JPS592727B2 - How to recover zinc from zinc dross - Google Patents

How to recover zinc from zinc dross

Info

Publication number
JPS592727B2
JPS592727B2 JP55080447A JP8044780A JPS592727B2 JP S592727 B2 JPS592727 B2 JP S592727B2 JP 55080447 A JP55080447 A JP 55080447A JP 8044780 A JP8044780 A JP 8044780A JP S592727 B2 JPS592727 B2 JP S592727B2
Authority
JP
Japan
Prior art keywords
melt
furnace
dross
zinc
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55080447A
Other languages
Japanese (ja)
Other versions
JPS575828A (en
Inventor
博史 中垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Kinzoku Kogyosho KK
Original Assignee
Hayashi Kinzoku Kogyosho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Kinzoku Kogyosho KK filed Critical Hayashi Kinzoku Kogyosho KK
Priority to JP55080447A priority Critical patent/JPS592727B2/en
Publication of JPS575828A publication Critical patent/JPS575828A/en
Publication of JPS592727B2 publication Critical patent/JPS592727B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は、品質、純度のバラツキ、熱効率、作業能率
、作業環境および安全性等の改善を目的とする亜鉛ドロ
スから亜鉛を回収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering zinc from zinc dross for the purpose of improving quality, purity variation, thermal efficiency, working efficiency, working environment, safety, etc.

従来溶融亜鉛メッキ工程で発生するドロス(うきかす:
浮浮)を再溶解して亜鉛を回収するには■フラックス(
融剤)を用いて金属と金属酸化物とを分離させる方法、
■鉄、アルミニウム等の不純物金属を合金とし、純度の
高い亜鉛と分離する方法、■温度差に基づいて生ずる融
液の比重差によって不純物を分離する方法、または、■
融液中に空気等を吹き込んで不純物を酸化させて分離す
る方法(通常ドロツシングと呼ぶ)等が広く利用されて
いる。
Dross generated during the conventional hot-dip galvanizing process
To recover zinc by redissolving the flux (
A method of separating a metal and a metal oxide using a flux (fluxing agent),
■ A method in which impurity metals such as iron and aluminum are made into an alloy and separated from highly pure zinc, ■ A method in which impurities are separated by the difference in specific gravity of the melt produced based on the temperature difference, or ■
A widely used method is to oxidize and separate impurities by blowing air into the melt (usually called drossing).

しかし、■の方法においては、使用したフラックスが多
量の有害な煙やガスを発生し、同時に周辺の温度を急上
昇させるため、作業環境がきわめて悪いこと、■の方法
においては、特にポット炉(坩堝炉)を用いるときは、
ト冶ス塊に付着した水分が溶解時に水蒸気爆発を起し、
原料配合が容易でなく、また回収金属の品質が不安定で
不良品の発生率が高いこと、■の方法においては、特に
回分方式によるときは、一度高温で溶解したものを静置
して冷却するにはかなりの時間を必要とし、その上、比
重差によって分離した最上層(不純物層)を汲み取って
取り除く際に、つぎの層(純度の高い良品層)のかなり
の量をも汲み取らなければならず、良品の収率が悪く、
かつ、ロット内の品位のバラツキも大きいこと、さらに
■の方法においては、加圧空気の設備を必要とし、吹き
込んだ空気によって亜鉛の酸化をも誘発し、生じた気泡
が融液表面で破裂することによって高温物の飛散が激し
くて安全上好ましくないこと等、従来法のそれぞれには
多くの欠点がある。
However, in method (■), the flux used generates a large amount of harmful smoke and gas, and at the same time the surrounding temperature rises rapidly, resulting in an extremely poor working environment. When using a furnace),
When the water adhering to the tojisu lump melts, it causes a steam explosion,
It is not easy to mix the raw materials, and the quality of the recovered metal is unstable, resulting in a high incidence of defective products. It takes a considerable amount of time to remove the top layer (the impurity layer) separated by the difference in specific gravity, and a considerable amount of the next layer (the high-purity non-defective layer) must also be pumped out. However, the yield of good products is poor.
In addition, there is a large variation in quality within a lot, and method (2) requires pressurized air equipment, and the blown air also induces oxidation of the zinc, causing the bubbles to burst on the surface of the melt. Each of the conventional methods has a number of drawbacks, such as the fact that hot substances scatter violently, which is unfavorable from a safety standpoint.

