JPS5925886A - Method for obtaining thermal cracked oil from heavy oil by two-stage thermal cracking - Google Patents

Method for obtaining thermal cracked oil from heavy oil by two-stage thermal cracking

Info

Publication number
JPS5925886A
JPS5925886A JP13546282A JP13546282A JPS5925886A JP S5925886 A JPS5925886 A JP S5925886A JP 13546282 A JP13546282 A JP 13546282A JP 13546282 A JP13546282 A JP 13546282A JP S5925886 A JPS5925886 A JP S5925886A
Authority
JP
Japan
Prior art keywords
oil
pyrolysis
thermal
residue
cracked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13546282A
Other languages
Japanese (ja)
Inventor
Kazuo Tanaami
店網 和雄
Yasuyuki Morimoto
盛本 康之
Shinichi Aikawa
相川 信一
Hidehiko Kudo
英彦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP13546282A priority Critical patent/JPS5925886A/en
Publication of JPS5925886A publication Critical patent/JPS5925886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a thermal cracked oil in high yield, by thermally cracking a heavy oil at a high temperature in the first stage, taking out the resultant thermal cracked oil and decomposition residue, thermally cracking the thermal cracking residue at a high temperature in the second stage, mixing the thermal cracking product with the thermal cracking oil, distilling the resultant mixture, and circulating the resultant residue through the thermal cracking step. CONSTITUTION:A heavy oil is introduced through a line 1 into the first thermal cracking reactor 15 and thermally cracked at 400-500 deg.C. The resultant thermal cracked oil is then taken out of a line 3, sent to a distillation column 17, and the thermal cracking residue is taken out of a line 9 and introduced into the second thermal cracking reactor 16 and thermally cracked at 510-650 deg.C. The resultant thermal cracked oil obtained in the second thermal cracking step is taken out of a line 7 and sent to the distillation column 17. The thermal cracked oil in the first step and the above-mentioned thermal cracked oil are distilled to give the aimed purified thermal cracked oil. The resultant residue after the distillation is then circulated through the first thermal cracking reactor 15 by a line 11 and further thermally cracked.

Description

【発明の詳細な説明】 本発明は2段熱分解により重質油から熱分解油を高収率
で得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining pyrolysis oil from heavy oil in high yield by two-stage pyrolysis.

近年、天然ガスや石炭の燃料としての利用が活発化する
に伴い、重質油に対する需要が減少し、一方、ガソリン
やナフサ等の軽質油に対する需要の増大とあいまって、
熱分解油又は軽質化油をいかにして収率よく製造するか
が重要な技術課題になっている。従来、重質油から熱分
解油を最も収率よく得る方法としては、フリュートコ−
キング法が知られている。この方法は、例えば、特公昭
31−9136号公報に見られるように、コーク粒子の
流動化されている熱分解反応器に重質油を導入し、ここ
で重質油を熱分解させて、熱分解油と熱分解ガスとを生
成させると共に、熱重合生成物(コーク)を反応器内の
流動化コーク粒子表面に付着させ、そして、コークの付
着した流動化コーク粒子を反応器内から抜出すことによ
って、重質油を連続的に熱分解する方法である。
In recent years, as the use of natural gas and coal as fuel has increased, demand for heavy oil has decreased, while demand for light oil such as gasoline and naphtha has increased.
How to produce pyrolysis oil or lightened oil with good yield has become an important technical issue. Conventionally, the method for obtaining pyrolysis oil from heavy oil with the highest yield is the flute coat method.
The King method is known. In this method, for example, as seen in Japanese Patent Publication No. 31-9136, heavy oil is introduced into a thermal decomposition reactor in which coke particles are fluidized, and the heavy oil is thermally decomposed there. Pyrolysis oil and pyrolysis gas are generated, a thermal polymerization product (coke) is attached to the surface of fluidized coke particles in the reactor, and the fluidized coke particles with coke attached are extracted from the reactor. This is a method to continuously thermally decompose heavy oil by extracting it.

