JPS5927216A - Gyrocompass - Google Patents
GyrocompassInfo
- Publication number
- JPS5927216A JPS5927216A JP13774682A JP13774682A JPS5927216A JP S5927216 A JPS5927216 A JP S5927216A JP 13774682 A JP13774682 A JP 13774682A JP 13774682 A JP13774682 A JP 13774682A JP S5927216 A JPS5927216 A JP S5927216A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- sphere
- power source
- heater
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/02—Rotary gyroscopes
- G01C19/34—Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes
- G01C19/38—Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes with north-seeking action by other than magnetic means, e.g. gyrocompasses using earth's rotation
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
Description
【発明の詳細な説明】
ジャイロ球を液中に浮かす方式のジャイロコンパスでは
、液の温度変動による比重変化のため、ジャイロ球の浮
力が変動するので指北精度に太きく影響する。このため
、従来は液を約50°C程度に加熱している。従来の加
熱方法としては、ジャイロ球を支持するジャイロ外球の
外部からヒーターで加熱する方式であった。しかし、こ
の方式では加熱効率が極めて低く、ジャイロ装置電源の
消費電力が犬となり、装置の小型化、コスト低減化、回
路の簡易化に対し大きな障害となっていた。[Detailed Description of the Invention] In a gyro compass in which a gyro ball is floated in liquid, the buoyancy of the gyro ball fluctuates due to changes in specific gravity due to temperature fluctuations in the liquid, which greatly affects north pointing accuracy. For this reason, conventionally the liquid is heated to about 50°C. The conventional heating method was to heat the gyro outer sphere, which supports the gyro sphere, from outside using a heater. However, in this method, the heating efficiency is extremely low, and the power consumption of the gyro device power supply is extremely low, which is a major obstacle to miniaturization of the device, cost reduction, and simplification of the circuit.
本案は、この加熱方式の改良に係り、導電液自体が有す
る抵抗を活用するものである。The present invention relates to an improvement of this heating method, and utilizes the resistance that the conductive liquid itself has.
以下実施例によりこれを説明する。This will be explained below using examples.
第1図において、1は周知のジャイロ外球(以下外球と
いう)でろってジンバル装置(図示せず)によって支持
されている。2は外球内に入れられた導電液である。3
は導電液中に浮遊せしめられたジャイロ内球(以下内球
という)であって内部に高速回転する転輪が収納されて
いる。内球には上下部に上部電極4と下部電極5が設け
られ、又赤道部には半周状の帯電極6が設けられている
がこの構造は周知の通りである。外球1には導電液に接
して上部電極7と下部電極8が設けられ、電源9に接続
されている。又、内球3の帯電極6に対向する位置には
追従電極10.11が設けられてい。In FIG. 1, 1 is a well-known gyro outer sphere (hereinafter referred to as outer sphere) supported by a gimbal device (not shown). 2 is a conductive liquid placed inside the outer sphere. 3
is a gyro inner ball (hereinafter referred to as inner ball) suspended in a conductive liquid, and a high-speed rotating wheel is housed inside. The inner sphere is provided with an upper electrode 4 and a lower electrode 5 at the upper and lower parts, and a semicircular charged electrode 6 is provided at the equator, and this structure is well known. An upper electrode 7 and a lower electrode 8 are provided on the outer sphere 1 in contact with a conductive liquid, and are connected to a power source 9. Further, a follower electrode 10.11 is provided on the inner sphere 3 at a position facing the charging electrode 6.
る。この構造も又周知である。Ru. This structure is also well known.
本発明では、これら電極の他に例えば還状の加熱電極1
2.13が設けられていて、加熱電源14に接続されて
いる。加熱用電源の周波数は転輪用電源のそれより低い
周波数を用いて転輪回転速度への外乱を防止する。すな
わち、ヒーター電源電極と内球上下電極間の液抵抗をR
6、R16とし、ジャイロモータのインピーダンスをZ
Lとする。又、外球と内球の上下電極間の液抵抗をR□
、R9とし、ジャイロモータ電源の信号源インピーダン
スをZgとする。In the present invention, in addition to these electrodes, for example, a ring-shaped heating electrode 1
2.13 is provided and connected to the heating power source 14. The frequency of the heating power source is lower than that of the wheel power source to prevent disturbance to the wheel rotation speed. In other words, the liquid resistance between the heater power supply electrode and the inner bulb upper and lower electrodes is R.
6. Set R16 and set the impedance of the gyro motor to Z.
Let it be L. Also, the liquid resistance between the upper and lower electrodes of the outer and inner spheres is R□
, R9, and the signal source impedance of the gyro motor power source is Zg.
ヒーター電源がジャイロモータに外乱を与えないだめに
は、ジャイロモータインピーダンスがりアクタンス分で
あるので、この性質を利用して、CZL<<R5+几。In order for the heater power supply to not cause disturbance to the gyro motor, the gyro motor impedance is equal to the actance, so using this property, CZL<<R5+几.
