JPS5926049A - Method for measuring hydrogen peroxide - Google Patents

Method for measuring hydrogen peroxide

Info

Publication number
JPS5926049A
JPS5926049A JP57136001A JP13600182A JPS5926049A JP S5926049 A JPS5926049 A JP S5926049A JP 57136001 A JP57136001 A JP 57136001A JP 13600182 A JP13600182 A JP 13600182A JP S5926049 A JPS5926049 A JP S5926049A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
cathode
anode
measuring
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57136001A
Other languages
Japanese (ja)
Other versions
JPH038509B2 (en
Inventor
Jinkichi Miyai
宮井 迅吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
DKK Corp
Original Assignee
DKK Corp
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK Corp, Denki Kagaku Kogyo KK filed Critical DKK Corp
Priority to JP57136001A priority Critical patent/JPS5926049A/en
Publication of JPS5926049A publication Critical patent/JPS5926049A/en
Publication of JPH038509B2 publication Critical patent/JPH038509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen

Abstract

PURPOSE:To measure quickly the concentration of hydrogen peroxide in high sensitivity with a simple constitution, by using an anode which decomposes hydrogen peroxide in contact with it and a cathode which is reduced by hydrogen peroxide, and by measuring an electric current flowing between both electrodes which are brought into contact with a measuring liquid in an alkaline atmosphere. CONSTITUTION:When a sample containing hydrogen peroxide is supplied into a body 7 with a pump 9, a decomposing reaction of hydrogen peroxide takes place on the surface of a platinum anode 5 because a silver oxide cathode 3 and the anode 5 are always brught into contact with an alkaline electrolyte 2, and a reducing reaction of the cathode is brought out by the hydrogen peroxide included in the sample which has reached the cathode 3 through a porous material 1. Accordingly, an electric current corresponding to the concentration of hydrogen peroxide flows between both electrodes 3, 5. The concentration of the hydrogen peroxide is measured quickly with high sensitivity by measuring this electric current with an ammeter 8.

Description

【発明の詳細な説明】 本発明は、被測定液中の過酸化水素濃度1−の高感度な
測定方法に門する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a highly sensitive method for measuring hydrogen peroxide concentration 1- in a liquid to be measured.

従来より、過酸化水素濃度の測定方法として?に位差滴
定法、吸光光度法などが知られているが、いずれも//
’3度、選択性、測定の迅速性、試薬の使用量等の面で
四8゛;(があり、またコンパクトな検出器として組み
上げることが困難なため、自動41!l定器などには使
用されていない。また、高八〇度な分析を行なう場合は
ルミノールを用いる化学発光法やホモワニリン酸を用い
る螢光法があり、その感度はPI)bオーダーに及ぶが
、測定には特別の光学系を要し、装置ばが複雑になる。
What is the conventional method for measuring hydrogen peroxide concentration? Potential titration method, spectrophotometry method, etc. are known, but both
Because there are 48゜; In addition, when performing high-80° analysis, there are chemiluminescence methods using luminol and fluorescence methods using homovanillic acid, and their sensitivity reaches the PI)b order, but special measures are required for measurement. This requires an optical system and the equipment becomes complicated.

更に・臨床化学や食品関係などで用いられる’IL気化
学的な過酸化水素71III定法として、一定rtt流
1扛圧を加えた2箇の電極間に流れる電流値を測定する
方法(特公昭45−35300など)が知られている。
Furthermore, as a standard method of 'IL vapor chemical hydrogen peroxide 71III used in clinical chemistry and food-related fields, a method of measuring the current value flowing between two electrodes to which a constant rtt flow 1 pulse pressure is applied (Japanese Patent Publication No. 45 -35300, etc.) are known.