このようなフリュートコ−キング法は、現在のところ、
熱分解油の生成に関しては最高の収率を与えると考えら
れており、例えば、原料重質油として、イラニアンヘビ
ー減圧残油(コンラドソンカーボン21.4%)を用い
て熱分解を行った場合に、分解ガス(04以下)11%
(重量)、分解油(05〜540℃)618%及びコー
ク264%が得られることが報告されている。しかしな
がら、この方法においても、原料油の相当部分(約40
%)は付加価値の低いコークや分解ガスに転換されるも
のであり、プロセス効率の点から見ると未だ満足すべき
ものではない。殊に、このような熱分解プロセスにおい
ては、分解油収率の大小がプロセスの優劣を決定する因
子となることから、分解油収率をさらに向上させること
は極めて重要な意味を持つ。
At present, this flute caulking method is
It is thought that the highest yield is given for the production of pyrolysis oil, for example, when pyrolysis is performed using Iranian heavy vacuum residue (Conradson carbon 21.4%) as the raw material heavy oil. , cracked gas (04 or less) 11%
(by weight), 618% cracked oil (05-540°C) and 264% coke are reported to be obtained. However, even in this method, a considerable portion of the feedstock (approximately 40
%) is converted into coke and cracked gas with low added value, and is still unsatisfactory from the point of view of process efficiency. In particular, in such a thermal cracking process, the magnitude of the cracked oil yield is a factor that determines the quality of the process, so further improving the cracked oil yield is extremely important.

本発明者らは、前記のような従来技術に鑑み、より高め
られた分解油収率を与える重質油熱分解プロセスを開発
すべく鋭意研究を重ねた結果、特別の2段熱分解法を採
用することによりその目的が達成されることを見出し、
本発明を完成するに到った。
In view of the prior art as described above, the present inventors have conducted intensive research to develop a heavy oil pyrolysis process that provides a higher cracked oil yield, and have developed a special two-stage pyrolysis method. found that by adopting it, the purpose could be achieved,
The present invention has now been completed.

即ち、本発明によれば、重質炭化水素油を熱分解するに
際し、 (イ)該重質油を400〜500℃の温度で熱分解する
第1熱分解工程、 (ロ)該第1熱分解工程から熱分解油と溶融状態の第1
熱分解残渣とを抜出す工程、 0う 溶融状態の該第1熱分解残渣を510〜650℃
の温度で熱分解する第2熱分解工程、に)該第2熱分解
工程から熱分解油と熱分解残渣とを抜出す工程、 (ホ)該第1熱分解工程及び該第2熱分解工程からの熱
分解油を蒸留して蒸留物と蒸留残渣とに分離する工程、 (へ)該蒸留残渣を前記第1熱分解工程[;循環する工
程、 からなることを特徴とする重質油から熱分解油を得る方
法が提供される。
That is, according to the present invention, when thermally decomposing heavy hydrocarbon oil, (a) a first thermal decomposition step of thermally decomposing the heavy oil at a temperature of 400 to 500°C; (b) the first thermal decomposition step; The pyrolysis oil and molten state first from the decomposition process
a step of extracting the first thermal decomposition residue in a molten state from 510 to 650°C;
a second pyrolysis step of pyrolysis at a temperature of , (v) extracting pyrolysis oil and pyrolysis residue from the second pyrolysis step, (e) the first pyrolysis step and the second pyrolysis step. a step of distilling the pyrolysis oil from the heavy oil to separate it into a distillate and a distillation residue; (f) circulating the distillation residue through the first pyrolysis step; A method of obtaining pyrolysis oil is provided.

本発明において用いる原料重質油は、一般的には、56
6℃以上の留分を少なくと心40重量%含み、コンラド
ソンカーS?710重量係以上、通常15〜25重量係
含むものである。このような重質油としては、蒸留残渣
油、減圧蒸留残渣油、石炭液化油、シエールオイル、オ
イルサンド油などが挙げられる。また、この重質油は、
必要に応じ、FOOサイクルオイルや分解油、石炭系溶
剤などの軽質炭化水素油により希釈することができる。
The raw material heavy oil used in the present invention is generally 56
Konradsonker S? It contains 710 weight units or more, usually 15 to 25 weight units. Examples of such heavy oil include distillation residue oil, vacuum distillation residue oil, coal liquefied oil, sierre oil, oil sand oil, and the like. In addition, this heavy oil
If necessary, it can be diluted with light hydrocarbon oil such as FOO cycle oil, cracked oil, or coal-based solvent.

