JPS592600A - Controller for flywheel - Google Patents

Controller for flywheel

Info

Publication number
JPS592600A
JPS592600A JP11040282A JP11040282A JPS592600A JP S592600 A JPS592600 A JP S592600A JP 11040282 A JP11040282 A JP 11040282A JP 11040282 A JP11040282 A JP 11040282A JP S592600 A JPS592600 A JP S592600A
Authority
JP
Japan
Prior art keywords
control
power
flywheel
armature
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11040282A
Other languages
Japanese (ja)
Inventor
Susumu Tadakuma
多田隈 進
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11040282A priority Critical patent/JPS592600A/en
Publication of JPS592600A publication Critical patent/JPS592600A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To perform the control of constant electric power without extreme field weakening control by employing an armature coil switching control together with an armature current control or field control. CONSTITUTION:Contacts 2u, 2v, 2w are closed at the starting time, armature coils Wu and Wx, Wv and Wy, Ww and Wz of the respective phases are connected in series with each other, the armature current ia is maintained constantly, and a flywheel is accelerated with a constant torque. After the rotating speed becomes N1, it is accelerated in the constant power control mode. When the rotating speed becomes N3, contacts 1u and 3u, 1v and 3v, 1w and 3w are closed and 2u, 2v, 2w are opened upon reception of the output signal of a pulse generator PG. Accordingly, the armature coils are connected in parallel with each other. As a result, each of the currents becomes twice that before switching, the constant power state is maintained, and the flywheel is accelerated to the maximum rotating speed N2.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、箱、力貯蔵を目的としたフライホイール装置
において、駆動用電動発電機として同期電動機を用いた
効率のよいフライホイール制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an efficient flywheel control device that uses a synchronous motor as a drive motor-generator in a flywheel device intended for storage of force.

〔発明の技術的背景〕[Technical background of the invention]

深夜の余剰電力を貯蔵し、昼間の重負荷時に電力を系統
へ返還するだめの電力貯蔵装置としてフライホイールの
適用が検討されている。電気エネルギを一時回転エネル
ギとして蓄え、必要な時に再びエネルギに変換するとい
う考え方は原理が非常に単純で無公害で分散配置に適す
るという特色がある。しかし、電力系統から大電力の授
受を行うので、エネルギ充放電に伴う無効電力の変動あ
るい1.1:乱調波の発生fc極カ小さくする仁とが要
求される。無効霜、カおよび高調波が小さいと装置全体
の形状も小さくなり、装置の損失も小さくなるのでシス
テム効率の白土、コストダウンにも寄萼する。
The use of flywheels is being considered as a power storage device that stores surplus power during the night and returns power to the grid during heavy loads during the day. The concept of temporarily storing electrical energy as rotational energy and converting it back into energy when needed is characterized by its very simple principle, non-polluting nature, and suitability for distributed deployment. However, since a large amount of power is transferred from the power grid, it is required to minimize the fluctuation of reactive power accompanying energy charging and discharging or the generation of 1.1: disturbance harmonics. If the ineffective frost, force, and harmonics are small, the overall size of the device is also small, and the loss of the device is also reduced, which contributes to system efficiency and cost reduction.