この発明は、このような従来法の欠点をすべて解決する
ためになされたものであり、溶融亜鉛メッキ工程で発生
するドロスを、チ密閉部と炉開口部を有するオープンウ
ェル式反射炉のチ密閉部で溶解し、チ密閉部よりも低温
の炉開口部において、融液中に含まれる各成分の比重差
に基づいて、鉄、アルミニウム等の不純物を多く含む層
と、高純度の亜鉛を含む層とに分離した後、この高純度
亜鉛融液を保持炉内に移送し、保持炉から取り出した融
液の一部を還流用樋から保持炉内融液面上に落下させて
ドロツシングを行ないながら保持炉に還流し、下層融液
をさらに連鋳機に送って連続的に鋳型に注入することを
特徴とする亜鉛ドロスから亜鉛を回収する方法を提供す
るものであり、以下に図面を用いてその詳細を述べる。
This invention was made in order to solve all the drawbacks of the conventional method, and it is possible to remove the dross generated during the hot-dip galvanizing process by sealing the chi of an open-well reverberatory furnace that has a chi-sealing part and a furnace opening. At the furnace opening, which is lower temperature than the closed part, the melt is divided into a layer containing many impurities such as iron and aluminum and a layer containing high-purity zinc, based on the difference in specific gravity of each component contained in the melt. After separating into layers, this high-purity zinc melt is transferred into a holding furnace, and a portion of the melt taken out from the holding furnace is dropped from a reflux gutter onto the melt surface in the holding furnace to perform drossing. The present invention provides a method for recovering zinc from zinc dross, which is characterized by refluxing the zinc into a holding furnace, sending the lower melt to a continuous casting machine, and continuously injecting it into a mold. The details will be described below.

溶融亜鉛メッキ工程で発生するドロスは、通常、亜鉛9
4〜98%、アルミニウム0.5〜2.0%、鉄0.5
〜3.0%、鉛0.1〜1.0%、その細微量の成分か
らなり、煉瓦状、釣鐘状等の塊にして供給される場合が
多い。
The dross generated during the hot-dip galvanizing process is usually zinc 9
4-98%, aluminum 0.5-2.0%, iron 0.5
~3.0% lead, 0.1~1.0% lead, and minute amounts thereof, and is often supplied in brick-shaped, bell-shaped, etc. blocks.

第1図を用いて説明すれば、このようなドロス塊2を、
オープンウェル式反射炉Aの装入口扉3を開閉しながら
、装入装置1によって適宜炉内に送り込む。
To explain using FIG. 1, such a dross mass 2 is
While opening and closing the charging port door 3 of the open-well type reverberatory furnace A, the charging device 1 feeds the material into the furnace as appropriate.

オープンウェル式の反射炉Aは、出湯口門扉6を有する
隔壁で仕切られ、チ密閉部Iおよび炉開口部8を有し、
適当個数のバーナ4およびかす取出口扉5が設けられて
いる。
The open-well type reverberatory furnace A is partitioned by a partition wall having an outlet gate 6, and has a sealed part I and a furnace opening 8,
A suitable number of burners 4 and a dregs outlet door 5 are provided.

このような反射炉Aにドロス塊2を送り込んで溶解させ
るにあたっては、バーナ4によってドロス塊を溶解させ
た後、かす取出口扉5を開いて適当量のフラックス(融
剤)を投入して攪拌し、金属融液面上に浮上する酸化物
を掻き出して除へこの際のチ密閉部7の雰囲気温度は約
900〜1000℃であり、融液温度は最高部で約60
0〜700℃に達し、炉開口部8Φ融液温度は約450
〜500℃を示す。
In order to feed the dross lump 2 into such a reverberatory furnace A and melt it, the dross lump 2 is melted by the burner 4, and then the dross outlet door 5 is opened and an appropriate amount of flux (fluxing agent) is poured in and stirred. The ambient temperature in the sealed part 7 is about 900 to 1000°C when scraping and removing the oxides floating on the surface of the metal melt, and the melt temperature is about 60°C at the highest point.
The temperature reaches 0 to 700℃, and the furnace opening 8Φ melt temperature is about 450℃.
~500°C.

