the vehicle will return to low speed while sounding its horn, and if it goes beyond 17/J, the horn will stop operating.

以上述へたフォークリフトの運転制御を総めると次表の
ようになる。
The forklift operation control described above is summarized in the following table.

このように本発明実施例においては、障害物センサ6か
らの距離信号S1と車速センサ9がらの車速信号S2と
をコンピュータ1oにより比較判別し、距離信号s1の
長短及び車速信号s2の高、中に応じて減速してから制
動を行なうようにしたので、障害物の一時的な通り抜け
の度に制動をかけてフォークリフトを停止させなくても
よくなり、それだけ作業能率を向上でき、停止による荷
くすれも少くすることができる。
In this way, in the embodiment of the present invention, the computer 1o compares and determines the distance signal S1 from the obstacle sensor 6 and the vehicle speed signal S2 from the vehicle speed sensor 9, and determines the length of the distance signal s1 and the high and medium speed signals of the vehicle speed signal s2. Since the forklift is decelerated and then braked according to the situation, it is no longer necessary to apply braking to stop the forklift every time it temporarily passes through an obstacle, which improves work efficiency and reduces the burden caused by stopping. You can also reduce the amount of slippage.

なお、本発明は次のような実施例で具体化することも可
能である。
Note that the present invention can also be embodied in the following embodiments.

(1)  フォークリフトのマスト3上部に対し前方及
び/又は後方の障害物センサ(図示路)を装着して、該
センサからの距離信号を前記コンピュータ10に入力し
、この距離信号の変化に基いて前述した運行制御動作と
ほぼ同様の制御動作を行なうようにすること。
(1) A front and/or rear obstacle sensor (illustrated path) is attached to the upper part of the mast 3 of the forklift, a distance signal from the sensor is input to the computer 10, and based on changes in this distance signal, To perform a control operation that is almost the same as the operation control operation described above.

(2)前記ホーン16の代わりに又はホーン16ととも
に警報ランプを点灯すること。又ホーン16及び警報ラ
ンプを省略すること。
(2) Lighting a warning lamp instead of or together with the horn 16. Also, the horn 16 and warning lamp may be omitted.

以上詳述したように本発明は、無人荷役作業車両に対し
、前方及び/又は後方の障害物を検出するための超音波
式のセンサから出力される車両と障害物の距離信号及び
車速信号に基いて車両の運行を制御するようにしたので
、障害物の検出のたびに一々車両を停止させなくてもよ
くなり、従ってそれだけ作業能率を向上させ、荷くずれ
を少くすることができる効果がある。
As detailed above, the present invention provides an unmanned cargo handling vehicle with a distance signal and a vehicle speed signal between the vehicle and the obstacle output from an ultrasonic sensor for detecting obstacles in front and/or rear. Since the operation of the vehicle is controlled based on the system, there is no need to stop the vehicle every time an obstacle is detected, which has the effect of improving work efficiency and reducing the amount of cargo shifting. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の走行制御方法に使用される無人フォー
クリフトの一実施例を示す右側面図、第2図は制御装置
を示すブロック回路図である。 障害物センサ6、車速センサ9、コンピュータ10、オ
ートアクセル11、フートブレーキ12、ホーン16、
距離信号S1、車速信号S2、変速信号S3、制動信号
S4、距離L、障害物M0特許出願人  株式会社豊田
自動織機製作所株式会社 明  電  舎
FIG. 1 is a right side view showing an embodiment of an unmanned forklift used in the traveling control method of the present invention, and FIG. 2 is a block circuit diagram showing a control device. Obstacle sensor 6, vehicle speed sensor 9, computer 10, auto accelerator 11, foot brake 12, horn 16,
Distance signal S1, vehicle speed signal S2, gear change signal S3, braking signal S4, distance L, obstacle M0 Patent applicant Toyota Industries Corporation Meidensha Co., Ltd.