第1図は、従来提案されているフライホイール駆動装置
内−の一例である。鶏1カ系統Sには変圧R:÷Trの
1仄巻線が接続され、2次巻線にはコンバータC0NV
 lが接、絖される。コンバータC0NV 1の出力回
路にはりアクドルLg k介してインバータINV 、
同期市;動機SMが接続され、フライホイールF/Wを
駆動する。Ps//i、回転子位置検出器であり、制御
装置c2を介してインバータINVにダート信号を与え
る。第1図の制御システムには界磁制御ルーズと電力制
御ルーズの2つの1h制御ループがある。フライホイー
ルF/Wの回転速度はパルス発生器PGにょケて検出さ
れる。界磁電流・やターン発生器はパルス発生器PGの
信号を受けて界磁電流指令をコンバータC0NV、に与
え、界磁Fの電流が制御される。電力指令は通常は一定
値が与えられ、検出電力と比較しながらコンバータC0
NV lの制御おくれ角を制御する。従って回転数の下
限値と上限値の間を、定電力で、充電又は放電するよう
制御される。
FIG. 1 shows an example of the interior of a conventionally proposed flywheel drive device. A transformer R: ÷ Tr is connected to the single chicken system S, and a converter C0NV is connected to the secondary winding.
l is connected and threaded. The output circuit of the converter C0NV1 is connected to the inverter INV through the axle Lgk,
Synchronization: Motive SM is connected and drives the flywheel F/W. Ps//i is a rotor position detector and provides a dirt signal to the inverter INV via the control device c2. The control system of FIG. 1 has two 1h control loops: a field control loop and a power control loop. The rotational speed of the flywheel F/W is detected by a pulse generator PG. The field current/turn generator receives the signal from the pulse generator PG and gives a field current command to the converter C0NV, so that the current of the field F is controlled. The power command is usually given a constant value, and the converter C0 is compared with the detected power.
Controls the control delay angle of NV l. Therefore, charging or discharging is controlled with constant power between the lower limit value and the upper limit value of the rotation speed.

第2図は従来の実施例のシステムを説明するだめの電圧
、電流特性である。始動時は界磁電流ifを一定にする
。速度起電力ecは回転数に比例して増加する。電機子
電流れは一定にしておく。回転数がN1に達すると界磁
電流ifを回転数に反比例させて小さくしていく。N2
は最高回転数でN1〜N20間は速度起電力ec一定電
機子様子流iF、一定、即ち電カ一定で加速していく。
FIG. 2 shows voltage and current characteristics for explaining the system of the conventional embodiment. At the time of starting, the field current if is kept constant. The speed electromotive force ec increases in proportion to the rotation speed. Keep the armature current constant. When the number of rotations reaches N1, the field current if is made smaller in inverse proportion to the number of rotations. N2
is the maximum rotational speed, and between N1 and N20, the speed electromotive force ec is constant and the armature current iF is constant, that is, the electric current is constant and acceleration is performed.

エネ・ルギ’t1M流へ戻す場合も同様で、回転数がN
2からNl までは界磁電流11は回転数に反比例させ
て増加させ、電カ一定の状態で回生する。N、−N、の
間が通常利用される回転数の範囲である。第1図のフラ
イホイール駆動装置は、界磁制御によってシステムの入
力Mi力を制御しており、直流回路の電圧、知゛m、 
F、J、 l’1.は一定に制御されているので、コン
バータC0NV、の制御おくれ角もt′!は一定になっ
ている。従って電力の授受に伴う無効電力の変動は小さ
く、理想的には100%近い力率で運転することが出来
る。また高調波電圧、^調波電流も小さく系統へ馬える
悪影響は小さいという特長がある。
The same is true when returning to the energy 't1M flow, and the rotation speed is N.
From 2 to Nl, the field current 11 is increased in inverse proportion to the number of rotations, and the electric power is regenerated in a constant state. The rotational speed range between N and -N is usually used. The flywheel drive device shown in Fig. 1 controls the input power Mi of the system by field control, and the voltage of the DC circuit,
F, J, l'1. is controlled to be constant, the control lag angle of converter C0NV is also t'! is constant. Therefore, fluctuations in reactive power due to power transfer are small, and ideally it is possible to operate at a power factor close to 100%. It also has the advantage of having small harmonic voltages and low harmonic currents, which have little negative impact on the grid.