この方法は一般に陽極に白金電極、陰極に銀電釉iを選
び、例えばKCl tit M液のもとて陽極及び陰極
間に0.4〜0.7Vのγl′も圧を印加することによ
って、 陽極側で  HtOt  ”! (h+2H” +2e
IK tui側で  02+ 211zO+4e−→4
01(−なる反応を生じさ・LJ、、Ih0zの濃度に
対応して両ネη(間に流れる酸化]環元電流を測定する
ものである。
This method generally selects a platinum electrode for the anode and a silver electric glaze i for the cathode, and applies a pressure of 0.4 to 0.7 V between the anode and the cathode using, for example, a KCl tit M solution. On the anode side HtOt”! (h+2H” +2e
On the IK tui side 02+ 211zO+4e-→4
The oxidation current flowing between both η (oxidation) is measured in response to the concentration of Ih0z.

この方法は2tlll yJLを迅速に行なうことがで
きるうえ、特別の試薬を必要としない等の長所を有する
が、所定の電圧を印加するための装置トLが慴雑となり
、またe!度の点でも一般的にはp p m A−グー
以下は測定し鍾い間k1.′1があり、いくつかの妨害
物1Lが存在する。
This method has the advantage of being able to perform 2tllllyJL quickly and does not require special reagents, but the equipment for applying a predetermined voltage is complicated and e! In terms of degree, in general, p p m A-goo or less is measured and k1. '1, and there are some obstructions 1L.

本発明者は、」二記事悄に鍬み、応答が迅速で、j7y
成及び操作も簡単で、かつ高感度のメ1°h酸化水素測
)iL法につき鋭意flF究を行なった結果、j、si
過酸化水素接触することによりこれを分子J’fする陽
極と、過m化水素と接触することにより貸元される陰極
とから構Jあされる両極を用いてアルカリ性雰囲気でこ
れら両極に被測定液を接触さゼ、この時両極間に流れる
’+を流を測定し、このtu電流値ら被測定顔中の過酸
化水素41度を求めることにより、上記目的が効果的に
達成されることを知見し、本発明をなすに至ったもので
ある。
The inventor of the present invention has two articles in mind, quick response, and j7y
As a result of intensive research on the iL method, which is easy to construct and operate, and has high sensitivity, we found that j, si
The liquid to be measured is applied to these two electrodes in an alkaline atmosphere using two electrodes consisting of an anode that releases molecules of hydrogen peroxide by contact with hydrogen peroxide, and a cathode that converts hydrogen peroxide into molecules by contact with hydrogen peroxide. At this time, the above purpose can be effectively achieved by measuring the current flowing between the two poles and determining 41 degrees of hydrogen peroxide in the face to be measured from this current value. These findings led to the present invention.

即ち、上記方法によれば、過酸化水素はアルカ゛す性雰
囲気のもとでは、例えば白金表面で接触的に分解され、 ljl> t!+側で  ■202→Oz+2)(++
 28   ・=(1)なる反応を生じ、また酸化銀は
過酸化水素によって還元され、 陰極側で  AgxO+211zO+2e−〉2Ag 
+2011−・(2) なる反応を生じ、この時両極間に流れる↑11流を1j
lll定することにより、過酸化水素濃度を求めること
ができるものである。
That is, according to the above method, hydrogen peroxide is catalytically decomposed, for example, on the platinum surface in an alkaline atmosphere, and ljl>t! On the + side ■202→Oz+2) (++
28 ・=(1) reaction occurs, and silver oxide is reduced by hydrogen peroxide, and on the cathode side, AgxO+211zO+2e-〉2Ag
+2011-・(2) A reaction occurs, and at this time, the ↑11 flow flowing between the two poles becomes 1j
By determining the hydrogen peroxide concentration, the hydrogen peroxide concentration can be determined.