を満足するヒータ電源周波数を用いると、ヒータ電源の
モーフへ与える外乱を防止することができる。By using a heater power supply frequency that satisfies the following, it is possible to prevent disturbances from being applied to the morph of the heater power supply.
上記装置において、内球βの転輪は電源9−外球上部電
極7−導電液抵抗亀一内球上部電極4−転輪−内球下部
電極5−導電液抵抗比ツー外球下部電極8−電源9のル
ートによシミ力供給される。In the above device, the rolling wheels of the inner sphere β are the power supply 9 - the outer sphere upper electrode 7 - the conductive liquid resistance mechanism, the inner sphere upper electrode 4 - the inner sphere lower electrode 5 - the conductive liquid resistance ratio, the outer sphere lower electrode 8 - The spot power is supplied by the route of the power supply 9.
そして導電液2の加熱は加熱用電源14−加熱電極12
−導電液抵抗馬一加熱電極13−電源14のルートで行
われるが、導電液抵抗FL11の電熱作用によって直接
的に行なわれるので、発熱体から受熱体への熱変換効率
は100チとなシ従来の20〜40チに比し3倍以上向
上できる。The conductive liquid 2 is heated by a heating power source 14 - a heating electrode 12
- Conductive liquid resistor Maichi Heating electrode 13 - Power supply 14 route, but since it is directly performed by the electrothermal action of the conductive liquid resistor FL11, the heat conversion efficiency from the heating element to the heat receiving element is 100 cm. This can be improved by more than three times compared to the conventional 20 to 40 inches.
しかし、この装置の欠点は、外球1の内球3に対する追
従機能を阻害することであるが、本発明は次のようにこ
れを防止している。However, a drawback of this device is that it impedes the ability of the outer sphere 1 to follow the inner sphere 3, but the present invention prevents this as follows.
第2図において、第1図と同一符号のものは同一機能を
有する。In FIG. 2, parts with the same symbols as in FIG. 1 have the same functions.
外球1の追従電極10.11間にはブリッジ用抵抗r8
乃びr4が接続され、その接続点と外球下部電極との間
に電源9が挿入される。追従電極10.11は差動増巾
器15に入力されその差出力は高周波選択器16に供給
される。高周波選択器16の出力はサーボ増巾器17を
介してサーボモータ18に供給され、その出力で外球1
と一体的に連結されたコンパスカード19に連結されて
いる。There is a bridge resistor r8 between the tracking electrodes 10 and 11 of the outer sphere 1.
and r4 are connected, and a power source 9 is inserted between the connection point and the outer sphere lower electrode. The tracking electrodes 10.11 are input to a differential amplifier 15 whose differential output is fed to a high frequency selector 16. The output of the high frequency selector 16 is supplied to the servo motor 18 via the servo amplifier 17, and the output is used to control the outer sphere 1.
It is connected to a compass card 19 which is integrally connected to the compass card 19.
上記装置で、もし内球3が中心位置で指北状態で保持さ
れている場合は、抵抗rl、rSs rB、r4で構成
されているブリッジ回路が平衡状態にあるため、差動増
巾器15の出力は零であるが、外球1が船体の回頭等に
よって回動して抵抗r工とr、が異なるとブリッジ回路
の平衡がくずれ、差動増巾器15から差信号が出力され
る。したがって、サーボ増巾器17が励起されてサーボ
モータ18を駆動し、コンパスカードしたがって外球1
を内球に追従回動させる。しかし、第1図に示すように
加熱電極12.13を作動すると、その電源14がブリ
ッジ回路に液を介してノーマルノイズ外乱を与え、正常
に追従回路が動作していない。すなわち、加熱電源14
による外乱信号にサーボ信号が重畳した形として存在C
する。In the above device, if the inner sphere 3 is held at the center position in the pointing north state, the bridge circuit composed of the resistors rl, rSs rB, r4 is in a balanced state, so the differential amplifier 15 The output of is zero, but if the outer sphere 1 rotates due to the turning of the ship, etc. and the resistances r and r differ, the bridge circuit becomes unbalanced and a difference signal is output from the differential amplifier 15. . Therefore, the servo amplifier 17 is energized and drives the servo motor 18 to drive the compass card and hence the outer sphere 1.
Rotate to follow the inner ball. However, when the heating electrodes 12 and 13 are activated as shown in FIG. 1, the power supply 14 applies normal noise disturbance to the bridge circuit through the liquid, and the follow-up circuit does not operate normally. That is, the heating power source 14
C exists as a form in which a servo signal is superimposed on a disturbance signal caused by
do.
これに対し、本発明は、差動増巾器15とサーボ増巾器
17間に高周波選択器16を挿入して高周波領域にある
サーボ制御信号のみを抽出することができる。In contrast, in the present invention, the high frequency selector 16 is inserted between the differential amplifier 15 and the servo amplifier 17, so that only the servo control signal in the high frequency region can be extracted.
以上説明したように、本発明によれば、内球に対する円
滑な追従作用を阻害することなく、4電液の加熱を効率
良く行なうことができる利益を得ることができる。As explained above, according to the present invention, it is possible to obtain the advantage of being able to efficiently heat the four-electrode liquid without impeding the smooth following action on the inner sphere.