〔背景技術の問題点〕[Problems with background technology]

しかしながらインバータINV、同期電動機SM、位置
検出器psから構成されて゛いる自制式無整流子市5動
機においては界磁弱め制御に伴う転流進み角の減少が大
きくなるので1.広範囲の制御を行う場合は同期電動機
SMおよびインパ〜りINVの寸法を犠牲にして体格の
太きいものを採用せさるを得ないという欠点がある。
However, in the self-controlled non-commutator type 5 motor consisting of an inverter INV, a synchronous motor SM, and a position detector ps, the commutation advance angle decreases greatly due to field weakening control. When controlling over a wide range, there is a drawback that it is necessary to sacrifice the dimensions of the synchronous motor SM and the impeller INV to adopt larger ones.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記欠点を解決するれめに〜板子巻線の
切換え制御と1L槻子電流制御又は界磁制御を併用する
ことにより、極端な界イ市弱め制御をすることなく定電
力制御を行うフライホイール制御&tz: を提供する
ことにある。
The purpose of the present invention is to solve the above-mentioned drawbacks. By using plate winding switching control and 1L current control or field control in combination, constant power control is performed without extreme field weakening control. Flywheel control & tz:

〔発明の概要〕[Summary of the invention]

この目的f:達成するために、本発明は同期電動機の、
電機子巻線を適宜分割して、これを同期電動機の速度に
応じて直列的或は並列的に切換え、かつ電機子電流制御
又は界磁電流制御を併用して電力1lrlJ釧jを行な
うようにしたことを特徴とするものである。
To achieve this objective f: the present invention provides a synchronous motor with
The armature winding is divided as appropriate and switched in series or parallel depending on the speed of the synchronous motor, and the armature current control or field current control is used in combination to control the electric power. It is characterized by the fact that

〔発明の実施例〕[Embodiments of the invention]

第3図は本発明の一実施例を示す構成図である。図にお
いて、Sは電力系統、Trは変圧器、C0NVはコンバ
ータ、INVはインバータ、L8は直流リアクトルをボ
す。インバータエ双に接続される同期電!JXII機の
同定子巻線は各相ともW。とWx v WvとWy9w
wとW2のように2分割(巻数比l:1)されておシ、
開閉器cu、cv、cwを操作することによって直列お
よび昇動接続が出来るようになっている。なお開閉器C
u、 Cv。
FIG. 3 is a configuration diagram showing an embodiment of the present invention. In the figure, S represents a power system, Tr represents a transformer, CONV represents a converter, INV represents an inverter, and L8 represents a DC reactor. Synchronous power supply connected to two inverters! The identifier winding of the JXII machine is W for each phase. and Wx v Wv and Wy9w
It is divided into two parts (turn ratio l:1) like w and W2,
Series and ascending connections can be made by operating switches cu, cv, and cw. In addition, switch C
u, Cv.

Cwの切換え指令は図示しない回転子およびフライホイ
ールの回転速度検出器PGの信号によっておこなわれる
。同期電動機SMの界磁は、必要に応じて弱め制御きれ
るが第3図の構成図においては省略されている。Psは
回転子位置検出器、C2はインバータにダート信号を与
える1tjlJ御回路を示す。さらに比較器C3におい
て霜;力指令と検出%1力の偏差を求め、移枦器C1の
出力によりコンバータC0NV i開側jする。
The Cw switching command is issued by signals from a rotor and flywheel rotational speed detector PG (not shown). The field of the synchronous motor SM can be controlled to be weakened if necessary, but this is omitted in the configuration diagram of FIG. Ps is a rotor position detector, and C2 is a 1tjlJ control circuit that provides a dirt signal to the inverter. Furthermore, the comparator C3 calculates the deviation between the frost force command and the detected %1 force, and the converter C0NVi is opened to the output of the shifter C1.

