JPS5926051A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS5926051A
JPS5926051A JP57135039A JP13503982A JPS5926051A JP S5926051 A JPS5926051 A JP S5926051A JP 57135039 A JP57135039 A JP 57135039A JP 13503982 A JP13503982 A JP 13503982A JP S5926051 A JPS5926051 A JP S5926051A
Authority
JP
Japan
Prior art keywords
electrode
porous
gas
alkali metal
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57135039A
Other languages
Japanese (ja)
Inventor
Toshiro Hirai
敏郎 平井
Akihiko Yamaji
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57135039A priority Critical patent/JPS5926051A/en
Publication of JPS5926051A publication Critical patent/JPS5926051A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To increase electromotive force with respect to a change in the concn. of O2 and to improve responsiveness, stability, etc. by using porous carbon or porous metal incorporated therein with a specific amt. of alkali metal vanadate in manufacturing the electrode of a galvanic battery type oxygen sensor on the side in contact with gas to be measured. CONSTITUTION:The positive electrode of an oxygen sensor, i.e., the electrode 3 on the side of gas to be measured, is manufactured by molding by pressure the powder of 3-50% alkali metal vanadate such as LixV2O5(0.02<=X<=1.0), NaYV2O5 (0.15<=Y<=1.0) or the like mixed with carbon powder such as graphite and a water repellent such as ''Teflon'' together with an Ni-screen 2 then heat treating the same and uniting the molding in one body to an electrode material 1. An electrolyte 6 such as alkali metal salt or KOH, phosphoric acid, etc. is put between such porous electrode 3 and a negative electrode (made of Zn, Al, Pt, etc.) 4. The gas to be measured enters the case from the holes 7 thereof. The alkali metal vanadate acts as a catalyst for electrode reaction and the inexpensive sensor having high sensitivity and long term stability is obtd.

Description

【発明の詳細な説明】 本発明は、常温で環境中の酸素濃度の測定に使用される
酸素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen sensor used for measuring oxygen concentration in the environment at room temperature.

大気中の酸素濃度を検出し、警報装置その他の連動装置
に接続し、洞道内や地下道内の酸欠防止を図ることは、
地下作条の増加に伴って重要視されている。この酸素#
度検出に使用される酸素セン゛すとして(J、ガルバニ
型亀池を形成して、多孔質uイ1極の正(θを被測定ガ
ス1111に接触させ、あるいは固体FIT、解質を形
成して一方のy11極を基準酸素分圧(一般には、大気
中の空気の酸素分圧)に、他方のFI?、極を被測定ガ
スに接触させて、これに生ずる起電力または■1流変化
を測定する方式、あるい(ま、酸素分圧によυytt気
伝導度が変化する酸化物半導体を用い、ylL気抵抗抵
抗変化定する方式がある。また、酸素分圧による螢光消
光を利用したセンサも+J%案されている。
Detecting the oxygen concentration in the atmosphere and connecting it to alarm devices and other interlocking devices to prevent oxygen deficiency in caves and underground passages.
It is becoming more important as the number of underground crops increases. This oxygen#
As an oxygen sensor used for temperature detection (J, a galvanic type Kameike is formed, porous u and one positive pole (θ) are brought into contact with the gas to be measured 1111, or a solid FIT or solute is formed. Then, one y11 pole is brought into contact with the reference oxygen partial pressure (generally, the oxygen partial pressure of air in the atmosphere), and the other FI?, pole is brought into contact with the gas to be measured, and the electromotive force or ■1 current change that occurs. (Well, there is a method that uses an oxide semiconductor whose υytt gas conductivity changes depending on the oxygen partial pressure and determines the yllL air resistance change.Also, there is a method that uses fluorescence quenching due to the oxygen partial pressure. +J% sensors are also being proposed.

センザ利料には、ガルバニ型面1池式では、正(函に白
金、銀等を含有した多孔質T程価、負極にZn、Mg、
等を用いている。また、固体用、解質幣、池式において
は、Z r O2−Oh 0% T h 02−、Y2
O3等の多孔デ(伝導体が白金、金等の多孔質金属と組
合せて用いられている。酸化物半導体としてはT’10
ヵCoo、MgO−Oo 01M10等を使用している
。螢光消光利用センサにはピレン−シリコン膜が使用さ
れている。
In the galvanic type one-cell type, the sensor electrode has a positive electrode (porous T electrode containing platinum, silver, etc. in the box, Zn, Mg, etc. in the negative electrode).
etc. are used. In addition, for solids, solutes, and pond types, Z r O2-Oh 0% Th 02-, Y2
Porous metals such as O3 (conductors are used in combination with porous metals such as platinum and gold).As oxide semiconductors, T'10
KaCoo, MgO-Oo 01M10, etc. are used. Pyrene-silicon membranes are used in sensors that utilize fluorescence quenching.