Claims (1)

【特許請求の範囲】 1 誘導ケーブルに沿って無人誘導される無人荷役作業
車両に設けられた前方及び/又は後方の障害物を検出す
るための超音波式障害物センサから出力される車両と障
害物間の距離信号と、車速センサから出力される車速信
号とをコンピュータにより比較判別し、前記距離信号が
一定値になったら車速を減速させ、該距離信号がさらに
小さくな−)たらコンピュータから制動信号を出力して
車両を停止させ、障害物が退避して距離信号が大きくな
ったときには、車速を増速しあるいは制動を中止して元
の走行状態に復帰動作させることを特徴とする無人荷役
作業車両における障害物検出時の運転制御方法。 2 無人荷役作業車両が障害物に一定距離接近したらコ
ンピュータから警報信号を出力しホーン及び/又は警報
ランプを作動させるようにした特許請求の範囲第1項記
載の無人荷役作業車両における障害物検出時の運転制御
方法。 8 高速、中速および低速の3段階に変速し得るフォー
クリフトが高速で後進しているときに、障害物センサが
約2m先方の障害物を検出したら、車速を高速から低速
に減速し、その後前記センサから約1mの距離信号が出
力されたらコンピュータから制動信号を出力するように
した特許請求の範囲第1項記載の無人荷役作業車両にお
ける障害物検出時の運転制御方法。 4 高速、中速および低速の3段階に変速し得るフォー
クリフトが中速で後進しているときに、障害物センサか
ら約1mの距離信号が出力されたらコンピュータから変
速信号を出力して中速から低速に減速し、その後前記セ
ンサから約Q、5772の距前信号が出力されたときに
は、コンピュータから制動信号を出力するようにした特
許請求の範囲第1項記載の無人荷役作業車両における障
害物検出時の運転制御方法。 5 低速で後進しているときに障害物センサから約0.
5mの距離信号が出力されたらコンピュータから制動信
号を出力するようにした特許請求の範囲第1項記載の無
人荷役作業車両における障害物検出時の運転制御方法。
[Scope of Claims] 1. Vehicle and obstacles output from an ultrasonic obstacle sensor for detecting obstacles in front and/or rear provided on an unmanned cargo handling vehicle that is guided along a guidance cable. The computer compares and determines the distance signal between objects and the vehicle speed signal output from the vehicle speed sensor, and when the distance signal reaches a certain value, the vehicle speed is decelerated, and when the distance signal becomes even smaller, the computer applies the brakes. An unmanned cargo handling system that outputs a signal to stop the vehicle, and when the distance signal increases due to the removal of an obstacle, increases the vehicle speed or stops braking to return to the original running state. A driving control method when detecting an obstacle in a work vehicle. 2. When an obstacle is detected in the unmanned cargo handling vehicle according to claim 1, the computer outputs a warning signal and activates a horn and/or a warning lamp when the unmanned cargo handling vehicle approaches an obstacle by a certain distance. operation control method. 8. When a forklift truck that can change speeds in three stages: high speed, medium speed, and low speed is moving backwards at high speed, if the obstacle sensor detects an obstacle approximately 2 meters ahead, the vehicle speed is reduced from high speed to low speed, and then 2. A driving control method for an unmanned cargo handling vehicle when an obstacle is detected as claimed in claim 1, wherein a braking signal is output from the computer when a distance signal of about 1 m is output from the sensor. 4 When a forklift truck that can change speeds in three stages: high speed, medium speed, and low speed is moving backwards at medium speed, if the obstacle sensor outputs a distance signal of about 1 m, the computer outputs a speed change signal and changes from medium speed to medium speed. Obstacle detection in an unmanned cargo handling vehicle according to claim 1, wherein a braking signal is output from a computer when the sensor decelerates to a low speed and then a distance signal of about Q, 5772 is output from the sensor. Time operation control method. 5 Approximately 0.0 from the obstacle sensor when reversing at low speed.
2. A driving control method for an unmanned cargo handling vehicle when an obstacle is detected as set forth in claim 1, wherein a braking signal is output from the computer when a distance signal of 5 m is output.
JP57136488A 1982-08-05 1982-08-05 Operation controlling method in detecting obstacle, of unattended cargo work vehicle Pending JPS5927314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136488A JPS5927314A (en) 1982-08-05 1982-08-05 Operation controlling method in detecting obstacle, of unattended cargo work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136488A JPS5927314A (en) 1982-08-05 1982-08-05 Operation controlling method in detecting obstacle, of unattended cargo work vehicle

Publications (1)

Publication Number Publication Date
JPS5927314A true JPS5927314A (en) 1984-02-13

Family

ID=15176312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136488A Pending JPS5927314A (en) 1982-08-05 1982-08-05 Operation controlling method in detecting obstacle, of unattended cargo work vehicle

Country Status (1)