第4図は第3図の実施例の1つの動作方法を示しており
、界磁電流ifを一定にしておき電機子切換え制御と電
機子′F@、びC制御を併用する方式である。始動時は
開閉器Cu、Cv、Cwにおいて、接点2u、2v、2
wがオンし、生板子巻線は直列になり電機子電流iaを
一定にして定トルクで加速する。回転速度がN、になっ
た後、定電力制@lモードで加速される。従って電機子
電流iaは回転速度にほぼ反比例して減少していく。回
転速1818 gになったとき、パルス発生器PGの出
力信号を受けて開閉器Cu+ Cy rCwに切換指令
が与えられ、接点1uと3u+1vと3v、1wと3w
がオンし、2 u + 2 V +2wがオフす、るの
で電機子巻線は並列接続される。この結果誘起11]1
圧は切換え前の1/2の大きさになり、電、流が切換え
前の2倍の大きさになシ、定電力の状態が維持されて最
高回転速度N2までフライホイールを加速していく。第
4図の制御法に従えば界磁弱め制御を行わないので電u
J機の電イ熾子反、作用の影qIを受けにくく、インバ
ータの転流金裕角の減少が比較的小さい。
FIG. 4 shows one method of operating the embodiment of FIG. 3, in which the field current if is held constant and armature switching control and armature 'F@ and C control are used together. At startup, contacts 2u, 2v, 2 are connected to switches Cu, Cv, and Cw.
w is turned on, the raw plate windings are connected in series, and the armature current ia is kept constant to accelerate with constant torque. After the rotational speed reaches N, it is accelerated in constant power control @l mode. Therefore, the armature current ia decreases approximately in inverse proportion to the rotation speed. When the rotation speed reaches 1818 g, a switching command is given to the switch Cu+ Cy rCw in response to the output signal of the pulse generator PG, and the contacts 1u and 3u + 1v and 3v, 1w and 3w
turns on and 2u + 2V + 2w turns off, so the armature windings are connected in parallel. This result induces 11]1
The pressure becomes 1/2 the magnitude before switching, the current and current become twice the magnitude before switching, and the constant power state is maintained and the flywheel is accelerated to the maximum rotational speed N2. . If you follow the control method shown in Figure 4, field weakening control will not be performed, so the electric power
The J machine's electric current is less affected by the effects of qI, and the decrease in the inverter's commutation angle is relatively small.

従って過負荷耐μが大きいのでインバータと電動機の体
格が小さくてすむ。定電力制御に伴って電機子電流i8
および電機子箱、圧は変動するが、電機子巻線の切換え
を併用しているため変動幅は小さい。当然のことながら
系統へ直接影響をおよぼすコンバークC0NVの制御お
くれ角の変動も小さいので力率を著しく悪化させないで
定電力制御がなされる。フライホイールに蓄えられたエ
ネルギを電力系統へ返還するときは、INVがコンバー
タ動作をし、C0Nvがインバータ動作することになる
が、電機子巻線があらかじめ設定された回転速1.& 
N sにおいて並列から11を列に切換えられることは
以夕)は加速モードと震わシなく、定ル、力による回生
動作がoJ能である。
Therefore, since the overload resistance μ is large, the size of the inverter and electric motor can be small. Armature current i8 with constant power control
and armature box, the pressure fluctuates, but the range of fluctuation is small because armature winding switching is also used. Naturally, the variation in the control delay angle of the converter C0NV, which directly affects the system, is also small, so constant power control is performed without significantly deteriorating the power factor. When the energy stored in the flywheel is returned to the power grid, INV operates as a converter and C0Nv operates as an inverter, but the armature winding rotates at a preset rotation speed of 1. &
The ability to switch from parallel to column 11 in Ns (afterwards) is consistent with acceleration mode, and regenerative operation by constant force is OJ function.

第5図は第3図の実施例において制御可能な他の動作方
法である。即ち箪イ1゛、子巻線切換え制御と界磁弱め
ll+制御を併用したもので、誘起電圧および′lij
機子知様子は一定に制御n11される。始動時回転速度
0〜N・’+の間は電機子巻線は直列1絖さ−れ界磁電
流一定にして電機子電流も一定にされ、定トルクで加速
する。回転速度N、以降は定fh、カモードに入り、界
磁弱め制御が行われる。
FIG. 5 shows another method of operation that can be controlled in the embodiment of FIG. In other words, it is a combination of child winding switching control and field weakening ll+ control, and the induced voltage and 'lij
The state of machine intelligence is constantly controlled n11. During the starting rotational speed of 0 to N·'+, the armature winding is connected in series, the field current is constant, the armature current is also constant, and acceleration is performed at a constant torque. The rotational speed is set to N, and thereafter the motor enters the power mode at constant fh, and field weakening control is performed.

