JPS5926970A - Manufacture of diamond-hard carbide composite sintered body - Google Patents

Manufacture of diamond-hard carbide composite sintered body

Info

Publication number
JPS5926970A
JPS5926970A JP57132028A JP13202882A JPS5926970A JP S5926970 A JPS5926970 A JP S5926970A JP 57132028 A JP57132028 A JP 57132028A JP 13202882 A JP13202882 A JP 13202882A JP S5926970 A JPS5926970 A JP S5926970A
Authority
JP
Japan
Prior art keywords
sintering
diamond
powder
weight
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57132028A
Other languages
Japanese (ja)
Inventor
倉富 龍郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57132028A priority Critical patent/JPS5926970A/en
Publication of JPS5926970A publication Critical patent/JPS5926970A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、ダイアモンド粉末と硬質炭化物粉末との混合
粉末に焼結助材粉末を添加した混合粉末を焼結してダイ
アモンド−炭化物複合焼結体を製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a diamond-carbide composite sintered body by sintering a mixed powder of diamond powder and hard carbide powder to which sintering aid powder is added. It is.

本発明は、ダイアモンド粉末に加える硬質炭化物粉末は
炭化チタン、炭化ジルコニクム、炭化ハフニウム、炭化
バナジウム、炭化ニオブ、炭化タンタル、炭化クロム、
炭化モリブデン、炭化タングステン、炭化硼素、炭化珪
素のうちより選択した1種の炭化物の粉末または2種以
上の炭化物の混合粉末を使用し、ダイアモンド粉末と硬
質炭化物粉末との混合粉末に添加する焼結助材粉末には
コバルト基超耐熱合金粉末またはニッケル基超耐熱合金
粉末を使用することを特徴とするものである。
In the present invention, the hard carbide powder added to the diamond powder includes titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, niobium carbide, tantalum carbide, chromium carbide,
Sintering using a powder of one type of carbide selected from molybdenum carbide, tungsten carbide, boron carbide, and silicon carbide or a mixed powder of two or more types of carbides and adding it to a mixed powder of diamond powder and hard carbide powder. The present invention is characterized in that a cobalt-based super heat-resistant alloy powder or a nickel-based super heat-resistant alloy powder is used as the auxiliary material powder.

本発明は、上記したダイアモンド粉末に硬質炭化物粉末
を加えた混合粉末に焼結助材粉末を添加して混合した混
合粉末を、ダイアモンド安定領域における温度圧力条件
を満足する焼結用温度と焼結用圧力とのもとに曝らして
焼結作業を行うことを特徴とするダイアモンド−硬質炭
化物複合焼結体の製造法である。
In the present invention, a mixed powder obtained by adding a sintering aid powder to the above-mentioned mixed powder in which hard carbide powder is added to the diamond powder is sintered at a sintering temperature that satisfies the temperature and pressure conditions in the diamond stable region. This is a method for producing a diamond-hard carbide composite sintered body, which is characterized in that the sintering operation is performed by exposing the body to a high pressure.

本発明は、以上に説明したように、極めて高い硬度を有
するダイアモンド粉末に、其のダイアモンド焼結組織の
機械的強度を補強する硬質炭化物粉末を加え、更に、其
のダイアモンド粉末と硬質炭化物粉末との混合粉末の焼
結を補助する焼結助材粉末としてコバルト基超耐熱合金
粉末またはニッケル基超耐熱合金粉末を添加した混合粉
末を、ダイアモンドの安定領域における温度圧力条件を
満足する焼結用温度と焼結用圧力とのもとに曝らして、
極めて高い硬度を保持すると共に強い機械的強度と耐熱
性とを備えている切削工具用材として優れた性能を有す
るダイアモンド−硬質炭化物複合焼結体を製造する工業
的に有効な方法を提供することを目的とするものである
As explained above, the present invention adds a hard carbide powder that reinforces the mechanical strength of the diamond sintered structure to a diamond powder having extremely high hardness, and further combines the diamond powder and the hard carbide powder. A mixed powder to which cobalt-based super heat-resistant alloy powder or nickel-based super heat-resistant alloy powder is added as a sintering aid powder to assist in the sintering of the mixed powder is used at a sintering temperature that satisfies the temperature and pressure conditions in the stable region of diamond. and sintering pressure,
An object of the present invention is to provide an industrially effective method for producing a diamond-hard carbide composite sintered body that maintains extremely high hardness, has strong mechanical strength and heat resistance, and has excellent performance as a material for cutting tools. This is the purpose.