炉開口部8の融液は、構成される成分の比重差によって
、3層に別れて、最上層aには鉄、アルミニウムに富ん
だ品位のもの、中間層すには比較的高品位の亜鉛、最下
層Cに鉄、鉛等を比較的多く含むものが分離してくる。
The melt at the furnace opening 8 is divided into three layers depending on the specific gravity difference of the constituent components.The uppermost layer a is rich in iron and aluminum, and the middle layer is a relatively high-grade zinc layer. , those containing relatively large amounts of iron, lead, etc. are separated into the lowest layer C.

したがって、中間層すの融液をメタルポンプ9を用いて
保持炉Bへ移送する。
Therefore, the melt in the intermediate layer is transferred to the holding furnace B using the metal pump 9.

なお、メタルポンプ9を使用する代わりに、炉開口部の
炉壁に融液抜取口(図面では省略)を設け、落差を利用
して保持炉へ移送することもできる。
Note that instead of using the metal pump 9, a melt extraction port (not shown in the drawing) may be provided in the furnace wall at the furnace opening, and the melt may be transferred to the holding furnace using the head.

移送された融液は、保持炉B内で約430〜470℃程
度に保たれ、メタルポンプ10によってさらに連鋳機C
へ送られるが、その間に移送する融液の一部を還流させ
るために還流用樋(とい)12を有する注湯器11を設
ける。
The transferred melt is maintained at approximately 430 to 470°C in the holding furnace B, and is further transferred to the continuous casting machine C by the metal pump 10.
A pourer 11 having a reflux gutter 12 is provided in order to reflux a portion of the melt transferred during that time.

このようにすれば、メタルポンプ9によって反射炉Aか
ら保持炉Bに移送される間に、融液が空気に接触して発
生する泡、および、注湯器11から還流用樋12を経て
保持炉Bに戻る間に発生する泡は保持炉B内の融液面上
に浮上して上層dとなり、これを取り除けば、従来の空
気を吹き込む方式と全く同等の酸化処理すなわちドロツ
シング(垢取り)を行なうことができる。
In this way, while the melt is being transferred from the reverberatory furnace A to the holding furnace B by the metal pump 9, bubbles generated when the melt comes into contact with the air, and bubbles generated when the melt is transferred from the pourer 11 to the reflux gutter 12 and held. Bubbles generated during the return to furnace B float to the surface of the melt in holding furnace B, forming an upper layer d. If this is removed, an oxidation process, ie drossing, is performed, which is exactly the same as the conventional air blowing method. can be done.

また、注湯器11から連鋳機Cに移送される下層eの融
液は、分配器13を経て鋳型14に注入される。
Further, the melt in the lower layer e transferred from the pourer 11 to the continuous casting machine C is poured into the mold 14 via the distributor 13.

その一例を第2図に示すが、複数個のノズル15を放射
状に設けた回転自在の分配器13の直下に、無端走行体
16上に取付けられた複数個の鋳型14を連続して配置
し、かつ、1個のノズルの先端が対応する鋳型の縁に引
っ掛かるようにしておけば、無端走行体16を連続的に
駆動させることによって、分配器13もこれに同調して
回転し、それぞれの鋳型に融液を円滑に注入することが
できて好ましい。
An example of this is shown in FIG. 2, in which a plurality of molds 14 mounted on an endless traveling body 16 are successively arranged directly below a rotatable distributor 13 in which a plurality of nozzles 15 are arranged radially. , and if the tip of one nozzle is caught on the edge of the corresponding mold, by continuously driving the endless running body 16, the distributor 13 will also rotate in synchrony with this, and each This is preferable because the melt can be smoothly poured into the mold.

以上述べた装置の必要部分に、熱放散を防ぐために断熱
材を使用することは言うまでもなく、また、反射炉Aお
よび保持炉Bには、いずれも図面には省略したが、液面
計や温度計を設置し、これらの指示に基づいて装入装置
1、メタルポンプ9、メタルポンプ10、連鋳機C等の
駆動装置を連動させれば、自動制御も可能となる。
It goes without saying that insulating materials are used in the necessary parts of the equipment described above to prevent heat dissipation, and in addition, although not shown in the drawings, both reverberatory furnace A and holding furnace B are equipped with liquid level gauges and temperature gauges. If a meter is installed and drive devices such as the charging device 1, metal pump 9, metal pump 10, and continuous casting machine C are operated in accordance with these instructions, automatic control becomes possible.