回転速度がN3に達すると生板子巻線は開閉器Cut 
Cy + CWk操作して直列から並列に切換えられる
。この時誘起箪、kE eok一定に維持するように、
界磁電流′f6:強め笛様子電圧、電機子″電流一定(
即ち定電力)の状態で加速する。最高の回転速1埃から
エネルギを回生じなから短軸1カ一定制側1ヶ行う場合
は加速の逆を考えればよい。即ち回転速度がさがるに従
って界磁電流ifを大きくして強めていき、N3の速度
になったとき電機子巻線は並列から直列に切換えられる
When the rotation speed reaches N3, the raw plate winding is switched to the switch Cut.
It can be switched from series to parallel by operating Cy + CWk. At this time, in order to maintain the induced kEok constant,
Field current 'f6: strong whistle voltage, armature current constant (
In other words, it accelerates in a state of constant power). Since energy is not recovered from dust at the highest rotational speed, if one short axis is used for one fixed control side, the opposite of acceleration can be considered. That is, as the rotational speed decreases, the field current if is increased and strengthened, and when the speed reaches N3, the armature windings are switched from parallel to series.

このとき、誘起電圧を一定に維持するために界磁電流は
1/2に小さくされ、更に回転速度がさがるに従い徐々
に強められる。第5図の動作方式によると、電機子電圧
と電機子指、流は共・に一定のままで加速又は減速され
るので、エネルギの授受に伴う無効′電力の変動は小さ
く、力率もほぼ100%に近い状態で使用されるので、
電力系統へ与える憂影響は非常に小さい。
At this time, the field current is reduced to 1/2 in order to maintain the induced voltage constant, and is gradually strengthened as the rotation speed further decreases. According to the operating system shown in Figure 5, the armature voltage, armature fingers, and flow are both accelerated or decelerated while remaining constant, so fluctuations in reactive power due to energy transfer are small, and the power factor is almost constant. Since it is used in a state close to 100%,
The negative impact on the power system will be very small.

第6図は他の実施++1を示すもので、第3図の実施例
と異なるところは、電機子巻線1し並列切換えするので
はなくインバータの入力側で直列又は並列’ItC接続
し、同様の効果を得るものである。電機′子巻線Wlと
インバータItJV、、の出力を接続し、一方電機子巻
線W2とインバータINV *の出力を接続す°る。イ
ンバータINV、とINV2ノ直流入力は、接点1d、
2d、3dをもつ開閉器Cd i介して一方の直流リア
クトルに他方をコンバータの負端子に接続する。回転速
度に応じて開閉器c’d全域作シフ、回転速度N3以下
では接点2dをオン、1dt3dをオンし、インバータ
INVBとINV2 (i7直列に]し絖しN3以上で
は接点2dtオフ、1dt3dffiオンして2つのイ
ンバータを並列接続する。1.様子電流ia又は界磁電
流61の制御と併用すれば、第4図、°第5図の制御が
可能であることはいうまでもなく、第3図の実施例に比
べて開閉器が少なくなり桿”・成が簡単になる。また、
直流回路における的・並列接続−であるので、電機子巻
線W。
Fig. 6 shows another implementation ++1, which differs from the embodiment shown in Fig. 3 in that the armature winding 1 is connected in series or parallel 'ItC on the input side of the inverter instead of being switched in parallel. This is to obtain the effect of The armature winding Wl and the output of the inverter ItJV, , are connected, while the armature winding W2 and the output of the inverter INV* are connected. The DC inputs of inverters INV and INV2 are contacts 1d,
One DC reactor is connected to the negative terminal of the converter through a switch Cdi having terminals 2d and 3d. Depending on the rotational speed, the switch c'd is shifted across the entire range, and when the rotational speed is below N3, contacts 2d and 1dt3d are turned on, and inverters INVB and INV2 (i7 in series) are connected, and when N3 and above, contacts 2dt and 1dt3dffi are turned on. 1.If used in conjunction with the control of the state current ia or the field current 61, it goes without saying that the control shown in Figs. 4 and 5 is possible; Compared to the embodiment shown in the figure, the number of switches is reduced, making the rod construction easier.
Since this is a parallel connection in a DC circuit, the armature winding W.