しかしながら、従来技術におけるこれらの利料のうち一
白金、金、銀等のJIt金属は高価であり、固体ytt
解質は室温では作動しない。酸化物半導体利料について
は、ベース導717.率に対する導YrL率変化が小さ
くベース抵抗の変動の中に埋没してし一止ったり、復元
が速−やかでない欠点を有している。
However, among these metals in the prior art, JIt metals such as platinum, gold, and silver are expensive, and solid YTT metals are expensive.
Solyte does not operate at room temperature. Regarding oxide semiconductor materials, base conductor 717. It has the disadvantage that the change in the conductive YrL ratio with respect to the conductive YrL ratio is small, and it is buried in the fluctuation of the base resistance and does not stop or restore quickly.

才だ、螢光消光利用セン′リ−は、酸素分圧に対する応
看が悪く、さらに長期安定性に欠は実用性には程遠い。
However, the fluorescence quenching technology has poor response to oxygen partial pressure and lacks long-term stability, making it far from practical.

■ 本発明は、このような現状に鑑みてされたものであり、
アルカリ金属バナジン酸塩を含む電極を使用することに
」:す、安価で、酸素濃11I]の第j化に9、λ」す
る起FIT、力が大きく、かつ応答が望く、長期安定で
ある高性能、高信頼性の酸素センサを提供することを1
1勺としている。
■ The present invention was made in view of the current situation, and
The use of an electrode containing an alkali metal vanadate is inexpensive, has a large force and a desired response, and is stable over a long period of time. Our goal is to provide a high performance, highly reliable oxygen sensor.
It is set as one.

本発明につき概説すれば、本発明のr俊メくセンサは、
正極にL i X V205s  N a yV205
笠のアルカリ金属のバナジン酸塩を含有する多孔質T1
1極を用い、負極に卑金属、白金あるいはそれらの合金
を用い、両極の間にVll 解質を配置して構成するこ
とを特徴とするものであるう 本発明に、l−4tげ、被測定ガスに接する多孔質正極
に、L i x V2O3、NayV208等のアルカ
リ金属バナジン酸塩9塩を含有することにより、後述す
るように酸素?7jj↓度の変化による起M力の変化、
あるいはFl¥、涼夏化が大きく、かつ、その応答が早
く、さらには長ル]安定な酸素センサが得られる。
To summarize the present invention, the rapid sensor of the present invention includes:
Li X V205s Na yV205 for positive electrode
Porous T1 containing Kasa's alkali metal vanadate
The present invention is characterized by using one electrode, using a base metal, platinum, or an alloy thereof for the negative electrode, and arranging Vll solute between the two electrodes. By containing an alkali metal vanadate 9 salt such as L i x V2O3 or NayV208 in the porous positive electrode that is in contact with gas, oxygen? Change in electromotive force due to change in 7jj↓ degree,
Alternatively, it is possible to obtain an oxygen sensor that has a large degree of coolness in the summer, has a fast response, and is stable for long periods of time.

本発明によるI¥2素センーν」ま、被測定ガスに接す
る、I+ i x V2O5、N h y V2O,等
のアルカリ金属を含有した多孔質tυ、極を正極とし、
負極は、亜輯、アルミニウノ・、マグネシウム、白金又
はこれらの冶金等を使用して成り、町、解゛貿としてK
OHlN a O11等ノアルカリr[丁、角1「質、
NaC!1.KOl等の中性m解質、リン酸等の酸性電
f!f+質に必要に応じて負極の自己腐食防止剤や沈殿
凝集剤を添加した溶液を使用して構成される。
According to the present invention, a porous tυ containing an alkali metal such as I+ i x V2O5, Nhy V2O, etc., which is in contact with the gas to be measured, is used as a positive electrode,
The negative electrode is made of aluminum, aluminum, magnesium, platinum, or metallurgy of these metals.
OHlN a O11 etc.
NaC! 1. Neutral m solutes such as KOl, acidic electrolytes such as phosphoric acid f! It is constructed using a solution in which a self-corrosion inhibitor and a precipitating flocculant for the negative electrode are added to the f+ quality as necessary.

本発明における酸素センサの被測定ガス側の電極は、炭
素粉末、グラファイト、活性炭およびアセチレンブラッ
ク等の炭素粉体とテフロン等の撥水剤等との混合粉体が
ら成シ、これに上記のLixv20.・N a yVz
O1!等の゛アルカリ金属バナジン酸塩が含治される。
The electrode on the gas-to-be-measured side of the oxygen sensor of the present invention is made of a mixed powder of carbon powder, graphite, activated carbon, acetylene black, etc., and a water repellent such as Teflon; ..・NayVz
O1! It is treated with alkali metal vanadate such as.