次に、本発明の方法によりダイアモンド−硬質炭化物複
合焼結体を製造する作業について説明する。
Next, the operation of manufacturing a diamond-hard carbide composite sintered body by the method of the present invention will be explained.

焼結用原料には、ダイアモンド粉末を40重量係乃至6
0重量係と、炭化チタン、炭化ジルコニウム、炭化ハフ
ニウム、炭化バナジウム、炭化ニオブ、炭化タンタル、
炭化クロム、炭化モリブデン、炭化タングステン、炭化
硼素、炭化珪素のうちより選択した1種の炭化物の粉末
まだは2種以上の炭化物の混合粉末を66重量係乃至2
0重量係と、コバルト基超耐熱合金粉末オたけニッケル
基超耐熱合金粉末を24重量係乃至20重量係との割合
範囲内より選定した割合にて混合した混合粉末を使用す
る。斯様に調製した焼結用原料を焼結する作業はダイア
モンドの安定領域における温度圧力条件を満足する焼結
用温度と焼結用圧力とのもとに曝らして、予備焼結作業
と本焼結作業との2段階にて行い、其の予備焼結作業に
おいては900℃乃至1,100℃の範囲内の予備焼結
用温度と40,000に9/c、A乃至45.500 
kg7cdの範囲内の予備焼結用圧力とを使用し、其の
本焼結作業においては、1、300℃乃至1.600℃
の範囲内の本焼結用温度と51.000 kg/ ca
乃至60.000 kg / carの範囲内の本焼結
用圧力とを使用する。焼結作業を始むるに当っては、先
ず、調製した焼結用原料を容器内に充填して、其の容器
を高温高圧発生室内に装填する。次いで、容器内の焼結
用原料に選定した予備焼結用圧力(40,000k7/
 cxt〜45.500 kg/ tr! )を加える
と同時に選定した予備焼結用温度(900℃〜1,10
0℃)を加えて、其の加圧加熱状態を10分間乃至50
分間保持して予備焼結状態の調質を行う。
The raw material for sintering includes diamond powder of 40% to 6% by weight.
0 weight ratio, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, niobium carbide, tantalum carbide,
Powder of one type of carbide selected from among chromium carbide, molybdenum carbide, tungsten carbide, boron carbide, and silicon carbide, or a mixed powder of two or more types of carbide, with a weight ratio of 66 to 2
A mixed powder is used in which a cobalt-based super heat-resistant alloy powder, a cobalt-based super heat-resistant alloy powder, and a nickel-based super heat-resistant alloy powder are mixed in a ratio selected from within the ratio range of 24 weight ratio to 20 weight ratio. The work of sintering the raw material for sintering prepared in this way is performed by exposing it to a sintering temperature and pressure that satisfy the temperature and pressure conditions in the stable region of diamond, and performing preliminary sintering work and main sintering work. It is carried out in two stages: sintering and pre-sintering, in which the pre-sintering temperature is in the range of 900°C to 1,100°C and 40,000 to 9/c, A to 45.500°C.
The pressure for pre-sintering is within the range of 1,300°C to 1,600°C during the main sintering process.
Main sintering temperature within the range of 51,000 kg/ca
to 60,000 kg/car. To start the sintering operation, first, the prepared sintering raw material is filled into a container, and the container is loaded into a high temperature and high pressure generating chamber. Next, the pre-sintering pressure (40,000k7/
cxt~45.500 kg/tr! ) was added at the same time as the selected pre-sintering temperature (900℃~1,10℃).
0℃) and pressurize and heat it for 10 minutes to 50℃.
Hold for a minute to heat the pre-sintered state.