以下、本発明の一実施例につき図面を1照して説明する
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において1はセラミック等で形成された有底円筒
状の多孔Zit管で、内部にアルカリ性電解液2及び陰
極8が1異容されており、このアルカリ性電M液2が歩
走ずつ多孔質管1中を浸透して多孔vt管lの表面に浸
fi’:fするようになっている。ここで、陰極8G;
13話化銀、酸化銀等のメパル酸化水素と接触してJ■
元される物FCよりなり、これらを粉体のまま又は固体
+1j°ネ等G適宜形状に形成したものなどが使用され
る。なお、陰1ifj(3には多孔質@′1外から白金
、銀などで形成された陰極リード線4が接続されている
。また、アルカリ性電解液としては、水r(Φ化カリウ
ム水溶液、水酸化ナトリウム水溶液等が好ましく、この
τ往m質により測定系をplf9以上のアルカリ性雰囲
気中に保つものである。
In Fig. 1, reference numeral 1 denotes a cylindrical porous Zit tube with a bottom made of ceramic or the like, in which an alkaline electrolytic solution 2 and a cathode 8 are each contained. It penetrates through the quality tube 1 and impregnates the surface of the porous VT tube 1 fi':f. Here, cathode 8G;
Chapter 13: In contact with mepal hydrogen oxide, such as silver oxide and silver oxide, J■
The raw material FC is used either as a powder or formed into an appropriate shape such as a solid. In addition, a cathode lead wire 4 made of platinum, silver, etc. is connected to the cathode 1ifj (3 from outside the porous @'1.Also, as the alkaline electrolyte, water r (aqueous potassium oxide solution, water An aqueous sodium oxide solution or the like is preferable, and this quality allows the measurement system to be kept in an alkaline atmosphere with a plf of 9 or higher.

更に、6は多孔質1!f 1外周壁に巻着された陽極で
ある。この陽ネI〕!としては白金、銀、金、パラジウ
ム、ロジウム、イリジウム、鉛、ビスマス、マンガン−
鉄合金、ニッケル、コパル) 、tJm 、鉄等の過酸
化水素と接触してこれを分解するものが使用できるが、
特に安全性、耐薬品性の点で、白金が好ましい。また陽
極の形状は線状、板状、多孔体状等に形成することがで
き、この陽極5には白金、銀などで形JJ(された陽極
リード線6が+a続されている。なお、7は」二記多孔
質管1を収容するフロー、スルー’to、極用ボディー
であり、測定用ザンプルを連続フローでサンプリングし
て71jll定するための外容器である。また、8は前
記陰極リード線4と陽極リード線6とに接続され、両極
間に流れる電流値を測定する11流ば1である。この場
合、11t、流バ1としてはミリアンペア泪、マイクロ
アンペア泪、検流7!1等が使用できる。
Furthermore, 6 is porous 1! f1 is an anode wrapped around the outer peripheral wall. This sun I]! These include platinum, silver, gold, palladium, rhodium, iridium, lead, bismuth, and manganese.
Iron alloys, nickel, copal), tJm, iron, etc. that decompose on contact with hydrogen peroxide can be used, but
Platinum is particularly preferred in terms of safety and chemical resistance. Further, the shape of the anode can be formed into a linear shape, a plate shape, a porous body shape, etc., and an anode lead wire 6 made of platinum, silver, etc. in the shape of JJ is connected to the anode 5. 7 is a flow, through, electrode body that accommodates the porous tube 1, and is an outer container for sampling and determining the measurement sample in a continuous flow. It is connected to the lead wire 4 and the anode lead wire 6, and measures the current value flowing between the two poles.In this case, 11t, the flow bar 1 is milliampere, microampere, galvanic current 7! 1st class can be used.