木ヴ11明者らの検3・1によれば被測定ガス側に接ツ
る多孔5JI正(瓶へのアルカリ金属バナジン酸塩の含
有割合は、3%〜50%の範囲が、後述する酸素還元■
f、偽反応においC優れた触媒効果の発現を示す。含不
割合が3%以下では、酸素還元反応に対する触媒効果の
発現が十分でなく、一方、50%以上になると1. F
IY、極の導ytr、率が低下し、yet子の供給に遅
れが生じ正極反応が円滑に進まなくなつ′C1ともに酸
素濃度変化に対する71i、 (萌亀位の応答が悪くな
る。
According to the test 3.1 of Kifu 11 Meisha et al., the porous 5JI positive bottle in contact with the gas to be measured side (the content ratio of alkali metal vanadate in the bottle is in the range of 3% to 50%, as will be described later). Oxygen reduction■
f, C shows excellent catalytic effect in pseudo reaction. If the content ratio is 3% or less, the catalytic effect on the oxygen reduction reaction will not be sufficiently expressed, while if it is 50% or more, 1. F
IY, the conductivity of the electrode decreases, there is a delay in the supply of yet particles, and the positive electrode reaction does not proceed smoothly.For both C1 and C1, the response of the moe tortoise position to changes in oxygen concentration deteriorates.

本発明における、アルカリ金属バナジン酸塩のfilt
類はlrケに限定されないが、本発明者等の検削によれ
ば、化学式L i x v2o5(o、 o 24x4
1.o )及び化学式N PLyVzOs (0,l 
54.、 V 41.0 )で表わされる化合物を有効
に使用することができる。
The filt of alkali metal vanadate in the present invention
Although the class is not limited to lr, according to the inspection conducted by the present inventors, the chemical formula L i x v2o5(o, o 24x4
1. o ) and the chemical formula N PLyVzOs (0, l
54. , V 41.0 ) can be effectively used.

L i x V2O5(0,024x41.O)及びN
ayV:* 05:L+(0,15<;y41 )にお
けるL1+及びNIL+の割合(χ、yの範囲)は、タ
ングステンブロンズ構造の1財目、もしくは微量の混合
相をr「容しく’fる範囲であυ、この範囲において当
該l物質は酸素セン−IJ−の機能を十分に果たす酸素
還元反応< nr、極反毘9の触媒効果を発現しイ0る
ものである。上記のLi”及びNa十の添加割合を逸脱
した物質においては、混合相となり、局部的に異なる物
質から構成されるため、」二記触媒効果の発現内部抵抗
等に均一性を欠いて、多孔51正極に含有することによ
る十分な酸素センーリの機能を保障できない。
L i x V2O5 (0,024x41.O) and N
The ratio of L1+ and NIL+ (range of χ, y) in ayV:*05:L+(0,15<;y41) is determined by the ratio of L1+ and NIL+ (range of χ, y) in the tungsten bronze structure or a small amount of mixed phase. In this range, the substance exhibits a catalytic effect of oxygen reduction reaction < nr, polar reaction 9, which fully fulfills the function of oxygen sen-IJ-. For substances that deviate from the addition ratio of Na and Na, they become a mixed phase and are composed of locally different substances, resulting in a lack of uniformity in the internal resistance etc. of the catalytic effect described in Section 2. Due to this, sufficient oxygen sensor function cannot be guaranteed.

被測定ガスに接する多孔質止部を構成する炭素粉末、ア
セチレンブラック、ケッチェンブラックFj O等の炭
素(°4料は、正極反応の起こる反応点を増加し、かつ
、触媒の含有が容易となるうえで効果的な大きい表面積
を有し、また、正極反応に伴うm子の移動を容易にする
に十分な導ηイ、性を有する点でイj効な構成材料であ
る。
Carbon powder, acetylene black, Ketjenblack Fj O, etc., which constitute the porous stop in contact with the gas to be measured (°4 materials) increase the number of reaction points where the positive electrode reaction occurs, and facilitate the inclusion of catalysts. It is an effective constituent material in that it has a large surface area that is effective for positive electrode reactions, and has sufficient conductivity to facilitate the movement of m molecules associated with positive electrode reactions.

多孔質ニラクル等の多孔質金属も同様の理由で有効な多
孔質正極構成利料となるが、この利料を使用する際には
、金属がy+r、 m 質に溶解することによる酸素還
元と異質な化学反応を防止するために表面をカーボンス
プレー等の手段により保護する必要がある。
Porous metals such as porous Niracle are also effective as porous positive electrode components for the same reason, but when using this material, it is important to avoid oxygen reduction and heterogeneity when the metal is dissolved in y + r, m. In order to prevent chemical reactions, the surface must be protected by means such as carbon spray.