続いて、加えている予備焼結用圧力を強めて選定した本
焼結用圧力(51,000にり/ crA〜60,00
0に97 c、j )にまで昇圧し、次いで、保持して
いた予備焼結用温度における加熱を強めて選定した本焼
結温度(1,300℃〜1.6 (10℃)にまで昇温
しで、其の加圧加熱状態を20分間乃至60分間保持し
て本焼結状態を生成する。この本焼結作業を終えた状態
は液相焼結体を構成しているものである。次いで、加え
ていた本焼結用圧力は保持したままで加熱のみを停止し
、更に高温高圧発生室を冷却して室内の温度を500℃
にまで降温する。この冷却作業を加えられた液相焼結体
における液相部は凝固して固相焼結体を生成する。以上
に説明した本発明の方法による焼結作業を完了して得ら
れる固相状態の焼結体は、ダイアモンド粒子の多数個と
硬質炭化物粒子の多数個とが混合して成れる集合体にお
ける個々の粒子の間の間隙に、コバルト基超耐熱合金粉
末またはニッケル基超耐熱合金粉末よシ成る海綿状構造
の焼結組織が充塞していて、其の海綿状構造の焼結組織
が個々のダイアモンド粒子および個々の硬質炭化物粒子
を結合して構成した焼結組織体を特徴とする立方晶窒化
硼素−硬質炭化物複合焼結体であって、極めて高い硬度
を保持すると共に強い機械的強度と耐熱性とを備えてい
る切削工具用材として優れた性能を有するダイアモンド
−硬質炭化物複合焼結体である。
Next, the pressure for main sintering was increased by increasing the pressure for preliminary sintering (51,000 N/crA~60,00 crA).
The pressure was increased to 0.97 c,j), and then the heating at the pre-sintering temperature that had been maintained was increased to the selected main sintering temperature (1,300 °C to 1.6 (10 °C)). The pressurized and heated state is maintained for 20 to 60 minutes to produce a main sintered state.The state after this main sintering operation constitutes a liquid phase sintered body. Next, heating was stopped while maintaining the main sintering pressure that had been applied, and the high-temperature and high-pressure generation chamber was further cooled to bring the temperature inside the chamber to 500°C.
The temperature drops to . The liquid phase portion of the liquid phase sintered body subjected to this cooling operation solidifies to produce a solid phase sintered body. The solid state sintered body obtained by completing the sintering process according to the method of the present invention described above is composed of individual particles in an aggregate formed by mixing a large number of diamond particles and a large number of hard carbide particles. The gaps between the particles are filled with a sintered structure with a spongy structure made of cobalt-based super heat-resistant alloy powder or nickel-based super heat-resistant alloy powder, and the sintered structure with a spongy structure is formed into individual diamonds. A cubic boron nitride-hard carbide composite sintered body characterized by a sintered structure composed of particles and individual hard carbide particles, which maintains extremely high hardness and has strong mechanical strength and heat resistance. It is a diamond-hard carbide composite sintered body having excellent performance as a cutting tool material.

次に、本発明の方法によりダイアモンド−硬質炭化物複
合焼結体を製造する作業を実施例によシて説明する。
Next, the operation of manufacturing a diamond-hard carbide composite sintered body by the method of the present invention will be explained using examples.

実施例 1 焼結用原料には、ダイアモンド粉末を50重量%と炭化
タングステン粉末を30重量%とパラダレ4ソクフ社製
のコバルトが68重量%とクロムが26重t%とタング
ステンが5重量係と炭素が1重量係とし組成割合を成し
たヌテライト乙の粉末を20重量%との割合にて混合し
た混合粉末を使用した。斯様に調合した焼結用原料を容
器内に充填して其の容器を高温高圧発生室内に装填した
。次いで、焼結作業を予備焼結作業と本焼結作業との2
段階にて行い、其の予備焼結作業において使用する予備
焼結用温度には1.100℃の温度を選定し予備焼結用
圧力には45.500 kq/crlの圧力を選定し、
本焼結作業において使用する本焼結用温度には1.50
0℃の温度を選定し、本焼結用圧力には57,000k
g/ caの圧力を選定した。次いで、焼結作業を始め
るに当り、先ず、高温高圧発生室内に装填した容器内の
焼結用原料に選定した予備焼結用圧力45.500 k
7/ cr;rの圧力を加え、続いて、其の予備焼結用
圧力を加えた状態にある焼結用原料を徐々に加熱して選
定した予備焼結用温度1、100℃にまで昇温して其の
1.100℃の温度を保持するに必要な加熱を60分間
持続した。
Example 1 Raw materials for sintering include 50% by weight of diamond powder, 30% by weight of tungsten carbide powder, 68% by weight of cobalt manufactured by Paradare 4 Sokufu, 26% by weight of chromium, and 5% by weight of tungsten. A mixed powder was used in which Nutelite Otsu powder, which had a composition ratio of 1 part by weight of carbon, was mixed at a ratio of 20% by weight. The sintering raw materials prepared in this manner were filled into a container, and the container was loaded into a high temperature and high pressure generation chamber. Next, the sintering work is divided into two parts: preliminary sintering work and main sintering work.
The pre-sintering temperature used in the pre-sintering step is 1.100°C, the pre-sintering pressure is 45.500 kq/crl,
The main sintering temperature used in the main sintering work is 1.50.
A temperature of 0℃ was selected, and the pressure for main sintering was 57,000k.
A pressure of g/ca was chosen. Next, to start the sintering work, first, the pre-sintering pressure of 45.500 k selected for the sintering raw material in the container loaded into the high-temperature and high-pressure generating chamber was applied.
A pressure of 7/cr; The heating required to maintain the temperature at 1.100° C. was maintained for 60 minutes.