この発明の方法によれば、原料ドロスの品質にかなりの
バラツキがあっても、前記のa、bおよびdの各層の量
が変化するのみで、回収して得られる製品の品質はきわ
めて安定した高品位のものであり、回収工程中の熱損失
も小さく、作業能率、作業環境および安全性も著しく改
善することができる。
According to the method of this invention, even if there is considerable variation in the quality of the raw material dross, only the amounts of the layers a, b, and d mentioned above will change, and the quality of the recovered product will be extremely stable. It is of high quality, has low heat loss during the recovery process, and can significantly improve work efficiency, work environment, and safety.

以下に実施例および比較例を示す。Examples and comparative examples are shown below.

〔実施例 1〕 チ密閉部15トン、炉開口部5トンの容量をもった反射
炉Aと、1.5トン容量の保持炉Bと、さらに、1個2
5kg容量の金型を有する連鋳機Cとを第1図に示すよ
うに連結し、Znを94〜98%、AIを0.5〜2.
0%、Feを0.5〜3.0%、Pbを0.1〜1.0
%、その他Cd等を微量含むドロス塊2を反射炉A内に
投入し、反射炉Aの密閉部7の雰囲気温度を970℃と
して溶解させ、約650℃の融液を得た。
[Example 1] A reverberatory furnace A with a capacity of 15 tons in the closed part and 5 tons in the furnace opening, a holding furnace B with a capacity of 1.5 tons, and one
A continuous casting machine C having a mold with a capacity of 5 kg is connected as shown in Fig. 1, and Zn is 94 to 98% and AI is 0.5 to 2.
0%, Fe 0.5-3.0%, Pb 0.1-1.0
The dross mass 2 containing a small amount of Cd, Cd, etc. was placed in a reverberatory furnace A, and the ambient temperature in the sealed part 7 of the reverberatory furnace A was set to 970°C to obtain a melt at about 650°C.

この融液は、炉開口部8においては、最上層a、中間層
すおよび最下層Cの3層に分離し、中間層すの温度は約
470℃を示した。
At the furnace opening 8, this melt was separated into three layers: the top layer a, the middle layer and the bottom layer C, and the temperature of the middle layer was about 470°C.

この中間層すの融液をメタルポンプ9で保持炉Bに移送
し、この移送量に見合った量のドロス塊2を順次反射炉
内に補充しながら連続運転を行ない、メタルポンプ10
で下層eの融液を連鋳機Cの鋳型14に注ぎ25kgの
塊になるよう鋳込んだ。
The molten liquid of the intermediate layer is transferred to the holding furnace B by the metal pump 9, and continuous operation is performed while sequentially replenishing the reverberatory furnace with an amount of dross mass 2 commensurate with the transferred amount.
Then, the melt in the lower layer e was poured into the mold 14 of the continuous casting machine C and cast into a 25 kg lump.

全操作が定常的になった時点で、反射炉Aの炉開口部8
における最上層a、中間層すおよび最下層C1ならびに
、保持炉Bにおける上層dおよび下層eの分析を行なっ
たところ、第1表に示す値を得た。
When all operations have become steady, open the furnace opening 8 of reverberatory furnace A.
Analysis of the uppermost layer a, the middle layer S and the lowermost layer C1, and the upper layer d and the lower layer e in the holding furnace B was conducted, and the values shown in Table 1 were obtained.

〔実施例 2〕 実施例1において、連鋳機Cから得られる1個25kg
の鋳造品(製品)を連続して24個採取し、それぞれの
成分分析を行なった。
[Example 2] In Example 1, one piece of 25 kg obtained from continuous casting machine C
24 cast products (products) were successively sampled, and each component was analyzed.

その結果を第2表にまとめたが、成分のバラツキはきわ
めて小さく、亜鉛の品位も一定した高品位のものである
ことが明らかであった。
The results are summarized in Table 2, and it was clear that the variations in the ingredients were extremely small and the quality of zinc was constant and high quality.

〔比較例 1〕 容量1トンのポット(坩堝)炉に実施例1に用いたと同
様のドロス塊1トンを入れ、完全に溶解させた後、融液
が約470℃程度になるまで冷却させ、融液上に浮上し
た泡を除き、融液を鋳型に注入して1個25kgの鋳塊
を作り、得られた鋳塊群から無作為に24個を抽出して
、それぞれについて成分分析を行なった。
[Comparative Example 1] One ton of dross lump similar to that used in Example 1 was placed in a pot (crucible) furnace with a capacity of 1 ton, and after completely melting, the melt was cooled to about 470 ° C. After removing the bubbles that floated on top of the melt, the melt was poured into a mold to make ingots weighing 25 kg each, and 24 ingots were randomly selected from the obtained ingot group and a component analysis was performed on each ingot. Ta.