これらの44別により多孔’、PE jli (色を構
成する際には、FIX解質が正(瓶中のJ↑I11孔を
通し′C漏れ出るのを防雨するために、オJ料と共にテ
フロン粉末やデフo ンx マルションヲ7昆e した
す、テフロンスプレー等を表面に塗布したり、多孔質正
極の被測定ガスに接する片面に多孔質テフロンシートを
貼伺したりする等の撥水剤を使用した防水処理を施し−
Cおく。
Due to these 44 different porous ', PE jli (when composing the color, the FIX solution is positive (in order to prevent rain from leaking 'C through the J↑I11 hole in the bottle, it is mixed with the OJ fee). Water repellent agents such as applying Teflon powder, Teflon spray, etc. to the surface, or pasting a porous Teflon sheet on one side of the porous positive electrode that is in contact with the gas to be measured. Waterproofing treatment using
Put C.

被測定ガス側に接する多孔質正(i@ Lt 、上記の
炭素粉体、撥水剤及び遷移金属治機錯体から成る混合粉
体をニッケル、銀等の金属網と共に成形圧着し、これを
加熱焼成して作製することができる。
A porous positive (i@Lt) in contact with the gas to be measured, a mixed powder consisting of the above carbon powder, water repellent, and transition metal complex is molded and pressed together with a metal mesh of nickel, silver, etc., and then heated. It can be produced by firing.

本発明における」二記アルカリ金属バナジン酸塩を、破
?+1115+uガス側に接する多孔%j jI’、 
極に含治した酸素センソが高性能となる球出は、これら
のアルカリ金属バナジン酸」盈が酸素ガスの有効な還元
触媒であることによる。すなわち、酸素ガスを吸着しや
すく、正極の?lf、極反応が円滑に行なわれるための
Tに子の供給が容易であり、生成する中間体(酸性11
丁、解ダl使用の場合: H20□、アルカリ性yti
、 f臀P1使用の1局合:no2−)の分1’+’f
速度が大きくなる。
In the present invention, is the alkali metal vanadate listed under 2 broken down? +1115+u porosity in contact with gas side %j jI',
The high performance of the oxygen sensor impregnated with the electrode is due to the fact that these alkali metal vanadates are effective reduction catalysts for oxygen gas. In other words, is it easy to adsorb oxygen gas and the positive electrode? lf, it is easy to supply children to T for smooth polar reaction, and the generated intermediate (acidic 11
When using chlorine, chloride: H20□, alkaline yti
, f 1st position using buttocks P1: no2-) minute 1'+'f
The speed increases.

従って、酸累濃11’CX化に対するTit位入化の値
が大きく、しかも対応も早くなる。
Therefore, the value of Tit input to the acid accumulation concentration 11'CX is large, and the response is also quick.

なお、本発明による酸素センサは、苗、流を流すことな
く使用できるため、定電流源を必要としない等、測定系
の簡略化が図れるうえに、電流を流すことによる素子の
発熱や劣化がなく長寿命である。−まだ本発明における
酸素センサは開路■モ圧をその寸ま測定するため、1口
、角イ質に厳しい条件を諜ずことなく便用oJ能で液状
のみならず、ゲル状及び固体因のy+y、 l竹ytを
も用いることが可能であるという大きな特徴を有してい
る。
The oxygen sensor according to the present invention can be used without applying a current to the seedlings, so it does not require a constant current source, which simplifies the measurement system. It has a long lifespan. - Since the oxygen sensor of the present invention measures the open circuit pressure to that extent, it can be used in one sip, without having to deal with severe conditions for dead skin cells, and can be used not only in liquid but also in gel and solid forms. It has the great feature that it is also possible to use y+y, l bamboo yt.

次に、本発明における酸素センサの構造を図面により説
明する。すなわち第1図は、被測定ガス111]に接す
る多孔TI正極構造の一具体例を示した断面概略図を示
し、1は屯極拐料層、2はニッケル製網を示す。第2図
は、この多孔質正極を組込んだ酸素センサの基本構造の
断面図であり、3は被1i111定ガス側に配する多孔
7q正(+j−14は負極であり、jlQ !i、極間
に5の11T、解5(層を配]αして構成σれる。
Next, the structure of the oxygen sensor according to the present invention will be explained with reference to the drawings. That is, FIG. 1 shows a schematic cross-sectional view showing a specific example of a porous TI positive electrode structure in contact with a gas to be measured 111, in which 1 shows a tunic material layer and 2 shows a nickel mesh. FIG. 2 is a cross-sectional view of the basic structure of an oxygen sensor incorporating this porous positive electrode. 11T of 5 between the poles, solution 5 (arrangement of layers) α and configuration σ.