上記構成の測定装置においては、ポンプ9によって過r
iり化水素を含む試料がボディー7内に送給きれると、
陰極と1場オ萌とはいずれも′帛にアルカリ性1「、解
液2と接触しているため、3.り極5表面でniJ記(
1)式の反応が生じ、また多孔質管1中を1l11つて
陰極3に至った試料中の過酸化水車によってF)iJ記
(2)式の反応が生じて、両極3.5間に過酸化水素濃
度に対1ノbする電流が流れ、この流れる電(Atを電
流1118によってル(11定し、この電流&(から過
酸化水素濃度が求まるものである。なお、この装置によ
り測定した電流値と過酸化水素ハ度との関係を第2図の
グラフに示した。
In the measuring device with the above configuration, the pump 9
When the sample containing hydrogen chloride is completely fed into the body 7,
Since both the cathode and the first electrode are in contact with the alkaline solution 2, the 3.
The reaction of formula 1) occurs, and the reaction of formula (2) in F) iJ occurs due to the peroxide water wheel in the sample that has passed through the porous tube 1 and reached the cathode 3. A current that is 1 nob per hydrogen oxide concentration flows, and this flowing current (At) is determined by the current 1118, and the hydrogen peroxide concentration is determined from this current &(. The relationship between current value and hydrogen peroxide concentration is shown in the graph of FIG.

この方法は、両極間に印加電圧を加える従来の方法とは
英なり、!A種1tr、 、Iμ間で形成された1((
、原作用を利用するガルバニックな原理にもとづくもの
で、この場合には[41加?(1,川が不要なため’J
”> INtがIIJJ素化でき、小型化がI可能で、
また印加TIE EE を用いる方法と比較しても同等
以上の出力が得られ、lppm以下の濃度のjl11定
がIIAのA−グーの電流値で出力されるため、直接電
流31でdtlχ11でき、ポーラログラフと同等以」
二の高感度であり、広い応用の可能性を有するものであ
る。
This method is different from the conventional method of applying voltage between two poles! 1 formed between A species 1tr, , Iμ ((
, is based on the galvanic principle that utilizes the original action, and in this case [41 addition? (1, Because there is no need for a river, 'J
”> INt can be made into IIJJ, miniaturization is possible,
In addition, even when compared with the method using applied TIE EE, the same or higher output can be obtained, and the jl11 constant at a concentration of lppm or less is output as the A-goo current value of IIA, so dtlχ11 can be directly achieved with a current of 31, and the polarographic Equivalent to or greater than
It is highly sensitive and has wide application possibilities.

第3図は本発明測定方法の実施に使用する他の測定装置
Kfを示すもので、装置を隔+1Q電極型に(11?成
したものである。第8図中1−0は0,03μの孔径全
;rfする厚さ20〜30μのポリカーボネート等の隔
膜]1によって底部が閉基された円Nii状ボディーで
、内部に例えば1〜2規定水酸化カリウム水溶液による
アルカリ性tlt好1’ f+’!−2が人っており、
このアルカリ性YIT、 l’J′(液2中に1袋化銀
を錠剤・成型器で固体膜に固めた陰極3及び白金からな
る賜]1!1べらが収容されCいる。なお、陰極3には
固体膜Jt’+型を安定なものにするために銀等を混入
させることもできる。また、陽極5の形状(ま陰極3と
接触しないかぎり自由にJ巽び得る。
FIG. 3 shows another measuring device Kf used in carrying out the measuring method of the present invention, in which the device is configured with a distance +1Q electrode type (11?). In FIG. 8, 1-0 is 0.03μ Total pore size; Rf diaphragm made of polycarbonate or the like with a thickness of 20 to 30 μm] A circle-shaped body with the bottom closed by 1, and an alkaline solution containing, for example, a 1 to 2 N aqueous potassium hydroxide solution inside the body. !-2 people are there,
In this alkaline YIT, l'J' (a product consisting of cathode 3 and platinum made by solidifying one bag of silver into a solid film in a tablet/former in liquid 2) is housed. In order to make the solid film Jt'+ type stable, silver or the like may be mixed into the anode 5. Also, the shape of the anode 5 (the shape of the anode 5 can move freely as long as it does not come into contact with the cathode 3).