本発明においては、前記した重質油を先ず、400、〜
500℃、好ましくは410〜430℃という比較的低
い温度で熱分解する(第1熱分解)。
In the present invention, the above-mentioned heavy oil is first
It is thermally decomposed at a relatively low temperature of 500°C, preferably 410-430°C (first thermal decomposition).

この低温熱分解は、連続相が液相の条件で行われ、通常
の液相熱分解反応器が採用される。この熱分解を好まし
く行うには、例えば、原料油を450〜500℃に予熱
した後、低温液相反応器に連続的に導入すると共に、反
応器底部から、500〜800℃に加熱された非反応性
ガス、例えば、スチームや窒素ガス等を、連続液体相を
形成する液状重質油中に分散させた状態で吹込み、分解
生成物である、熱分解油と熱分解ガスを、反応器上部か
ら蒸気相として連続的に抜出し、一方、反応器底部から
、 5− 分解残渣を連続的に抜出す。反応器内の温度は400〜
500℃の範囲に設定する。400℃未満では原料油の
分解が円滑に進行しないし、500℃を越えると、熱分
解は円滑に進行するものの、熱分解ガスの発生が多くな
るので好ましくない。反応器内での液状物の滞留時間は
15分〜120分、好ましくは30分〜60分の範囲に
設定するのがよい。15分未満の滞留時間では熱分解が
十分には進まず、一方、滞留時間が余シにも長くなると
、熱分解残渣がコーク状になり、液状物としての取扱い
が困難になる。反応圧力は0〜I Kg/cm2の範囲
である。本発明においては、前記熱分解は、固定炭素含
量が30〜60重量%、好ましくは30〜45重量%で
あり、かつ350℃における粘性が200センチポアズ
以下等の性状を有する熱分解残渣が得られるように行う
のがよい。
This low-temperature pyrolysis is performed under conditions where the continuous phase is a liquid phase, and a normal liquid phase pyrolysis reactor is employed. To perform this thermal decomposition preferably, for example, the feedstock oil is preheated to 450 to 500°C and then continuously introduced into a low-temperature liquid phase reactor. A reactive gas, such as steam or nitrogen gas, is injected in a dispersed state into the liquid heavy oil forming a continuous liquid phase, and the decomposition products, pyrolysis oil and pyrolysis gas, are transferred to the reactor. The vapor phase is continuously withdrawn from the top, while the decomposition residue is continuously withdrawn from the bottom of the reactor. The temperature inside the reactor is 400~
Set in the range of 500℃. If the temperature is lower than 400°C, the decomposition of the feedstock oil will not proceed smoothly, and if the temperature exceeds 500°C, although the thermal decomposition will proceed smoothly, a large amount of thermal decomposition gas will be generated, which is not preferable. The residence time of the liquid in the reactor is preferably set in the range of 15 minutes to 120 minutes, preferably 30 minutes to 60 minutes. If the residence time is less than 15 minutes, the thermal decomposition will not proceed sufficiently. On the other hand, if the residence time is too long, the thermal decomposition residue will become coke-like and difficult to handle as a liquid. The reaction pressure ranges from 0 to I Kg/cm2. In the present invention, the thermal decomposition yields a thermal decomposition residue having properties such as a fixed carbon content of 30 to 60% by weight, preferably 30 to 45% by weight, and a viscosity of 200 centipoise or less at 350°C. It is better to do it like this.