6は、酸素セン“すを収納゛りる容品、7 GjガスJ
i7人れ1」である。このIf−f、 8’r′F’r
層はtfk状及びコロイド状、又番」ノ゛ラスヂツクイ
」ン導)If、 (イ;の固体711、I!+’N 質
を用いZ))ことができる。
6 is a container that stores oxygen sensors, 7 is Gj gas J
i7peoplere1''. This If-f, 8'r'F'r
The layers can be tfk-like and colloidal, and can also be formed using the solid 711, I!+'N material of (a).

多孔質上清Iを組込むに尚たって(」、TIF、極月別
層1が?lf、 W(質j脅5に、ニッケル製網が波1
則51!ガスに]フレジーるように向きを51!ぬる。
In addition, when incorporating porous supernatant I ('', TIF, polar layer 1?lf, W(quality j threat 5, nickel mesh wave 1
Rule 51! [To the gas] Turn to 51 so that it will freeze! Null.

この結果、r+’r、 1余利別層1中に717. l
性質、ガス及び■、極粉体の三、tl界1111が形成
7;Σれる。なお、ニッケル製網2は、Tl’1.を祇
利別層1の支持体及び集電体として設けられている。
As a result, r+'r, 717. l
Properties, gas and ■, polar powder three, tl field 1111 is formed 7; Σ. Note that the nickel mesh 2 has Tl'1. is provided as a support and a current collector for the Giribetsu layer 1.

なお、この際、Tit、極の寿命を延ばすために、被測
定ガス側に接す−る金属網の外1111に撥水剤含h1
を多くシ、多孔度化した第2のt11極月料層や撥水性
拐)1から成る多孔4<I:シートを圧着したり、撥水
剤をスプレーにより吹イー」け処理を行なってもよい。
At this time, in order to extend the life of the electrode, a water repellent agent is added to the outside of the metal mesh that is in contact with the gas to be measured.
4<I: Even if the sheet is crimped or treated with a water repellent by spraying, good.

次に、本発明を実施例にJこって説明するが、本発明は
口れにより側ら限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited by the mouthfeel.

実施例1 下記第1表に示す条件で組成の異なる5 ’fyIiσ
、)/テナジン酸リチウムを作製した。これらの化合′
吻の相(組成+114造)はX勝1回折で同定した。
Example 1 5'fyIiσ with different compositions under the conditions shown in Table 1 below
, )/lithium thenadate was prepared. These compounds′
The phase of the snout (composition + 114 structures) was identified by X-ray diffraction.

第  1  表 次に、炭素粉末(100メツシコー通過)020g、テ
フロン粉末(50メツシユ通過) 0.12 g及び第
1表に示した4柾のバノージン酸塩008g侘・冷凍粉
砕して?Jも合し、これら4種の混合物を直径20m、
、の円板成型金型内にニッケ7L製網(50メツシユ)
と共に入れ、130″Cの乾燥C’?A 内で130分
間加熱し、その後、圧力400〜でプレスし、更に40
0°Cの炉内で30分間加熱処理して、多孔質正極を作
製した。
Table 1 Next, 020 g of carbon powder (passed through 100 meshes), 0.12 g of Teflon powder (passed through 50 meshes), and 008 g of the 4 squares of vanodate shown in Table 1 were frozen and crushed. J is also combined, and the mixture of these four types is 20 m in diameter,
, Nikkei 7L net (50 mesh) is placed inside the disc mold.
Heat for 130 minutes in a dry C'?A at 130''C, then press at a pressure of 400~, and
A porous positive electrode was produced by heat treatment in a 0°C furnace for 30 minutes.

TIT、解1jiとして工N K O+1をfvi用し
、亜鉛を負(愼として、TI“1.池式j1シ素センー
リを4°1゛6成し、異なる02濃度のN2−0□混合
ガスー1で多孔り1■正極の71. > m、位(E1
対飽和カロメル電極)の酸素分圧依存性を調べた。結果
を第31Aに示す。
TIT, as a solution 1ji, use engineering N K O+1 as fvi, and as negative zinc, TI"1.Ike type j1 silicon sensor is made 4°1゛6, and N2-0□ mixed gas with different 02 concentration. 1, porosity 1■ positive electrode 71. > m, position (E1
The oxygen partial pressure dependence of the saturated calomel electrode was investigated. The results are shown in Section 31A.