−に記装置においては、隔膜11が過r7シ化水素を透
過するもの、例えば孔径0.03 p 、 15<さ2
0〜3071のポリカーボネートi等で形成されている
ため、ホゾイー10を被測定液12中に挿入すると、被
測定液12中の過酸化水素が隔膜11を透過して1ゆ、
極3と陽極5とに接触し、前記(1)、(2)式の反応
がおき、この際に両極間に流れる和、流を′t)1流■
18で測定するもので、隔膜11を適宜選択することに
」:す、」(存物質の影管奈除くことができると共に、
両tin 1t53.5の汚れも少ないものである。
- In the device described above, the diaphragm 11 is one that permeates hydrogen silicide, for example, the pore size is 0.03 p, 15<s2
Since it is made of polycarbonate i of 0 to 3071, when Hozoe 10 is inserted into the liquid to be measured 12, hydrogen peroxide in the liquid to be measured 12 permeates through the diaphragm 11 and
When the electrode 3 and the anode 5 come into contact, the reactions of equations (1) and (2) occur, and the sum and flow flowing between the two electrodes at this time are expressed as 't) 1 flow■
18, and the diaphragm 11 is selected appropriately.
There is also little dirt on both tins 1t53.5.

第4図は本発明測定方法を70−インジェクションアナ
リシスの検出器に用いた場合を示すもので、第4図中3
及び5はそれぞれギヤリヤー溶液流路中に所定間隔11
ilk間して配設された酸化銀からなる陰極及び白金か
らなる陽(1にである。また、13はアルカリ電解液ポ
ンプ、14はサンプルを導入するづンプルインジエクタ
ー、15はキャリアー液ポンプ、16はキャリアー液等
が流れる導Ii′7である。
Figure 4 shows the case where the measurement method of the present invention is used in a detector for 70-injection analysis.
and 5 are respectively at predetermined intervals 11 in the gear solution flow path.
A cathode made of silver oxide and a cathode made of platinum are arranged between the two electrodes. Also, 13 is an alkaline electrolyte pump, 14 is a pump injector for introducing the sample, 15 is a carrier liquid pump, 16 is a conductor Ii'7 through which carrier liquid and the like flow.

」ニバ己装置においては、゛す°ンプルがギヤリアー溶
液中に断x:゛け的に導入されると共に、アルカリTi
、f、 層液ポンプ13によつ゛(例えば1〜2モル濶
度の水[ノウ化カリウム水溶液よりなるアルカリ1[9
解液がパイプ16内に送給され、両極3.5がアルカリ
′11L解液に浸漬された状態でサンプルが両極3.5
に接触し、この時両極8.5間に流れる’11?、流を
1′に流!?18で測定するものである。なお、この場
合はアルカリttt Ffl液は電極近傍に保持するこ
となくキャリアー溶液と共に流出される。
In the double-sided device, the sample is introduced into the gearier solution in an oscillating manner, and the alkaline Ti
, f, by the laminar liquid pump 13 (for example, 1 to 2 molar water [alkali 1 [9
The solution is fed into the pipe 16, and the sample is placed between the electrodes 3.5 and 3.5 with both electrodes immersed in the alkaline '11L solution.
, and at this time, '11?' flows between the two poles 8.5? , flow to 1'! ? 18. Note that in this case, the alkaline ttt Ffl solution is not held near the electrode and is flowed out together with the carrier solution.

以上説明したように、本発明の過fW化水床4(す定力
法は、過M’化水素と接触することによりこれを分解す
るI陽極と、過酸化水素と接触することにより還元され
る陰極とをアルカリ1つ]雰囲気中で過酸化水素を含イ
rする被+11!l定液に接触させ、これらi+lIJ
極囲に流れる11′L流を測定4−ることにより、被1
IllI定液中の過酸化水素a度を求めるよう構成した
ので、印加tit圧が不要なものになり、装置^をfi
r+単化し得、しかもこの装置のnf?、度は寂れたも
のであり、広い応用の+’+J D’g 1〆Lを有す
るものである。
As explained above, the perfW aqueous bed 4 (constant force method) of the present invention uses an I anode that decomposes hydrogen peroxide by contacting it, and an anode that decomposes hydrogen peroxide by contacting it with hydrogen peroxide. The cathode is brought into contact with a +11!l constant solution containing hydrogen peroxide in an alkali atmosphere, and these i+lIJ
By measuring the 11'L flow flowing around the pole, the
Since the structure is configured to determine the degree of hydrogen peroxide in the IllI constant solution, the applied tit pressure is no longer necessary, and the device can be easily
r+ can be singled out, and the nf of this device? , the degree is lonely and has wide application +'+J D'g 1〆L.