とWzの位相は同一であるが必犬はない。積極的に電機
子巻線W、とWzの位相差θを適当に設けると、電機子
起磁力は正弦波に近くなり、電動機の高調波損失は小さ
くなり、高効率化に寄与する。
Although the phases of and Wz are the same, there is no necessity. If the phase difference θ between the armature windings W and Wz is appropriately set, the armature magnetomotive force becomes close to a sine wave, and the harmonic loss of the motor is reduced, contributing to higher efficiency.

サイリスクコンバータによって受電し、インバータ、四
期知、動機を紹み合わせたフライホイール駆動装置にお
いて、定電力制御を行う場合、r′亡(+弁14(流を
一定にしておくと、回転速度と共に電機子電圧が上昇す
るため、コンバータの制御おくれ角が大幅に変動し、力
率の変化をもたらし、電力系統への幾影響は避けられな
い。また、サイリスタコンバータ、インバータの實、圧
定格が大きくなシ容拓、寸法の増大をまねく。第1図の
ように界磁電流制御と併用した場合は銹起電圧が一定に
なり、電機子電流もほぼ一定になるので、理想的な定電
力制御が理論的に可能になるが、現実には、同期電i!
fI1機の自制制御を自然転流のみで行う場合、転流余
裕角の減少が著しい。やむ奮えず、′a電動機して必要
以上に大容鷲のものを用いて軽負荷の領域で利用するこ
とになる。
When performing constant power control in a flywheel drive device that receives power from a syrisk converter and incorporates an inverter, a four-cycle controller, and a motive power, the rotational speed At the same time, the armature voltage increases, so the control delay angle of the converter fluctuates significantly, causing a change in the power factor, which inevitably affects the power system.In addition, the actual voltage rating of thyristor converters and inverters This results in a large space expansion and an increase in dimensions.As shown in Figure 1, when used in conjunction with field current control, the rust electromotive voltage becomes constant and the armature current also becomes almost constant, making it ideal for constant power. Control is theoretically possible, but in reality, synchronized i!
When self-restraint control of fI1 aircraft is performed only by natural commutation, the commutation margin angle decreases significantly. I had no choice but to use a motor with a larger capacity than necessary and use it in a light load area.

〔発明の効果〕〔Effect of the invention〕

不発明如1、′用5機子巻線の直・並列切換え金インバ
ータの又流側又は直流側で行い、−根子電流制御又は界
磁電流制御と併用することによって定−力制御f:’l
’J能にしたもので、仄のような特長を有する。
Constant force control f:' is carried out on the cross-current side or direct-current side of the series/parallel switching gold inverter with 5 windings for non-inventive purposes 1 and ', and is used in combination with root current control or field current control. l
It is a J-noh, and has features similar to those of 组.

(1)定′亀力制御の範囲が広く、フライホイールシス
テムのエネルギ効率が高い。
(1) The range of constant torque control is wide, and the energy efficiency of the flywheel system is high.

(2)変圧器、サイリスクコンバータ、サイリスクイン
パーク、及び同期霜、軸後などの機器容;(1か小さく
てすむ。
(2) Equipment capacity such as transformers, thyrisk converters, thyrisk imparks, synchronous frosts, shaft rears, etc.; (1 or less is enough.