すなわち、第3図は、本実が11例における酸累センザ
の被測定ガス(tillに配置した多孔賀正j′ケの無
通m状態でのr[i極rIL位の酸素分圧イム有性を示
したグラフであシ、AはL J、 o、 02 VzO
sを含有した多孔質正極、” IJL J、 o、 0
8 Vz 05、CはJ、l J、 0.2 V2O5
、DはTJ i 0.6 V2o5、EはT、 11.
 OV、、05を含有した多孔質正極のFll、(函m
、位変化を示している。
That is, Fig. 3 shows the oxygen partial pressure im at the r Here is a graph showing A is L J, o, 02 VzO
Porous positive electrode containing s,” IJL J, o, 0
8 Vz 05, C is J, l J, 0.2 V2O5
, D is TJ i 0.6 V2o5, E is T, 11.
Fll of porous positive electrode containing OV,,05 (box m
, indicating a change in position.

第3PyJによれば、酸素ガス分圧の変化によるFll
According to the third PyJ, Fll due to changes in oxygen gas partial pressure
.

極卵位の変化は、0□が1%から100%寸で分圧変化
をおこし、さらに逆に100%から1%まで分圧変化を
おこした場合、L i O,08V2O,含有の正極で
+o、 3 s o v〜−1−0,430V (対飽
和カロメル電極、以下同じ)、L i 0.2 V、、
OI、含有の正極で、4−0.A17V〜O,A6’l
Vの範囲であり、02分圧の変化の方向に依らずFff
、4i IF、位置化はuJ逆的で′Ij定であυ、し
かも変化に対ブーるytt位クー化の尾、答(」ずd′
やかった。寸た、J、 10.02 V2O5、■)j
−06■205、L 11. OV2O,をそれぞれ含
諭した多孔質正極について同様の02分圧変化を行なっ
たところ、そtFt’tL、−1−0,320V 〜+
0.372 V、 −1−0308〜+0.355V、
−1−0,255V〜+0293■の範囲で小さなヒス
テリシスを生じて11位変化を示した。しかし、このヒ
ステリシスは酸素センソの機能」−;何ら問題はなく、
寸だ分圧変化に対応するat位変化の応答もずげやかっ
た。II−+J実施例におけるすべての多孔質正極にお
いて、m位の時間的変化はなく、長期間安定であった。
As for the change in the polar position, when 0□ causes a partial pressure change from 1% to 100%, and vice versa, when the partial pressure changes from 100% to 1%, the positive electrode containing Li O, 08V2O, +o, 3 s ov ~ -1-0,430V (versus saturated calomel electrode, same below), Li 0.2 V,,
OI, a positive electrode containing 4-0. A17V~O, A6'l
V, regardless of the direction of change in partial pressure.
, 4i IF, the positioning is uJ inverse and ′Ij constant υ, and the tail of the ytt position Kuu, which is Boo against change, is the answer ('zud'
I did it. Sunta, J, 10.02 V2O5, ■)j
-06■205, L 11. When similar 02 partial pressure changes were made for porous positive electrodes containing OV2O, respectively, tFt'tL, -1-0,320V ~ +
0.372V, -1-0308~+0.355V,
A small hysteresis occurred in the range of -1-0,255 V to +0,293 V and showed an 11-position change. However, this hysteresis is a function of the oxygen sensor; there is no problem.
The response of changes in the at position corresponding to changes in partial pressure was also slow. In all the porous positive electrodes in Examples II-+J, there was no temporal change in the m position, and the positive electrodes were stable for a long period of time.

実施例 2゜ 下記第2表に示す争件で組成の異なる3f重のバナジン
酸ナトリウム塩を作製した。XiW回折の結果、これら
の′物質は全て単相であった。
Example 2 3F sodium vanadate salts having different compositions were prepared in the cases shown in Table 2 below. As a result of XiW diffraction, these substances were all single-phase.

次に、炭素粉末(100メツシユノ1追議) 0.20
g、デフロン粉末(50メツシユ通過) o、 12 
g及び上記第2表に示した3種のバナジン酸ナトリウノ
、塩のそれぞれo、osyを冷凍粉砕して混合しこれら
を内径zommの円板IJλ型金型内にニッケル製網(
50メツシユ)と共に入れ、実力山側1と同様にし−〔
多孔1ij、i正極を作製した。
Next, carbon powder (100 mesh 1 addition) 0.20
g, Deflon powder (passed through 50 meshes) o, 12
g and the three types of sodium vanadate and salts o and osy shown in Table 2 above were freeze-pulverized and mixed, and these were placed in a nickel net (
50 mesh), and do the same as in 1 on the skill level side.
A porous 1ij, i positive electrode was produced.

さらに、実施例1と同様にして硯池式酸素セン′す°を
組−1−げ、同様の方法で多孔質正極のFir、 h、
 Flu位(II:、対飽和カロメル71−f、 (i
反)の酸A4分圧依存性を調べた。結果を第4図に示す
Furthermore, a Kasuriike type oxygen sensor was assembled in the same manner as in Example 1, and Fir, h,
Flu position (II:, versus saturated calomel 71-f, (i
The dependence of acid A4 on partial pressure of (anti) was investigated. The results are shown in Figure 4.