Country Link
JP (1) JPS5927314A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180010U (en) * 1984-05-08 1985-11-29 トヨタ自動車株式会社 Automatic guided vehicle speed control device
JPS61127014A (en) * 1984-11-27 1986-06-14 Mitsubishi Electric Corp Collision preventing device for unmanned truck
JPS6284803U (en) * 1985-11-15 1987-05-30
JPS6316309A (en) * 1986-07-08 1988-01-23 Yamaha Motor Co Ltd Drive control system for unmanned traveling object
JPS63161300U (en) * 1987-04-08 1988-10-21
JPS6466713A (en) * 1987-09-08 1989-03-13 Toyoda Automatic Loom Works Method and device for drive control of multiple unmanned vehicles
JPH0772249A (en) * 1993-09-03 1995-03-17 Nec Corp Unmanned carrier vehicle
JP2018086218A (en) * 2016-11-30 2018-06-07 シーバイエス株式会社 Cleaning device and control method of the same
JP2019105995A (en) * 2017-12-12 2019-06-27 株式会社豊田自動織機 Automatic operation forklift
JP2022035123A (en) * 2020-08-20 2022-03-04 株式会社豊田自動織機 Notification device of forklift

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835555B1 (en) * 1969-01-30 1973-10-29
JPS5140233B1 (en) * 1968-08-29 1976-11-02

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140233B1 (en) * 1968-08-29 1976-11-02
JPS4835555B1 (en) * 1969-01-30 1973-10-29

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60180010U (en) * 1984-05-08 1985-11-29 トヨタ自動車株式会社 Automatic guided vehicle speed control device
JPH0353287Y2 (en) * 1984-05-08 1991-11-21
JPS61127014A (en) * 1984-11-27 1986-06-14 Mitsubishi Electric Corp Collision preventing device for unmanned truck
JPS6284803U (en) * 1985-11-15 1987-05-30
JPS6316309A (en) * 1986-07-08 1988-01-23 Yamaha Motor Co Ltd Drive control system for unmanned traveling object
JPS63161300U (en) * 1987-04-08 1988-10-21
JPS6466713A (en) * 1987-09-08 1989-03-13 Toyoda Automatic Loom Works Method and device for drive control of multiple unmanned vehicles
JPH0772249A (en) * 1993-09-03 1995-03-17 Nec Corp Unmanned carrier vehicle
JP2018086218A (en) * 2016-11-30 2018-06-07 シーバイエス株式会社 Cleaning device and control method of the same
JP2019105995A (en) * 2017-12-12 2019-06-27 株式会社豊田自動織機 Automatic operation forklift
JP2022035123A (en) * 2020-08-20 2022-03-04 株式会社豊田自動織機 Notification device of forklift

Similar Documents

Publication Publication Date Title
CA2255111C (en) Aerial work platform with pothole and/or obstacle detection and avoidance system
JP4447098B2 (en) Device for determining the distance between the rear side of a vehicle and a trailer connected to the rear side thereof, and a stabilization device for a connected vehicle
US6267194B1 (en) Brake control system for a motor vehicle
CN1755331B (en) Method for car stop assistance
KR101328016B1 (en) Collision avoidance apparatus for car based on laser sensor and ultrasonic sensor and collision avoidance apparatus thereof
JPS5927314A (en) Operation controlling method in detecting obstacle, of unattended cargo work vehicle
JP6654820B2 (en) Driving support device and driving support method
JPH07291063A (en) Device for alarming distance to stationary material
JP2836314B2 (en) Self-propelled bogie collision prevention control method
KR20120067759A (en) The collision avoiding method according to method collision risk degree at low-speed and short distance in vehicle
JPH1143299A (en) Carrier vehicle
CN219469618U (en) Anti-collision brake system for reversing forklift and forklift
JP2012116269A (en) Vessel-rising travel preventing apparatus for dump truck
KR0150423B1 (en) Auto-brake device of a vehicle
CN113321160B (en) Anti-falling system and method for forklift in platform area
JP2910245B2 (en) Driverless vehicle safety devices
JP2004182100A (en) Safety means of cargo work vehicle
KR20090039634A (en) Vehicle
JP2788524B2 (en) Obstacle detection device for unmanned forklift
JPS62269898A (en) Forward detector for unmanned forklift
JPH05170399A (en) Overturn preventive device for industrial vehicle
KR100187130B1 (en) Anti-collision system
KR20140140444A (en) rear observation equipment of the high work vehicle
AU2021456002A1 (en) A method for controlling a maximum allowed speed of an autonomous vehicle
JP3308293B2 (en) Vehicle safety equipment