結果は第2表に併記したが、実施例2の結果と比べて、
低品位で、しかもバラツキが大きく、好ましい結果では
なかった。
The results are also listed in Table 2, and compared to the results of Example 2,
The quality was low and the variation was large, which was not a desirable result.

〔実施例 3〕 実施例2および比較例1における高品位亜鉛(通常、上
下と呼ぶ)の原料ドロスに対する回収率を求めたきころ 比較例1(ポット炉使用)のとき、 酸化物(Zn60〜70%のもの)・・・・・・・・・
・・・15%不良ドロス(中下と呼ばれるもので、Zn
88〜96%、AI 0.9〜4.0%、Fe1〜4%
のもの)・・・・・・・・・・・・13% 上下(Zn97.7〜99.1%のもの)・・・・・・
72%であったのに対して、 実施例2(本発明の方法)のときは、 酸化物(上記と同等のもの) ・・・・・・・・・・・
・15%不良ドロス(Zn 89.8〜90.5%、A
14〜5%、Fe4〜5%のもの) ・・・・・・
・・・・・・・・・4%上丁(Zn99.4%のもの)
・・・・・・・・・・・・81%であって、実施例2
に示す本発明の方法のときは、上下の品位が高く、しか
も回収率が約10%近く高いことが明らかであった。
[Example 3] In Comparative Example 1 (using a pot furnace), the recovery rate of high-grade zinc (usually referred to as upper and lower) relative to the raw material dross in Example 2 and Comparative Example 1 was determined. %)・・・・・・・・・
...15% defective dross (called Naka-shita, Zn
88-96%, AI 0.9-4.0%, Fe1-4%
)・・・・・・・・・13% Top and bottom (Zn97.7-99.1%)・・・・・・
While it was 72%, in Example 2 (method of the present invention), oxide (equivalent to the above)...
・15% defective dross (Zn 89.8-90.5%, A
14~5%, Fe4~5%)...
・・・・・・・・・4% Ucho (Zn99.4%)
......81%, Example 2
It was clear that when using the method of the present invention shown in Figure 1, the quality of the upper and lower parts was high, and the recovery rate was approximately 10% higher.

さらに、酸化物および不良ドロスの合計は、ポット炉使
用のときにくらべて約9%少なかった。
Additionally, the total oxide and waste dross was about 9% lower than when using a pot furnace.

〔実施例 4〕 実施例1と同じ装置によって、原料ドロスを1時間肖り
約1.5トンの割合で処理する操業に2名の作業員が従
事し、このうち1名は原料ドロスを反射炉に投入する作
業、かす出し作業および不良ドロスの汲上げ作業を担娼
し、他の1名が連鋳機から出てきた鋳造品(製品)の整
理作業、保持炉における溶湯管理作業、および泡汲取り
作業を担当した。
[Example 4] Two workers were engaged in the operation of processing raw material dross at a rate of about 1.5 tons per hour using the same equipment as in Example 1, and one of them was engaged in an operation in which raw material dross was processed at a rate of approximately 1.5 tons per hour. One person was in charge of loading the furnace, drawing out the scraps, and pumping up defective dross, while another person was responsible for sorting out the castings (products) that came out of the continuous caster, managing the molten metal in the holding furnace, and I was in charge of the foam removal work.

その結果、従来法における工程中の冷却時間、品位調整
作業および鋳造作業等が全く不必要となり、不良ドロス
の汲上げ作業が約1/3に減り、また、−直の生産量は
8〜9トン、すなわち、作業員1名当り4〜4.5トン
の生産を行なうことができた。
As a result, the cooling time, quality adjustment work, casting work, etc. during the process of the conventional method are completely unnecessary, the work of pumping up defective dross is reduced to about 1/3, and the production volume of -shift is 8 to 9 It was possible to produce 4 to 4.5 tons per worker.

このような生産量は、作業員の熟練度、あるいは、装置
の自動化によって一層高められることが明らかであった
It was clear that such production volume could be further increased by increasing the skill level of the workers or by automating the equipment.