すなわち、第4図は、本実施例における酸素セン′す゛
の多孔質正極の11丁、(j仄Y1[1位の酸素分圧依
存性を示したグラフであり、FはN FLo、 15 
Vz 05を含有した多孔グシI正(L  aはN a
 0.176 V2O5、Hはp+ FL ]−、OV
2o、をそれぞれη有した多孔質正極の11イ。
That is, FIG. 4 is a graph showing the oxygen partial pressure dependence of the 1st position of the porous positive electrode of the oxygen sensor in this example, where F is N FLo, 15
Porous gusset I positive containing Vz 05 (L a is Na
0.176 V2O5, H is p+ FL ]-, OV
11i of porous positive electrodes having η of 2o and η, respectively.

(瓶1111位変化を示し°Cいる。(The bottle shows a change of 1111 °C.

第4図によれば、酸素分圧の変化による電極F[T。According to FIG. 4, electrode F[T] due to changes in oxygen partial pressure.

位の変化は、0□分圧を1%から100%、逆に100
%から1%に変えるとN a 0.15 V2O,含有
の場合で+0.07V(対飽和カロメル■、極以下同じ
) 〜−1−0,111V %N FLO,l 76 
V2O5含治ノ場合で→−0,072〜−1−0,10
5V、N a 1. OVz O5含哨の場合で千0.
108V〜十〇、 l 5.5 Vの範囲であった。分
圧変化に対応する電極m位の7J応けずd”やく、寸だ
f%位の時間的変化はみられず長期間安定であった。N
 a 1. OV2O5含有の場合において若干のヒス
プリシスを生じているが酸素センサの機能]二側ら支障
はない。
The change in position is 0□ partial pressure from 1% to 100%, and conversely 100%.
When changing from % to 1%, Na 0.15 V2O, +0.07 V when containing (vs. saturated calomel ■, same below pole) ~ -1-0,111 V %N FLO, l 76
In the case of V2O5-containing treatment → -0,072 to -1-0,10
5V, N a 1. OVz 1,000 in case of O5 sentry.
It was in the range of 108 V to 10,15.5 V. 7J response of electrode m corresponding to partial pressure change was stable for a long period of time, with no temporal change of about d" and about f%.N
a1. Although some hysteresis occurs when OV2O5 is contained, there is no problem with the function of the oxygen sensor.

以」二の説明から明らかなように、  L j、 x 
VzOs (Q、 Q 2イX 41.○)、N 、 
y■20.(0,15,<y、plo)等のアルカリ金
属バナジン酸塩を含有する多孔質正極を被fllll定
ガス側に接した本発明の酸素センサに於て、上記多孔質
正極は、酸素ガス濃度の変化に対応してずぼや、くかく
充分利用できる電位変化の大きさを刀え、かつ長期安定
性を有し優れた特性を発揮するものである。このため、
この多孔質止棒を組込んだ酸素センサは被測定ガス中の
酸素濃度の変化を迅速にかつ、確実に測定し、長期間安
定な極めて信頼性の太きい、高い実用価藺を有するもの
となる。
As is clear from the explanation in Part 2, L j, x
VzOs (Q, Q2iX41.○), N,
y■20. In the oxygen sensor of the present invention, in which a porous positive electrode containing an alkali metal vanadate such as (0,15,<y,plo) is in contact with the constant gas side, the porous positive electrode has a It responds to changes in the potential by adjusting the magnitude of the potential change to a sufficiently large extent, and exhibits long-term stability and excellent characteristics. For this reason,
The oxygen sensor incorporating this porous stop rod can quickly and reliably measure changes in the oxygen concentration in the gas being measured, is stable over a long period of time, is extremely reliable, and has high practical value. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、被測定ガスに接Jる多孔質正極の断面概略図
、第2図は、本発明における酸素センーリの基本構造断
面図、第3図、第4側一本発明におけるそれぞれ実施例
1.2の多孔層上(11μのFrj、位の酸素分圧依存
性を示した!1°h性図である。 1・・・・・m極利料層、2・・・・・ニッケル製網、
3・・・・・多孔質正極、4・・・・・負極、5・・・
・・ Hイ浦1i質層、6・・・・・第1図     
第2図
FIG. 1 is a schematic cross-sectional view of a porous positive electrode in contact with a gas to be measured, FIG. 2 is a cross-sectional view of the basic structure of the oxygen sensor in the present invention, and FIG. 3 is an embodiment of the present invention on the fourth side. This is a 1°h characteristic diagram showing the oxygen partial pressure dependence on the porous layer of 1.2 (Frj of 11μ). 1... m polar interest layer, 2... nickel net making,
3... Porous positive electrode, 4... Negative electrode, 5...
・・H iura 1i layer, 6・・・・Fig. 1
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 負極を+7JI成する金属と被測定ガスに接触させる正
極との間に屯M質層を設けて金属空気型のnl、池を形
成することにより、両■、極間の起T1[、力を測定す
る酸素センナにおいて、被測定ガスに接触させる側(1
)T’M&が、L1Xv2o、(o、 02−16x≦
1.0)、N a y Vt Oa (o、 1 タロ
y 4.、、1. O)等の°アルカリ金属バナデート
を3%〜50%含有する多孔質炭素または多孔質金属よ
り作られていることを11″、y徴とする酸素センサ。
By providing a tonium layer between the metal forming the negative electrode and the positive electrode in contact with the gas to be measured to form a metal-air type nl, the force between the two electrodes can be increased. In the oxygen sensor to be measured, the side that comes into contact with the gas to be measured (1
)T'M& is L1Xv2o, (o, 02-16x≦
Made from porous carbon or porous metal containing 3% to 50% alkali metal vanadate, such as Na y Vt Oa (o, 1 4., 1. O), etc. Oxygen sensor with 11'', Y sign.
JP57135039A 1982-08-02 1982-08-02 Oxygen sensor Pending JPS5926051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135039A JPS5926051A (en) 1982-08-02 1982-08-02 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135039A JPS5926051A (en) 1982-08-02 1982-08-02 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPS5926051A true JPS5926051A (en) 1984-02-10