次に、前記の第1熱分解工程から得られた熱分解残渣を
510〜650℃、好ましくは550〜600℃の高温
で熱分解する(第2熱分解)。この高温熱分解は、通常
のフリューPコーキング法等にお 6− いて採用されている、連続相が気相の固気流動層反応器
を用いて実施することができる。即ち、この固気流動層
反応器は、内部に固体粒子が流動化用ガス、例えば、ス
チームや窒素ガス、−酸化炭素などの高温ガスによって
流動化されている固体流動層を含むもので、この場合の
固体粒子としては、コークの他、アルミナ、シリカ・ア
ルミナなどの耐熱性の無機粒子が一般的に用いられ、そ
の粒子直径は、通常、01〜1rMl程度である。反応
器内の温度は510〜650℃の範囲に設定するのがよ
く、510℃未満の温度では、流動化粒子が互に付着す
るような問題を生じ、一方、650℃を越えるようにな
ると、熱分解ガスの発生が多くなる〜 ので好ましくない。反応圧力は0〜I K17cm2の
範囲である。
Next, the thermal decomposition residue obtained from the first thermal decomposition step is thermally decomposed at a high temperature of 510 to 650°C, preferably 550 to 600°C (second thermal decomposition). This high-temperature thermal decomposition can be carried out using a solid-gas fluidized bed reactor in which the continuous phase is a gas phase, which is employed in the usual Flue P coking method. That is, this solid gas fluidized bed reactor contains a solid fluidized bed in which solid particles are fluidized by a fluidizing gas, for example, a high temperature gas such as steam, nitrogen gas, or carbon oxide. As solid particles in this case, in addition to coke, heat-resistant inorganic particles such as alumina, silica/alumina, etc. are generally used, and the particle diameter is usually about 0.01 to 1 rMl. The temperature in the reactor is preferably set in the range of 510-650°C; temperatures below 510°C will cause problems such as the fluidized particles sticking to each other, while temperatures exceeding 650°C will This is not preferable because it increases the amount of pyrolysis gas generated. The reaction pressure ranges from 0 to IK17 cm2.

本発明において、低温熱分解反応器からの熱分解残渣を
第2熱分解工程へ供給する場合、熱分解残渣は必要に応
じて元旦300〜400℃に冷却した後、ポンプを介し
て溶融状態で第2熱分解工程へ送ることができ、また、
熱分解残渣を第2熱分解反応器へ導入する場合、水蒸気
などの非反応性ガスと混合し、微細化された状態で第2
反応器内へ吹込むのがよい。
In the present invention, when the pyrolysis residue from the low-temperature pyrolysis reactor is supplied to the second pyrolysis step, the pyrolysis residue is cooled to 300 to 400°C on New Year's Day as necessary, and then molten via a pump. can be sent to a second pyrolysis step, and
When the pyrolysis residue is introduced into the second pyrolysis reactor, it is mixed with a non-reactive gas such as water vapor, and the pyrolysis residue is introduced into the second pyrolysis reactor in a finely divided state.
It is best to blow it into the reactor.

前記のようにして、第2熱分解工程を実施することによ
り、第1熱分解工程からの熱分解残渣は、さらに熱分解
を受けて、蒸気4にの熱分解油と熱分解ガスとを生成す
ると共に、分解残渣としてコークが生成する。分解油は
、反応器底部から導入される水蒸気等の非反応性ガスと
共に反応器上部から抜出され、一方、生成したコークは
、一定時間反応器内に滞留した後、流動化粒子と共に反
応器外へ抜出される。
By performing the second pyrolysis step as described above, the pyrolysis residue from the first pyrolysis step is further pyrolyzed to produce pyrolysis oil and pyrolysis gas as steam 4. At the same time, coke is produced as a decomposition residue. The cracked oil is extracted from the top of the reactor along with non-reactive gases such as water vapor introduced from the bottom of the reactor, while the coke produced stays in the reactor for a certain period of time and is then removed from the reactor together with fluidized particles. being taken outside.

第1熱分解工程及び第2熱分解工程から抜出された熱分
解油は、蒸留工程へ送られ、ここで留出油と蒸留残渣油
とに分離される。まだ、この蒸留工程には、第1熱分解
工程からの熱分解油も供給され、蒸留処理される。熱分
解油蒸留物の性状は、一般的には次の通りである。
The pyrolysis oil extracted from the first pyrolysis step and the second pyrolysis step is sent to a distillation step, where it is separated into distillate oil and distillation residue oil. The pyrolysis oil from the first pyrolysis step is also fed to this distillation step and subjected to distillation treatment. The properties of the pyrolysis oil distillate are generally as follows.

沸点=566℃以上のものを少なくとも40重量%、通
常40〜60重量%含むものである。
It contains at least 40% by weight, usually 40 to 60% by weight, of substances having a boiling point of 566°C or higher.