〔比較例 2〕 比較例1と同じ容量1トンのポット炉を5基設け、これ
を2名の作業員が操作を担当し、溶解およびかす出し作
業 ・・・・・・・・・・・・・・・約4時間冷却およ
び不良ドロス汲上げ作業・・・約1.5時間品位調整お
よび鋳造作業 ・・・・・・・・・・・・約1.5時間
鋳造品整理作業 ・・・・・・・・・・・・・・・・・
・・・・・・・・・・約1時間を要した。
[Comparative Example 2] Five pot furnaces with a capacity of 1 ton, the same as in Comparative Example 1, were installed, and two workers were in charge of operating the furnaces for melting and scraping work. ...Approximately 4 hours of cooling and pumping up defective dross... Approximately 1.5 hours of quality adjustment and casting work...... Approximately 1.5 hours of sorting of cast items...・・・・・・・・・・・・・・・
・・・・・・・・・It took about 1 hour.

ここで品位調整作業とは、ポット炉でドロスを溶解して
冷却した後、最上層に浮く不良ドロスを取り除いても、
融液中のアルミニウム分が規格値以下にならないので、
別途アルミニウムを含まない原料を、取り除いた不良ド
ロス相当分を補って、融液の品位と10ツトの量を1ト
ンに調整する作業である。
Here, quality adjustment work means that after melting the dross in a pot furnace and cooling it, removing the defective dross that floats to the top layer,
Since the aluminum content in the melt does not fall below the standard value,
This is a process to adjust the quality of the melt and the amount of 10 tons to 1 ton by adding raw material that does not contain aluminum to compensate for the amount of defective dross that was removed.

したがって、この方法によれば、−直の生産量は5トン
、すなわち、作業員1名当り2.5トンの生産であり、
装置の改良または熟練度の向上等によって生産量を高め
る方策は余りなく、この発明による方法に比べてかなり
劣ったものであることが明らかであった。
Therefore, according to this method, the production amount for the -shift is 5 tons, that is, 2.5 tons per worker,
There were few measures to increase production through improvements in equipment or skill level, and it was clear that the method was considerably inferior to the method according to the present invention.

〔実施例 5〕 実施例4および比較例2に示した操業条件で、3交替の
連続操業を行ない、そのときの上下生産量とガス使用量
を測定した。
[Example 5] Under the operating conditions shown in Example 4 and Comparative Example 2, continuous operation was carried out in three shifts, and the vertical production and gas usage at that time were measured.

それぞれのガス使用量を上下1トン当りに換算したとこ
ろ、実施例4の条件においては27.9kg/トンであ
ったのに対して、比較例2の条件のときは31.4kg
/トンであった。
When the respective gas usage amounts were converted into per ton of upper and lower gases, it was 27.9 kg/ton under the conditions of Example 4, whereas it was 31.4 kg under the conditions of Comparative Example 2.
/ton.