続いて・加えていた予備焼結用圧力を強めて選定した本
焼結用圧力である5 7.000 k7/ crlにま
で昇圧して、其の本焼結用圧力を加えた状態にあると同
時に予備焼結用温度を保持するための加熱を加えられて
いる状態にある予備焼結体を更に加熱して選定した本焼
結用温度1.500℃にまで昇温して、其の1.500
℃の温度を保持するに必要な加熱を50分間持続した。
Next, the pre-sintering pressure that had been applied was increased to the selected main sintering pressure of 57.000 k7/crl, and the main sintering pressure was applied. At the same time, the pre-sintered body, which has been heated to maintain the pre-sintering temperature, is further heated to the selected main sintering temperature of 1.500°C. .500
The heating required to maintain the temperature in °C was maintained for 50 minutes.

次いで、加えていた本焼結用圧力57.000 k7/
 Caは保持したままで加熱のみを停止し、更に高温高
圧発生室を外部より水冷した。次いで、其の室内の温度
が300℃に降温した後に、保持していた本焼結用圧力
を常圧にもとした。次いで、高温高圧発生室内より容器
を押し出して其の容器内よシ固相の本焼結体を取り出し
た。
Next, the main sintering pressure applied was 57,000 k7/
Only heating was stopped while Ca was maintained, and the high temperature and high pressure generation chamber was further water cooled from the outside. Next, after the temperature in the chamber was lowered to 300° C., the main sintering pressure that had been maintained was set to normal pressure. Next, the container was pushed out of the high-temperature, high-pressure generation chamber, and the solid-phase main sintered body was taken out from inside the container.

得られた本焼結体は、ダイアモンド粒子の多数個と炭化
タングステン粒子の多数個とか混合して成る集合体にお
ける個々の粒子の間の間隙にステライト6粉末が焼結し
て成る海綿状構造の焼結組織が充塞していて、其の海綿
状構造の焼結組織が個々のダイアモンド粒子および個々
のステン複合焼結体であって、極めて高い硬度を保持す
ると共に強い機械的強度と耐熱性とを備えている切削工
具用材として優れた性能を有するダイアモンド−硬質炭
化物複合焼結体であった。
The obtained sintered body has a spongy structure in which Stellite 6 powder is sintered in the gaps between individual particles in an aggregate made of a mixture of many diamond particles and many tungsten carbide particles. It is filled with sintered structure, and the sintered structure of the spongy structure is made up of individual diamond particles and individual stainless steel composite sintered bodies, which maintains extremely high hardness and has strong mechanical strength and heat resistance. The diamond-hard carbide composite sintered body had excellent performance as a material for cutting tools.

実施例 2゜ 焼結用原料には、ダイアモンド粉末を50重量%と炭化
モリブデン粉末を30重量%とパウダレックス社製のニ
ッケルが61.92重量%とクロムが16565重量%
リブデンが17重量%とタングステンが4.5重量係と
炭素が00808重量%組成割合を成したハステロイC
の粉末を20重量%との割合にて混合した混合粉末を使
用した。斯様に調製した焼結用原料を用いて固相の本焼
結体を生成するまでの作業は実施例1の場合と同様にし
て行った。得られ九本焼結体は、ダイアモンド粒子の多
数個と炭化モリブデン粒子の多数個とが混合して成る集
合体における個々の粒子の間の間隙に、ハステロイC粉
末が焼結して成る海綿状構造の焼結組織が充塞していて
、其の海綿状構造の焼結組織が個々のダイアモンド粒子
および個々の炭化モリブデン粒子を結合して構成した焼
結組織体を特徴としたダイアモンド−炭化モリブデン複
合焼結体であって、極めて高い硬度を保持すると共に強
い機械的強度と耐熱性とを備えている切削工具用材とし
て優れた性能を有するダイアモンドー硬質炭化物複合焼
結体であった。
Example 2゜The raw materials for sintering include 50% by weight of diamond powder, 30% by weight of molybdenum carbide powder, 61.92% by weight of nickel manufactured by Powdarex, and 16565% by weight of chromium.
Hastelloy C with a composition ratio of 17% by weight of livedenum, 4.5% by weight of tungsten, and 00808% by weight of carbon.
A mixed powder obtained by mixing powders of 20% by weight was used. The operations up to producing a solid-phase main sintered body using the sintering raw material prepared in this manner were carried out in the same manner as in Example 1. The resulting nine-piece sintered body is a spongy-like structure in which Hastelloy C powder is sintered into the gaps between the individual particles in an aggregate made up of a mixture of many diamond particles and many molybdenum carbide particles. A diamond-molybdenum carbide composite characterized by a sintered structure filled with a sintered structure in which the cavernous sintered structure is composed of individual diamond particles and individual molybdenum carbide particles. The diamond hard carbide composite sintered body was a sintered body that had extremely high hardness, strong mechanical strength, and heat resistance, and had excellent performance as a material for cutting tools.