Family

ID=15142509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135039A Pending JPS5926051A (en) 1982-08-02 1982-08-02 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS5926051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110108760A1 (en) * 2009-11-10 2011-05-12 Fuji Jukogyo Kabushiki Kaisha Electrode material, production method of same and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110108760A1 (en) * 2009-11-10 2011-05-12 Fuji Jukogyo Kabushiki Kaisha Electrode material, production method of same and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
Schmidt et al. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolyte Part 3. The oxygen reduction reaction
JP5432276B2 (en) Electrochemical gas sensor with ionic liquid electrolyte
EP2370809B1 (en) Electrochemical gas sensor with an ionic liquid electrolyte system including at least one monoalkylammonium, dialkylammonium, or trialkylammonium cation
Barbosa et al. Comparative potentiodynamic study of nickel in still and stirred sulfuric acid‐potassium sulfate solutions in the 0.4–5.7 pH range
JP2521546B2 (en) Reference electrodes and electrode pairs for detecting acidity and basicity of oil
Salimi et al. Preparation and electrocatalytic oxidation properties of a nickel pentacyanonitrosylferrate modified carbon composite electrode by two-step sol–gel technique: improvement of the catalytic activity
Suhaimi et al. Polyaniline-chitosan modified on screen-printed carbon electrode for the electrochemical detection of perfluorooctanoic acid
Barsan et al. Nanostructured palladium doped nickel electrodes for immobilization of oxidases through nickel nanoparticles
WO2002031485A1 (en) Acid gas measuring sensors and method of making same
Stadniychuk et al. Sol‐Gel‐Derived Thin‐Film Manganese Dioxide Cathodes
Ojani et al. Electrocatalytic Oxidation of Hydrogen Peroxide on Poly (m‐toluidine)‐Nickel Modified Carbon Paste Electrode in Alkaline Medium
JPS5926051A (en) Oxygen sensor
JP4883796B2 (en) Electrochemical measurement method
Wu et al. Electrocatalytic behavior of hemoglobin oxidation of hydrazine based on ZnO nano-rods with carbon nanofiber modified electrode
Mondal et al. Acetaminophen and acetone sensing capabilities of nickel ferrite nanostructures
Tseung et al. The reduction of oxygen on platinised Sb doped SnO2 in 85% phosphoric acid
Wang et al. Hybrid Inorganic–Organic Material Containing 12-Molybdophosphate Bulk-Modified Carbon Paste Electrode
Mohammadi et al. A novel electrochemical nanosensor for voltammetric determination of isoproterenol
Selis et al. A High‐Rate, High‐Energy Thermal Battery System
CN109100401A (en) The preparation and analysis of electrochemical sensing device based on zinc oxide nano rod and myoglobins are applied
JPH0239740B2 (en)
JPS5926053A (en) Oxygen sensor
Eftekhari Electrochemical Properties of Lanthanum Hexacyanoferrate Particles Immobilized onto Electrode Surface by Au‐Codeposition Method
Gholivand et al. Immobilization of nickel-dipicolinic acid onto a glassy carbon electrode modified with bimetallic Au-Pt inorganic-organic hybrid nanocomposite: Application to micromolar detection of fructose
ZA200403761B (en) Positive electrode active material for battery, method of producing same, and battery using same.