本発明においては、前記蒸留工程で得られた蒸留残渣油
は、第1熱分解工程へ循環する。この蒸留残渣の循環に
より軽質熱分解油の収率が高められる。蒸留残渣油の循
環割合は、一般的には、原料重質油1重量部に対し、0
.1〜05重量部、好ましくは02〜0.4重量部の割
合である。
In the present invention, the distillation residue oil obtained in the distillation step is circulated to the first thermal decomposition step. The circulation of this distillation residue increases the yield of light pyrolysis oil. Generally, the circulation ratio of distillation residue oil is 0 to 1 part by weight of raw material heavy oil.
.. The proportion is from 1 to 0.5 parts by weight, preferably from 0.2 to 0.4 parts by weight.

次に図面により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

図面は本発明法のフローシートを示すもので、原料油は
ライン1から第1熱分解反応器15へ導入され、またこ
の第1熱分解反応器に対しては、ライン2から熱源とし
ての非反応性ガス、例えばスチームが吹込まれ、ライン
11から循環蒸留残渣油が導入される。この第1熱分解
工程における好ましい条件は次の通りである。
The drawing shows a flow sheet of the method of the present invention, in which feedstock oil is introduced from line 1 into a first pyrolysis reactor 15, and for this first pyrolysis reactor, a non-heat source is introduced from line 2. A reactive gas, for example steam, is blown in and recycled distillation residue is introduced through line 11. Preferable conditions in this first thermal decomposition step are as follows.

反応方式:液相連続式 反応温度=420〜440℃ 反応時間:30分〜120分 (液相基準) 熱分解油は、ライン3から熱分解ガス及び非反応性ガス
と共に抜出され、蒸留塔17に送られる。
Reaction method: Liquid phase continuous reaction temperature = 420-440°C Reaction time: 30 minutes to 120 minutes (liquid phase basis) Pyrolysis oil is extracted from line 3 together with pyrolysis gas and non-reactive gas, and sent to the distillation column. Sent to 17th.

 9− 一方、熱分解残渣はライン9から抜出され、固体流動層
を備えた第2熱分解反応器16に導入する。
9- Meanwhile, the pyrolysis residue is withdrawn from line 9 and introduced into a second pyrolysis reactor 16 equipped with a solid fluidized bed.

この場合、ライン10から非反応性ガス例えばスチーム
を熱分解残渣と共に反応器内に吹込み、熱分解残渣を噴
霧状で流動層に接触させる。この第2熱分解反応器に対
しては、ライン6から流動化用のガスが導入され、ライ
ン4から流動層形成用の固体粒子が供給される。この第
2熱分解工程における好ましい条件は次の通りである。
In this case, a non-reactive gas such as steam is blown into the reactor together with the pyrolysis residue through line 10, and the pyrolysis residue is brought into contact with the fluidized bed in the form of a spray. A fluidizing gas is introduced from line 6 to the second pyrolysis reactor, and solid particles for forming a fluidized bed are supplied from line 4. Preferred conditions in this second thermal decomposition step are as follows.

反応方式:固気流動層連続式 反応温度=550〜600℃ 反応時間=1〜10秒 (気相基準) 熱分解油はライン7から熱分解ガス及び非反応性ガスと
共に抜出され、蒸留塔17に送られる。
Reaction method: solid-gas fluidized bed continuous reaction temperature = 550-600°C reaction time = 1-10 seconds (based on gas phase) Pyrolysis oil is extracted from line 7 together with pyrolysis gas and non-reactive gas, and sent to the distillation column. Sent to 17th.

一方、この熱分解で生成したコークは、流動化用固体粒
子と共にライン5から抜出される。
On the other hand, the coke produced by this thermal decomposition is extracted from line 5 together with solid particles for fluidization.

蒸留塔17は、好ましくは次の条件で運転される。Distillation column 17 is preferably operated under the following conditions.

塔頂温度=130〜160℃ −l〇 − 塔底温度=340℃ 蒸留塔17においでは、蒸気状の熱分解油、熱分解ガス
及び非反応性ガスからなるガスが塔頂から抜出され、ラ
イン13から比較的軽質の熱分解油及びライン14から
比較的重質の熱分解油が抜出される。塔底からは蒸留残
渣がライン11を通って抜出され、第1熱分解反応器1
5に循環される。
Column top temperature = 130 to 160°C -l〇 - Column bottom temperature = 340°C In the distillation column 17, gas consisting of vaporized pyrolysis oil, pyrolysis gas and non-reactive gas is extracted from the top of the column, Relatively light pyrolysis oil is extracted from line 13 and relatively heavy pyrolysis oil is extracted from line 14. The distillation residue is extracted from the bottom of the column through a line 11, and is transferred to the first thermal decomposition reactor 1.
It is cycled to 5.