実施例6 焼結用原料には、ダイアモンド粉末を50重量%と炭化
チタン粉末を28重量%とパウダレックス社製ハステロ
イC(組成は実施例2にて記した)の粉末を22重量%
との割合にて混合した混合粉末を使用した。斯様に調製
した焼結用原料を用いて固相の本焼結体を生成する寸で
の作業は実施例1の場合と同様にして行った。
Example 6 Raw materials for sintering include 50% by weight of diamond powder, 28% by weight of titanium carbide powder, and 22% by weight of Hastelloy C powder manufactured by Powderex (composition is described in Example 2).
A mixed powder mixed in the ratio was used. The operation for producing a solid-phase main sintered body using the sintering raw material prepared in this manner was carried out in the same manner as in Example 1.

得られた本焼結体はダイアモンド粒子の多数個と炭化チ
タン粒子の多数個とが混合して成れる集合体における個
々の粒子の間の間隙にハステロイC粉末が焼結して成れ
る海綿状構造の焼結組織が充塞していて、其の海綿状構
造の焼結組織が個々のダイアモンド粒子および個々の炭
化チタン粒子を結合して構成した焼結組織体を特徴とし
たダイアモンド−炭化チタン複合焼結体であって、極め
て高い硬度を保持すると共に強い機械的強度と耐熱性と
を備えている切削工具用材として優れた性能を有するダ
イアモンド−実施例 4゜ 焼結用原料には、ダイアモンド粉、末を50重量%と炭
化タングステン粉末を22重量%と炭化タンタル粉末を
5重量%とバクダレソクス社製ステライト6(組成は実
施例1にて記した)の粉末を25重量%との割合にて混
合した混合物を使用した。斯様に調製した焼結用原料を
用いて固相の本焼結体を生成するまでの作業は実施例1
の場合と同様にして行った。得られた本焼結体は、ダイ
アモンド粉末の多数個と炭化タングステン粒子の多数個
と炭化タンタル粒子の多数個とが混合して成れる集合体
における個々の粒子の間の間隙に、ステライト6粉末が
焼結して成れる海綿状構造の焼結組織が充塞していて、
其の海綿状構造の焼結組織が個々のダイアモンド粒子お
よび個々の炭化タングステン粒子および個々の炭化タン
タル粒子を結合して構成した焼結組織体を特徴としたダ
イアモンド−炭化タングステン−炭化タンタル複合焼結
体であって、極めて高い硬度を保持すると共に強い機械
的強度と耐熱性とを備えている切削工具用材として優れ
た性能を有するダイアモンド−硬質炭化物複合焼結体で
あった。
The obtained sintered body has a spongy shape made by sintering Hastelloy C powder in the gaps between individual particles in an aggregate formed by mixing many diamond particles and many titanium carbide particles. A diamond-titanium carbide composite characterized by a sintered structure filled with a sintered structure in which the cavernous sintered structure is composed of individual diamond particles and individual titanium carbide particles. Diamond is a sintered body that maintains extremely high hardness, has strong mechanical strength and heat resistance, and has excellent performance as a cutting tool material - Example 4゜ Diamond powder is used as a raw material for sintering. , 50% by weight of powder, 22% by weight of tungsten carbide powder, 5% by weight of tantalum carbide powder, and 25% by weight of Stellite 6 powder manufactured by Bakudaresoku Co., Ltd. (the composition is described in Example 1). A mixed mixture was used. The work to produce a solid-phase main sintered body using the sintering raw material prepared in this way is as described in Example 1.
It was done in the same way as in the case of The obtained sintered body contains Stellite 6 powder in the gaps between individual particles in an aggregate formed by mixing a large number of diamond powders, a large number of tungsten carbide particles, and a large number of tantalum carbide particles. It is filled with a spongy sintered structure formed by sintering.
A diamond-tungsten carbide-tantalum carbide composite sintered body characterized by a sintered structure whose cavernous structure is composed of individual diamond particles, individual tungsten carbide particles, and individual tantalum carbide particles bonded together. The diamond-hard carbide composite sintered body has excellent performance as a material for cutting tools, maintaining extremely high hardness, strong mechanical strength, and heat resistance.