したがって、この発明の方法によれば、従来のポット炉
による方法にくらべて、少なくきも約11%を節減する
ことができた。
Therefore, according to the method of the present invention, it was possible to save at least about 11% compared to the conventional method using a pot furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の一例を示す簡略化した装置図
、第2図は第1図における連鋳機の主要部の拡大断面図
である。 A・・・・・・反射炉、B・・・・・・保持炉、C・・
・・・・連鋳機、1・・・・・・装入装置、2・・−・
・・ドロス塊、3・・・・・・装入口部、4・・・・・
・バーナ、5・・・・・・かす取出口扉、6・・・・・
・出湯口門扉、7・・・・・・チ密閉部、8・・・・・
・炉開口部、9・・・・・・メタルポンプ、10・・・
・・・メタルポンプ、11・・・・・・注湯器、12・
・・・・・還流用樋、13・・・・・・分配器、14・
・・・・・鋳型、15・・・・・・ノズル、16・・・
・・・無端走行体、a・・・・・・最上層、b・・・・
・・中間層、C・・・・・・最下層、d・・・・・・上
層、e・・・・・・下層。
FIG. 1 is a simplified apparatus diagram showing an example of the method of the present invention, and FIG. 2 is an enlarged sectional view of the main parts of the continuous casting machine in FIG. 1. A...Reverberatory furnace, B...Holding furnace, C...
... Continuous casting machine, 1 ... Charging device, 2 ...
...Dross mass, 3...Charging port, 4...
・Burner, 5...Drag removal exit door, 6...
・Outlet gate, 7... Ch sealing section, 8...
・Furnace opening, 9...Metal pump, 10...
...Metal pump, 11...Water pourer, 12.
...reflux gutter, 13...distributor, 14.
...Mold, 15...Nozzle, 16...
...Endless running body, a...Top layer, b...
... middle layer, C ... bottom layer, d ... upper layer, e ... bottom layer.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融亜鉛メッキ工程で発生するドロスを、チ密閉部
と炉開口部を有するオープンウェル式反射炉のチ密閉部
で溶解し、チ密閉部よりも低温の炉開口部において、融
液中に含まれる各成分の比重差に基づいて、鉄、アルミ
ニウム等の不純物を多く含む層と、高純度の亜鉛を含む
層きに分離した後、この高純度亜鉛融液を保持炉内に移
送し、保持炉から取り出した融液の一部を還流用樋から
保持炉内融液面上に落下させてドロツシングを行ないな
がら保持炉に還流し、下層融液をさらに連鋳機に送って
連続的に鋳型に注入することを特徴とする亜鉛ドロスか
ら亜鉛を回収する方法。
1 The dross generated in the hot-dip galvanizing process is melted in the sealed part of an open-well reverberatory furnace, which has a sealed part and a furnace opening, and the dross contained in the melt is melted in the furnace opening, which is lower in temperature than the sealed part. Based on the difference in specific gravity of each component, this high-purity zinc melt is separated into a layer containing many impurities such as iron and aluminum and a layer containing high-purity zinc.Then, this high-purity zinc melt is transferred to a holding furnace and held. A part of the melt taken out from the furnace is dropped from the reflux gutter onto the melt surface in the holding furnace and refluxed into the holding furnace while drossing, and the lower melt is further sent to the continuous casting machine to continuously cast the mold. A method for recovering zinc from zinc dross, characterized by injecting it into a zinc dross.
JP55080447A 1980-06-14 1980-06-14 How to recover zinc from zinc dross Expired JPS592727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55080447A JPS592727B2 (en) 1980-06-14 1980-06-14 How to recover zinc from zinc dross

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55080447A JPS592727B2 (en) 1980-06-14 1980-06-14 How to recover zinc from zinc dross

Publications (2)

Publication Number Publication Date
JPS575828A JPS575828A (en) 1982-01-12
JPS592727B2 true JPS592727B2 (en) 1984-01-20

Family

ID=13718507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55080447A Expired JPS592727B2 (en) 1980-06-14 1980-06-14 How to recover zinc from zinc dross

Country Status (1)

Country Link
JP (1) JPS592727B2 (en)

Also Published As

Publication number Publication date
JPS575828A (en) 1982-01-12

Similar Documents

Publication Publication Date Title
EP0095645B1 (en) Method and apparatus for melting and casting metal
KR850001739B1 (en) Process for purifying metals by segretation
US2987391A (en) Method for melting and treating aluminum
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
KR850001291B1 (en) Continuous melting and refining of secondary and/or blister copper
US2395286A (en) Processes for chemically purifying and refining metals
CN107245592A (en) A kind of founding of aluminium ingot
CN107574342A (en) A kind of production technology for being used to manufacture the aluminium alloy extrusions of fishing gear
CN108620571B (en) Multi-cavity slag stopping mechanism for molten metal and method for recovering fluorine salt in aluminum electrolytic cell
EP1753563B1 (en) Melting apparatus and method
JPS592727B2 (en) How to recover zinc from zinc dross
US4075008A (en) Method for the reclamation of zinc from galvanizing baths
US2825642A (en) Method of producing group iv-a metals
KR100544422B1 (en) Method for Manufacturing Molten Steel
US3893657A (en) Method for separating metal which accompanies slag skimmed from a bath of molten metal, and a device for carrying out the method
US1733419A (en) Continuous copper-melting furnace
US3902894A (en) Refining process for zinc recovery
JP3969522B2 (en) Operation method of copper smelting furnace
US2734819A (en) Method and apparatus for separation of
US3392011A (en) Method for removal of copper from lead
CN212864910U (en) Aluminum impurity recovery equipment for aluminum ingot processing
US3630720A (en) Process for the extraction of aluminum from its alloys
JPS6050129A (en) Production of metallic alloy by thermit method
PL73803B1 (en)
NO772138L (en) PROCEDURES FOR REFINING MELTED METAL