(3) 箸効知、力の−大きさと変動が小さく、電力系
統へ匙影#をおよほさない。
(3) Chopsticks are effective, the magnitude and fluctuation of force are small, and they do not cast a spoonful shadow on the power grid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のフライホイール駆動装置の構成図、第2
図は第1図の駆動装置の動作を説明するための回転速度
に対する電圧、電流特性図、第3図は本発明の一実施例
を示す構成図、第4図、第5図は第3図の実施例全説明
するための回転速度に対する7h、川、市;流、釉、力
の特性図、第6図は本発明の他の実施例を示す構成図で
ある。 S・・・?+1、力系統、Tr・・・変圧器、C0NV
1・・・コンバータ、■Nv・・・インバータ、L8・
・・直流リアクトル、SM・・・同期型動機、F・・・
界磁巻線、F/W・・・フライホイール、PS・・・回
転子位1u検出器、PG・・・パルス発生器、C0Nv
2・・・コンバータ、C3・・・比較器、C,・・・位
相制御回路、C2・・・インバータ制御回路、C4・・
・界イm fti制御回路、coNv・・・・・・コン
バータ、Wut Wy + WW + WX + Wy
 e Wz・・・電機子巻線、Cu、Cv、Cw、cd
・・・開閉器、wl、w・2・・・電析子巻線。 出願入代俳人  弁理士 鈴 江 武 呟智東 の 智歴・− 一9 α 智興の セ螺・− −只0
Figure 1 is a configuration diagram of a conventional flywheel drive device, Figure 2
The figure is a voltage and current characteristic diagram with respect to rotational speed to explain the operation of the drive device in Figure 1, Figure 3 is a configuration diagram showing an embodiment of the present invention, and Figures 4 and 5 are as shown in Figure 3. FIG. 6 is a block diagram showing another embodiment of the present invention. S...? +1, Power system, Tr...Transformer, C0NV
1...Converter, ■Nv...Inverter, L8.
...DC reactor, SM...synchronous motive, F...
Field winding, F/W... flywheel, PS... rotor position 1u detector, PG... pulse generator, C0Nv
2...Converter, C3...Comparator, C,...Phase control circuit, C2...Inverter control circuit, C4...
・World im fti control circuit, coNv...converter, Wut Wy + WW + WX + Wy
e Wz...armature winding, Cu, Cv, Cw, cd
...Switch, wl, w・2...electrodepositor winding. Applicant Substituted Haiku Poet Patent Attorney Suzue Takeshi Mutsu Chito's Wisdom History - 19 α Chioki's Set Screw - - Only 0

Claims (2)

【特許請求の範囲】[Claims] (1)  フライホイールに結合された同期電動機、該
同期電動機の入力電力および回生電力を制御するだめの
電力変換器、前記同期゛電動機の回転速度検出器からな
るフ・ライホイール制御装装置において、前記同期tI
II1機の電機子巻線を適宜分割し、電機子巻線を直列
又は湛列に接続するための開閉器を設け、検出速度の大
きさに応じて切換えを行い、かつ、電機子電流制御又は
界磁電流制御と併用して電力制御を行うことを特徴とす
るフライホイール制御装置。
(1) A flywheel control system comprising a synchronous motor coupled to a flywheel, a power converter for controlling input power and regenerative power of the synchronous motor, and a rotational speed detector of the synchronous motor, The synchronization tI
The armature winding of the II1 machine is divided as appropriate, and a switch is provided to connect the armature windings in series or in a row, and switching is performed according to the magnitude of the detected speed, and armature current control or A flywheel control device characterized by performing power control in combination with field current control.
(2)  フライホイールに結合された同期電動機、該
同期電動機の入力電力および回生電力を制御するための
電力変換器、前記同期1を動機の回転速度検出器からな
るフライホイール制御装置において、Ail記同期W動
機の電機子巻線を適宜分割すると共に前記電力変換器を
これに対応して設け、分割された電機子巻線をそれぞれ
の電力変、換器に接続し、該電力変換器の入力側に開、
閉器を設け、検出速度の大きさに応じて切換えを行い、
該電力変換器を直列又は並列に接続し、かつ、電機子電
流制御又は界磁電流制用1を併用して電力、制御を行う
ことを特徴とするフライホイール制御装置。
(2) In a flywheel control device comprising a synchronous motor coupled to a flywheel, a power converter for controlling input power and regenerative power of the synchronous motor, and a rotational speed detector using the synchronous 1 as a motive, The armature winding of the synchronous W motor is divided as appropriate, and the power converter is provided correspondingly, and the divided armature winding is connected to each power converter and converter, and the input of the power converter is open to the side,
A closure is provided and switching is performed according to the magnitude of the detection speed.
A flywheel control device characterized in that the power converters are connected in series or parallel, and power and control are performed using armature current control or field current control 1 in combination.
JP11040282A 1982-06-26 1982-06-26 Controller for flywheel Pending JPS592600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11040282A JPS592600A (en) 1982-06-26 1982-06-26 Controller for flywheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11040282A JPS592600A (en) 1982-06-26 1982-06-26 Controller for flywheel