実施例 5゜ 焼結用原料には、ダイアモンド粉末を50重量%と炭化
タングステン粉末を22重量%と炭化ニオブ粉末を5重
量%とパウダレックス社製ハステロイC(組成は実施例
2にて記した)の粉末を23重量%との割合にて混合し
た混合粉末を使用した。斯様に調製した焼結用原料を用
いて固相の本焼結体を生成するまでの作業は実施例1の
場合と同様にして行った。得られた本焼結体は、ダイア
モンド粒子の多数個と炭化タングステン粒子の多数個と
炭化ニオブ粒子の多数個とが混合して成れる集合体にお
ける個々の粒子の間の間隙に、ハステロイC粉末が焼結
して成れる海綿状構造の焼結組織が充塞していて其の海
綿状構造の焼結組織が個々のダイアモンド粒子および個
々の炭化タングステン粒子および個々の炭化ニオブ粒子
を結合して構成した焼結組織体を特徴としたダイアモン
ド−炭化タンクステンー炭化ニオブ複合焼結体であって
、極めて高い硬度を保持すると共に強い機械的強度と耐
熱性とを備えている切削工具材として優れた性能を有す
るダイアモンド−硬質炭化物複合焼結体であった。
Example 5 The raw materials for sintering were 50% by weight of diamond powder, 22% by weight of tungsten carbide powder, 5% by weight of niobium carbide powder, and Hastelloy C manufactured by Powderex (the composition was described in Example 2). ) was used in a proportion of 23% by weight. The operations up to producing a solid-phase main sintered body using the sintering raw material prepared in this manner were carried out in the same manner as in Example 1. The obtained sintered body contains Hastelloy C powder in the gaps between individual particles in an aggregate formed by mixing a large number of diamond particles, a large number of tungsten carbide particles, and a large number of niobium carbide particles. is filled with a sintered tissue with a spongy structure formed by sintering, and the sintered tissue with a spongy structure is composed of individual diamond particles, individual tungsten carbide particles, and individual niobium carbide particles bonded together. It is a diamond-tank stainless steel-niobium carbide composite sintered body characterized by a sintered structure that maintains extremely high hardness, as well as strong mechanical strength and heat resistance, and has excellent performance as a cutting tool material. It was a diamond-hard carbide composite sintered body.

実施例 6 焼結用原料には、ダイアモンド粉末を56重量%と炭化
珪素粉末を20重量%とパウダレックス社製のニッケル
が7652652重量%ムが19重量%とコバルトが1
重量%とチタンが22重量%とアルミニウムが11重量
%と炭素が018重量%との組成割合を成したナイモニ
ノク80Aの粉末を24重量%との割合にて混合した混
合粉末を使用した。斯様に調製した焼結用原料を用いて
固相の本焼結体を生成するまでの作業は実施例1の場合
と同様にして行った。
Example 6 Raw materials for sintering include 56% by weight of diamond powder, 20% by weight of silicon carbide powder, 7652652% by weight of nickel manufactured by Powderex, 19% by weight of 19% by weight of nickel, and 1% by weight of cobalt.
A mixed powder was used in which Naimoninoku 80A powder was mixed in a composition ratio of 22% by weight of titanium, 11% by weight of aluminum, and 0.18% by weight of carbon at a ratio of 24% by weight. The operations up to producing a solid-phase main sintered body using the sintering raw material prepared in this manner were carried out in the same manner as in Example 1.

得られた本焼結体は、ダイアモンド粒子の多数個と炭化
珪素粒子の多数個とが混合して成れる集合体における個
々の粒子の間の間隙にナイモニノク80A粉末が焼結し
て成れる海綿状構造の焼結組織が充塞していて、其の海
綿状構造の焼結組織が個々のダイアモンド粒子および個
々の炭化珪素粒子を結合して構成した焼結組織体を特徴
としたダイアモンド−炭化珪素複合焼結体であって、極
めて高い硬度を保持すると共に強い機械的強度と耐熱性
とを備えている切削工具材として優れた性能を有するダ
イアモンド−硬質炭化物複合焼結体であった。
The obtained sintered body is a sponge formed by sintering Naimoninoku 80A powder into the gaps between individual particles in an aggregate formed by mixing a large number of diamond particles and a large number of silicon carbide particles. A diamond-silicon carbide characterized by a sintered structure filled with a sintered structure having a sintered structure, and the sintered structure having a spongy structure formed by bonding individual diamond particles and individual silicon carbide particles. The diamond-hard carbide composite sintered body was a composite sintered body that maintains extremely high hardness, has strong mechanical strength and heat resistance, and has excellent performance as a cutting tool material.