本発明によれば、従来のフリュートコ−キング法に比し
て、高められた熱分解油収率を得ることができ、例えば
、フリュートコ−キング法の場合、05〜540℃の熱
分解油収率に関し、約62重関係であるのに対し、本発
明法の場合、約70重量%にも達する。まだ、本発明の
熱分解油は、不飽和分が少なく、低められた臭素価を示
し、水素化精製する場合に、水素消費量が少なくて済む
という利点もある。例えば、0.〜19o℃の軽質熱分
解油に関し、フリュートコ−キング法の場合、130の
臭素価を示すのに対し、本発明法の場合、約80の臭素
価を示すにすぎない。
According to the present invention, an increased pyrolysis oil yield can be obtained compared to the conventional flute coking method. For example, in the case of the flute coking method, the pyrolysis oil yield at 05 to 540°C Regarding this, while the relationship is about 62 times, in the case of the method of the present invention, it reaches about 70% by weight. Still, the pyrolysis oil of the present invention has the advantage that it has less unsaturation, exhibits a lower bromine number, and requires less hydrogen consumption when hydrorefining. For example, 0. Regarding light pyrolysis oil at ~19°C, the flute coking method shows a bromine number of 130, while the method of the present invention shows a bromine number of only about 80.

 11− 次に本発明を実施例によりさらに詳細に説明する。11- Next, the present invention will be explained in more detail with reference to Examples.

実施例1 (1)第1熱分解工程 コンテ1:′ソンカーボフ21.4重量%の減圧残油を
攪拌機を備えた反応器に仕込み、反応器底部から窒素ガ
スを吹込み、反応温度420℃、反応圧力として常圧を
採用し、反応時間30〜1.20分の条件下で熱分解反
応を行った。その結果を第1表に示す。
Example 1 (1) First thermal decomposition step Container 1: 'Sonkerbov 21.4% by weight vacuum residual oil was charged into a reactor equipped with a stirrer, nitrogen gas was blown from the bottom of the reactor, the reaction temperature was 420°C, The thermal decomposition reaction was carried out under the conditions that normal pressure was employed as the reaction pressure and the reaction time was 30 to 1.20 minutes. The results are shown in Table 1.

第  1  表  12− 次に、熱分解残渣に関し、その固定炭素含量(イ)と、
350℃における残渣粘度との関係を調べると、固定炭
素含量が45%以下であると残渣粘度はせいぜい30セ
ンチポアズであるが、固定炭素含量が50%を越えると
粘度は急速に上昇し、固定炭素含量55%では粘度20
0センチポアズを示し、固定炭素含量60LIOでは2
.000センチポアズにも達する。従って、粘性の低い
、取扱いの容易な熱分解残渣を得るには固定炭素含量は
45%以下であシ、本発明の場合、第1熱分解工程から
の熱分解残渣の固定炭素含量は30〜45%の範囲に選
定するのが有利である。
Table 1 12- Next, regarding the pyrolysis residue, its fixed carbon content (a),
Examining the relationship with the viscosity of the residue at 350°C, it is found that when the fixed carbon content is 45% or less, the viscosity of the residue is at most 30 centipoise, but when the fixed carbon content exceeds 50%, the viscosity increases rapidly and the fixed carbon At 55% content, viscosity is 20
0 centipoise and 2 at fixed carbon content of 60 LIO.
.. It reaches up to 000 centipoise. Therefore, in order to obtain a pyrolysis residue with low viscosity and easy handling, the fixed carbon content should be 45% or less, and in the case of the present invention, the fixed carbon content of the pyrolysis residue from the first pyrolysis step is 30 to 30%. A selection in the range of 45% is advantageous.