4、図面のf)(+ jl’tな説明 第1図は本発明の実h)iiに使用する70−スルー型
に″6酸化水素測定装置1〒の概略11「而し1、第2
1月(J同装置1′7を用いて測定した電流値と過1設
化水素濃度との関係を示すグラフ、第3図は本発明の実
施に使用する隔膜1Y)、軸型過酸化水素?llQ定装
置iltを示ず(1包絡図、(114図は本発明に係る
過r投化水素測定装置Rを70−インジェクションアナ
リシス装置に組み込んだ肺部を示すlt!f M説明図
である。
4. f) (+ jl't explanation of the drawings) Figure 1 shows the 70-through type used in the practice of the present invention (h) ii.
January (graph showing the relationship between the current value measured using the same device 1'7 and the hydrogen peroxide concentration, Figure 3 is the diaphragm 1Y used in the implementation of the present invention), axial type hydrogen peroxide ? llQ constant device ilt is not shown (1 envelope diagram, (Figure 114 is an lt!f M explanatory diagram showing the lung part in which the over-injection hydrogen measuring device R according to the present invention is incorporated into the 70-injection analysis device.

2・・・アルカリ性’1ic 191’液、3・・・陰
 極、5・・・IIM  極、8・・・電流計、12・
・・被測定液。
2...Alkaline '1ic 191' liquid, 3...Cathode, 5...IIM pole, 8...Ammeter, 12...
...Measurement liquid.

出願人 111気化学n1器株式会社 代理人 弁理士 小 島 隆 司 9       第3図 出願人 電気什堂計 0    0.2    (1,40,60,81,0
ppm過咽化水素濃度
Applicant 111 Kagaku n1ki Co., Ltd. Agent Patent attorney Takashi Kojima 9 Figure 3 Applicant Denki Judo Total 0 0.2 (1,40,60,81,0
ppm hyperpharyngeal hydrogen concentration

Claims (1)

【特許請求の範囲】 1、 過酸化水素と接触することによりこれを分解する
陽極と、過r伎化水素と接触することにより還元される
陰極とをアルカリ性雰囲気中で過酸化水素を含有する被
測定液に接触さulこれら両極間に流れる電流を測定す
ることにより被測定液中の過酸化水素濃度を求めること
を特徴とする過酸化水素4111定方法。 2 陽極が白金、金、Ii′1(、パラジウム、ロジウ
ム、イリジウム、gLビスマス、マンガン−鉄合金、二
ツクル、コバルト、銅及び鉄から選ばれるものからなる
特許請求の範囲p(s を頂fld載の過酸化水素fi
ll+定方法。 3、 陰極が酸化銀又は塩化銀からなる特許請求の範囲
第1項記載の過酸化水素測定方法。 lA  陽極が白金からなり、陰極がrコψ化銀からな
る特許請求の範囲第1項記載の過酸化水素測定方法。
[Claims] 1. An anode that decomposes hydrogen peroxide by contacting it and a cathode that reduces it by contacting hydrogen peroxide with a hydrogen peroxide-containing coating in an alkaline atmosphere. A method for determining hydrogen peroxide 4111, characterized in that the concentration of hydrogen peroxide in a liquid to be measured is determined by measuring the current flowing between these two electrodes in contact with the liquid to be measured. 2 The anode is selected from platinum, gold, Ii'1 (, palladium, rhodium, iridium, gL bismuth, manganese-iron alloy, cobalt, copper and iron). Hydrogen peroxide fi
ll+determined method. 3. The method for measuring hydrogen peroxide according to claim 1, wherein the cathode is made of silver oxide or silver chloride. 1. The method for measuring hydrogen peroxide according to claim 1, wherein the anode is made of platinum and the cathode is made of silver cobalt.
JP57136001A 1982-08-04 1982-08-04 Method for measuring hydrogen peroxide Granted JPS5926049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136001A JPS5926049A (en) 1982-08-04 1982-08-04 Method for measuring hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136001A JPS5926049A (en) 1982-08-04 1982-08-04 Method for measuring hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPS5926049A true JPS5926049A (en) 1984-02-10
JPH038509B2 JPH038509B2 (en) 1991-02-06