実施例 7 焼結用原料には、ダイアモンド粉末を56重量係と炭化
硼素粉末を20重量係とパウダレックス社製のナイモニ
ノク80A(組成は実施例6にて記した)の粉末を24
重量係との割合にて混合した混合粉末を使用した。斯様
に調製した焼結用原料を用いて固相の本焼結体を生成す
る寸での作業は実施例1の場合と同様にして行った。得
られた本焼結体は、ダイアモンド粒子の多数個と炭化硼
素粒子の多数個とが混合して成れる集合体における個々
の粒子の間の間隙にナイモニソク80A粉末が焼結して
成る海綿状構造の焼結組織が充塞していて、其の海綿状
構造の焼結組織が個々のダイアモンド粒子および個々の
炭化硼素粒子を結合して構成した焼結組織体を特徴とし
てダイアモンド−炭化硼素複合症 焼結体であって、極めて高いも度を有すると共に強い機
械的強度と耐熱性とを備えている切削工具材として優れ
た性能を有するダイアモンド−硬質炭化物複合焼結体で
あった。
Example 7 The raw materials for sintering included 56 parts by weight of diamond powder, 20 parts by weight of boron carbide powder, and 24 parts by weight of Naimoninoku 80A (composition was described in Example 6) powder manufactured by Powdarex.
A mixed powder was used which was mixed in proportions by weight. The operation for producing a solid-phase main sintered body using the sintering raw material prepared in this manner was carried out in the same manner as in Example 1. The obtained sintered body has a spongy shape formed by sintering Naimonisoku 80A powder into the gaps between individual particles in an aggregate formed by mixing a large number of diamond particles and a large number of boron carbide particles. Diamond-Boron Carbide Composite Synthesis is characterized by a sintered structure filled with sintered tissue with a spongy structure that is composed of individual diamond particles and individual boron carbide particles. The diamond-hard carbide composite sintered body had extremely high strength, strong mechanical strength, and heat resistance, and had excellent performance as a cutting tool material.

以上に説明した本発明の方法による実施例にて製造した
ダイアモンド−硬質炭化物複合焼結体より成るチップと
、ダイアモンド粉末が77重重量上コバルト粉末が23
重量係との割合の混合物を焼結して製造したダイアモン
ド焼結体より成るチップを用いて、アルミニウムが88
重散係と珪素が12重量係との組成のアルミニウム合金
であるシルミンよシ成るピストン素材を用いて直径55
ミ9.長さ40ミリの円筒面を形成する切削作業を行っ
た。其の作業において上記のダイアモンド焼結体より成
るチップを使用した場合は、−回の研磨にて連続して1
4、100個切削できたのに対し、本発明の方法により
製造したダイアモンド−硬質炭化物複合焼結体よシ成る
チップを用いた場合は、−回の研磨にて連続して14,
200個乃至16.600個切削できた。この切削実験
により明かなように、アルミニウム合金の切削作業にお
いては、コバルトのみを結合剤としたダイアモンド焼結
体より成るチップに比較して、本発明の方法により製造
したダイアモンド−硬質炭化物複合焼結体より成るチッ
プは、著しく高い生産性を実現することができて、本発
明のダイアモンド−硬質炭化物複合焼結体の製造法が工
業的に有効な方法であることを証明するととができた。
A chip made of a diamond-hard carbide composite sintered body manufactured in the example according to the method of the present invention described above, and a diamond powder of 77% by weight and a cobalt powder of 23% by weight.
Using a chip made of a diamond sintered body produced by sintering a mixture with a weight ratio of 88
Using a piston material made of Shirumin, an aluminum alloy with a composition of 12 parts by weight and 12 parts by weight, the piston material was made with a diameter of 55 mm.
Mi9. Cutting work was performed to form a cylindrical surface with a length of 40 mm. When using a chip made of the above-mentioned diamond sintered body in that work, it is necessary to polish it continuously for - times.
4.100 pieces could be cut, whereas when using a diamond-hard carbide composite sintered tip manufactured by the method of the present invention, 14.
I was able to cut 200 to 16,600 pieces. As is clear from this cutting experiment, when cutting aluminum alloys, the diamond-hard carbide composite sintered chips manufactured by the method of the present invention are more effective than chips made of diamond sintered bodies using only cobalt as a binder. It was possible to achieve extremely high productivity with the chip made of the diamond-hard carbide composite sintered body, proving that the method of manufacturing a diamond-hard carbide composite sintered body of the present invention is an industrially effective method.