第1図は本発明の加熱装置を説明するための系統図であ
シ、第2図は本発明の追従装置を説明するだめの系統図
であるn
1・・・外球
2・・・導電液
3・・・内球
6・・・帯電極
10.11・・・追従電極
12.13・・・加熱電極
19・・・コンパスカ一ドFig. 1 is a system diagram for explaining the heating device of the present invention, and Fig. 2 is a system diagram for explaining the follow-up device of the present invention. Liquid 3...Inner bulb 6...Charging electrode 10.11...Following electrode 12.13...Heating electrode 19...Compass card
Claims (1)
パスにおいて、上記外球の内壁に導電液に接した一対の
ヒーター電極を設け、この電極に内球内のジャイロモー
ター用電源とは異なった周波数を有するヒーター用電源
の出力端をそれぞれ接続し、上記外球に設けた内球追従
用の追従電極の出力系路中に、上記ヒーター電極系から
洩れた上記ヒーター用電源の周波数成分を有する信号を
除去する周波数分別器を設け、この周波数分別器の出力
によって上記外球追従用のサーボモータを駆動すること
を特徴とするジャイロコンパス。CIn a gyro compass in which the inner bulb is housed in a conductive liquid inside the outer bulb, a pair of heater electrodes in contact with the conductive liquid are provided on the inner wall of the outer bulb, and these electrodes are connected to a power source for the gyro motor in the inner bulb. The frequency components of the heater power source leaking from the heater electrode system are connected to the output ends of the heater power sources having different frequencies, and the frequency components of the heater power source leaked from the heater electrode system are added to the output path of the inner sphere tracking electrode provided on the outer sphere. 1. A gyro compass characterized in that a frequency separator is provided for removing a signal having a frequency separator, and the servo motor for tracking the outer sphere is driven by the output of the frequency separator. C
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13774682A JPS5927216A (en) | 1982-08-06 | 1982-08-06 | Gyrocompass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13774682A JPS5927216A (en) | 1982-08-06 | 1982-08-06 | Gyrocompass |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5927216A true JPS5927216A (en) | 1984-02-13 |
Family
ID=15205856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13774682A Pending JPS5927216A (en) | 1982-08-06 | 1982-08-06 | Gyrocompass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5927216A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5663458A (en) * | 1994-12-02 | 1997-09-02 | Sumitomo Chemical Company, Limited. | Process for producing α-phenylethyl alcohol |
US6046369A (en) * | 1997-07-14 | 2000-04-04 | Sumitomo Chemical Co., Ltd. | Process for producing α-phenylethyl alcohol |
JP2001235329A (en) * | 2000-02-23 | 2001-08-31 | Tokimec Inc | Gyro device |
JP2009180680A (en) * | 2008-01-31 | 2009-08-13 | Yokogawa Denshikiki Co Ltd | Gyrocompass |
-
1982
- 1982-08-06 JP JP13774682A patent/JPS5927216A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5663458A (en) * | 1994-12-02 | 1997-09-02 | Sumitomo Chemical Company, Limited. | Process for producing α-phenylethyl alcohol |
US6046369A (en) * | 1997-07-14 | 2000-04-04 | Sumitomo Chemical Co., Ltd. | Process for producing α-phenylethyl alcohol |
JP2001235329A (en) * | 2000-02-23 | 2001-08-31 | Tokimec Inc | Gyro device |
JP4583538B2 (en) * | 2000-02-23 | 2010-11-17 | 東京計器株式会社 | Gyro device |
JP2009180680A (en) * | 2008-01-31 | 2009-08-13 | Yokogawa Denshikiki Co Ltd | Gyrocompass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2484022A (en) | Pick-off device for electrical control systems | |
US2591697A (en) | Stable reference apparatus | |
US3543587A (en) | Gyroscopic instrument | |
JPS5927216A (en) | Gyrocompass | |
US1982702A (en) | Gyro pilot for aircraft | |
US2456619A (en) | Gyroscopic controlling means | |
US2393473A (en) | Gyroscopic navigational device | |
US1703317A (en) | Automatic steering device | |
US2368644A (en) | Commutator and brush type switch | |
GB1009169A (en) | Method of positioning a gyro-compass | |
US2506998A (en) | Flight navigation training apparatus | |
US2075797A (en) | Gyroscopic indicating and control device | |
US2802364A (en) | Gyroscope | |
US2363500A (en) | Gyro magnetic compass system | |
US2237077A (en) | Repeating device | |
US2389158A (en) | Controller for gyro instruments | |
GB1225074A (en) | Improvements relating to gyroscopes | |
US2474549A (en) | Gyroscope | |
US2204292A (en) | Direction indicating means | |
US2451230A (en) | Directional gyro | |
US2534293A (en) | Servomotor and system having improved torque characteristics | |
US3371542A (en) | Gyro vertical erecting means | |
US1997893A (en) | Navigational instrument | |
US2808656A (en) | pirone | |
US2393974A (en) | Gyro flux valve compass system |