Family

ID=15164865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136001A Granted JPS5926049A (en) 1982-08-04 1982-08-04 Method for measuring hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPS5926049A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023215A1 (en) * 1995-01-26 1996-08-01 Universiteit Gent - Vakgroep Textielkunde Sensor electrode for continuous measurement of hydrogen peroxide concentration
US6129831A (en) * 1995-01-26 2000-10-10 Universiteit Gent - Vakgroep Textielkunde Hydrogen peroxide sensor
JP2010060375A (en) * 2008-09-02 2010-03-18 Nec Corp Electrode for electrochemical measurement apparatus and electrode for biosensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023215A1 (en) * 1995-01-26 1996-08-01 Universiteit Gent - Vakgroep Textielkunde Sensor electrode for continuous measurement of hydrogen peroxide concentration
BE1009053A5 (en) * 1995-01-26 1996-11-05 Universiteit Gent Vakgroep Tex MEASURING PROBE SUITABLE FOR CONTINUED TO MEASURE HYDROGEN CONCENTRATION IN A bleaching bath.
US6129831A (en) * 1995-01-26 2000-10-10 Universiteit Gent - Vakgroep Textielkunde Hydrogen peroxide sensor
JP2010060375A (en) * 2008-09-02 2010-03-18 Nec Corp Electrode for electrochemical measurement apparatus and electrode for biosensor

Also Published As

Publication number Publication date
JPH038509B2 (en) 1991-02-06

Similar Documents

Publication Publication Date Title
JP3499872B2 (en) Improvements in or relating to electrochemical reactions
Wang Electroanalytical techniques in clinical chemistry and laboratory medicine
JP2648337B2 (en) Acid gas sensor
JP2002503330A (en) Micro fuel cell oxygen gas sensor
EP0027005B1 (en) A method of electrochemical sensing and a sensor for oxygen, halothane and nitrous oxide
EP3809129B1 (en) A total organic carbon analyzer
Whitnack et al. Application of anodic-stripping voltammetry to the determination of some trace elements in sea water
JPS5926049A (en) Method for measuring hydrogen peroxide
WO1993001490A1 (en) High speed oxygen sensor
EP0293541A1 (en) Amperometric apparatus, cell and method for determination of different gaseous species
US3315270A (en) Dissolved oxidant analysis
US4891102A (en) Method of determining carbon dioxide in the presence of oxygen
Perevezentseva et al. Electrocatalytic oxidation of hydrogen peroxide on the graphite electrode based on silver nanoparticles
JPH03191854A (en) Apparatus and method for restricting ef- fect of insoluble oxygen content of eletrolytic solution to minimum in low range oxygen analyzer
Dweik et al. Rapid determination of total organic carbon (toc) in water systems
US5300207A (en) High current coulometric KF titrator
US5393392A (en) Polarographic PPB oxygen gas sensor
Uchiyama et al. Highly sensitive electrochemical sensor for ozone in water using porous carbon felt electrode
Perley Measurements with the dropping mercury electrode
Hartley et al. Polarographic Determination of Nitrite as 4-Nitroso-2, 6-xylenol.
JPS61258158A (en) Electrochemical cell
JPH029305B2 (en)
Walsh et al. Fundamental definitions and concepts
JPS6317181B2 (en)
GB1284952A (en) Detector cell for coulometric analysis