Claims (1)

【特許請求の範囲】[Claims] ダイアモンド粉末を40重量%乃至60重量%と、硬質
炭化物粉末を36重量%乃至20重量%と、コバルト基
超耐熱合金粉末またはニッケル基超耐熱合金粉末を24
重量%乃至20重量%との割合範囲内よシ選定した割合
にて混合した混合粉末を焼結用原料とし、其の焼結用原
料を焼結する作業をダイアモンドの安定領域における曝
度圧力条件を満足する焼結用温度と焼結用圧力とを使用
して予備焼結作業と本焼結作業との2段階にて行い、其
の予備焼結作業を、900℃乃至1.100℃の範囲内
の予備焼結用温度と40.000 kg / ca乃至
45.500 kg/ crtrの範囲内の予備焼結用
圧力とを使用し、其の本焼結作業を1,300℃乃至1
.600℃の範囲内の本焼結用温度と51,000 k
g/ca乃至60. OOO複合焼結体の製造法。
40% to 60% by weight of diamond powder, 36% to 20% by weight of hard carbide powder, and 24% of cobalt-based super heat-resistant alloy powder or nickel-based super heat-resistant alloy powder.
A mixed powder mixed at a selected ratio within the range of 20% by weight is used as a raw material for sintering, and the work of sintering the raw material for sintering is performed under exposure pressure conditions in the stable region of diamond. The preliminary sintering work is carried out in two stages, the preliminary sintering work and the main sintering work, using a sintering temperature and a sintering pressure that satisfy the following conditions. Using a pre-sintering temperature within the range and a pre-sintering pressure within the range of 40,000 kg/ca to 45,500 kg/crtr, the main sintering operation was carried out at 1,300°C to 1,300°C.
.. Main sintering temperature within the range of 600℃ and 51,000k
g/ca to 60. Manufacturing method of OOO composite sintered body.
JP57132028A 1982-07-30 1982-07-30 Manufacture of diamond-hard carbide composite sintered body Pending JPS5926970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57132028A JPS5926970A (en) 1982-07-30 1982-07-30 Manufacture of diamond-hard carbide composite sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57132028A JPS5926970A (en) 1982-07-30 1982-07-30 Manufacture of diamond-hard carbide composite sintered body

Publications (1)

Publication Number Publication Date
JPS5926970A true JPS5926970A (en) 1984-02-13

Family

ID=15071806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57132028A Pending JPS5926970A (en) 1982-07-30 1982-07-30 Manufacture of diamond-hard carbide composite sintered body

Country Status (1)

Country Link
JP (1) JPS5926970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147407A (en) * 2018-01-05 2018-06-12 李伟 A kind of optimization diamond compact and its feedstock optimization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147407A (en) * 2018-01-05 2018-06-12 李伟 A kind of optimization diamond compact and its feedstock optimization method

Similar Documents

Publication Publication Date Title
US4411672A (en) Method for producing composite of diamond and cemented tungsten carbide
BRPI0819169B1 (en) METHOD FOR PRODUCING DIAMOND METAL COMPOUND AND BODY DIAMOND METAL COMPOSITE
JPS5926970A (en) Manufacture of diamond-hard carbide composite sintered body
JP2003095743A (en) Diamond sintered compact and method of manufacturing the same
JP2020059079A (en) Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same
JPS62105911A (en) Hard diamond mass and production thereof
JPS6022680B2 (en) Composite sintered body for tools and its manufacturing method
JPH0342176A (en) Binding method by diffusion of metal alloy powder
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPS60138044A (en) Composite sintered structural body of cubic boron nitride and cermet and production thereof
JPS5969472A (en) Manufacture of diamond composite sintered body
JPS59153851A (en) Production of sintered body of cubic boron nitride combining alumina and titanium nitride
JPS60128231A (en) Production of sintered diamond body
JP7473149B2 (en) High-hardness diamond-based block tool material and its manufacturing method
JPS6283447A (en) Sintered diamond and its production
JPS60263601A (en) Composite sintered tool
JPS6137221B2 (en)
JPS5935974B2 (en) Manufacturing method for tungsten carbide tool materials
JPS58204872A (en) Diamond sintered body and manufacture
JPS59200733A (en) Manufacture of solidified body of cubic boron nitride at medium temperature and pressure
JPS6228111B2 (en)
JPS5819408A (en) Manufacture of composite carbide-boride solidified body
JPS58190872A (en) Diamond sintered body and manufacture
JPS60263602A (en) Composite sintered tool
JPS60230956A (en) Cubic boron nitride-base sintered structure and its manufacture