Publications (1)

Publication Number Publication Date
JPS592600A true JPS592600A (en) 1984-01-09

Family

ID=14534886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11040282A Pending JPS592600A (en) 1982-06-26 1982-06-26 Controller for flywheel

Country Status (1)

Country Link
JP (1) JPS592600A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220051819A1 (en) * 2020-08-17 2022-02-17 Terrapower, Llc Inertial energy coastdown for electromagnetic pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220051819A1 (en) * 2020-08-17 2022-02-17 Terrapower, Llc Inertial energy coastdown for electromagnetic pump

Similar Documents

Publication Publication Date Title
JP4858937B2 (en) System interconnection device for generated power
US9667232B2 (en) System and method for parallel configuration of hybrid energy storage module
US4733146A (en) Energy recovery system for cyclic drives
Wang et al. Half-controlled-converter-fed open-winding permanent magnet synchronous generator for wind applications
Torrey Variable-reluctance generators in wind-energy systems
US4800481A (en) Static converter circuit and method for controlling it
Scelba et al. An Open-end Winding approach to the design of multi-level multi-motor drives
US3555396A (en) Self-starting power converter
CN105790658B (en) A kind of control method of double-winding asynchronous DC start electricity generation system
Borujeni et al. DTC-SVM control strategy for induction machine based on indirect matrix converter in flywheel energy storage system
Homaeinezhad et al. Active and Passive Control of Nine-Phase Wind Turbine Conversion Systems: A Comparison
EP3226399B1 (en) Apparatus for driving and controlling converters and switching element modules in a wind power generation system
Li et al. A modulated model predictive control scheme for the brushless doubly-fed induction machine
Truong et al. Simulation of flywheel electrical system for aerospace applications
Abdelrahem et al. Realization of low-voltage ride through requirements for PMSGs in wind turbines systems using generator-rotor inertia
JPS592600A (en) Controller for flywheel
Perera et al. Robust floating capacitor voltage control of dual inverter drive for open-ended winding induction motor
Banerjee et al. Bumpless automatic transfer for a switched-doubly-fed-machine propulsion drive
Aghasi et al. A comparative study on predictive and ISVM direct torque control methods for a doubly fed induction machine fed by an indirect matrix converter
Foti et al. A novel hybrid N-level T-type inverter topology
Kienast et al. A new grid-stabilizing component: A flywheel energy storage system based on a doubly fed induction generator and modular multilevel matrix converter
CN113394799A (en) Compensation control system based on flywheel energy storage
Zhang et al. Speed control of double-sided linear flux-switching permanent magnet motor system for electromagnetic launch system
Aghasi et al. A novel direct torque control for doubly fed induction machine based on indirect matrix converter
JPH06315299A (en) Starting equipment for ac excitation type synchronous machine