(2)第2熱分解工程 前記第1熱分解工程で得た扉3の熱分解残渣を反応温度
600℃及び常圧の条件下、水蒸気によシ流動化された
粒径04〜0.6mの固体粒子(アルミナ粒子)からな
る固気流動層へ噴霧して熱分解を行った。その結果を第
2表に示す。
(2) Second pyrolysis step The pyrolysis residue of the door 3 obtained in the first pyrolysis step is fluidized by steam at a reaction temperature of 600°C and normal pressure to obtain a particle size of 04 to 0.6 m. Thermal decomposition was carried out by spraying it onto a solid-gas fluidized bed consisting of solid particles (alumina particles). The results are shown in Table 2.

 13− 第  2  表 実施例2 コンラドソンカーゼ2254重量%の減圧残油を反応器
に仕込み、反応器底部から水蒸気を吹き込んだ。まず、
第1熱分解の条件、すなわち反応温度420℃、常圧で
30〜120分間熱分解した。ひきつづき、反応器を第
2熱分解の条件、すなわち、反応温度600℃まで昇温
しで熱分解した。その結果を第3表に示す。
13- Table 2 Example 2 Conradson Case 2254% by weight vacuum residual oil was charged into a reactor, and steam was blown into the reactor from the bottom. first,
The first thermal decomposition was performed under the conditions of the reaction temperature of 420° C. and normal pressure for 30 to 120 minutes. Subsequently, the reactor was thermally decomposed under the second thermal decomposition conditions, that is, the reaction temperature was raised to 600°C. The results are shown in Table 3.

 14− 第  3  表 鬼 比較例1 比較のために、同一の出発原料を第1熱分解工程を経由
させないで、直接600℃で分解させた。
14- Third Comparative Example 1 For comparison, the same starting material was directly decomposed at 600° C. without passing through the first thermal decomposition step.

その結果、ガス(04以下)の収率8%、分解油(aS
〜540℃)収率59%及びコーク収率33%を得た。
As a result, the yield of gas (04 or less) was 8%, the cracked oil (aS
~540<0>C) yield of 59% and coke yield of 33% were obtained.

実施例2の<、 / 、 2.3と比較例1との比較に
より、本発明の場合は、分解油収率が多いことがわかる
A comparison between <, /, 2.3 of Example 2 and Comparative Example 1 shows that the cracked oil yield is high in the case of the present invention.

実施例3 実施例1の(2)lτあ゛ける汚39ワンノξス実験で
得られた分解残渣油(540℃以上、固定炭素37%)
100重量部を原料とし、第1熱分解工程で、420℃
、120分分解した。
Example 3 Decomposition residual oil obtained in Example 1 (2) lτ Awkward Soil 39 One Nose ξ space experiment (540°C or higher, fixed carbon 37%)
Using 100 parts by weight as raw material, in the first thermal decomposition step, it was heated to 420°C.
, decomposed for 120 minutes.

このときの生成物収率はガス(04以下)4%、分解油
(05〜540℃)14%、分解残渣油(540℃以上
、固定炭素48%)82%であった。この分解残渣油を
さらに第2熱分解工程で熱分解すると30重量部のコー
クが得られた。
The product yield at this time was 4% for gas (04 or lower), 14% for cracked oil (05 to 540°C), and 82% for cracked residual oil (540°C or higher, fixed carbon 48%). This cracked residual oil was further thermally decomposed in a second thermal cracking step to obtain 30 parts by weight of coke.

比較例2 同じ原料(540℃以上、固定炭素37%)を直接第2
熱分解工程で熱分解すると、ガス5%、分解油(05〜
540℃)17%、分解残渣油(540℃以上)66%
、コーク12重量部となった。
Comparative Example 2 The same raw material (540°C or higher, fixed carbon 37%) was directly
When pyrolyzed in the pyrolysis process, 5% gas and cracked oil (05~
540℃) 17%, cracked residual oil (540℃ or higher) 66%
, 12 parts by weight of coke.

以上より、原料を第1熱分解工程へ再循環することによ
り、ワンパスで30重量部のコークが得られるのに対し
、比較例2では、12重量部しか得られない。したがっ
て、第1熱分解工程へ再循環した方が、第2熱分解工程
へ再循環するよりも、循環量が少ない。
From the above, by recycling the raw material to the first pyrolysis step, 30 parts by weight of coke can be obtained in one pass, whereas in Comparative Example 2, only 12 parts by weight can be obtained. Therefore, the amount of recirculation is smaller when recycled to the first pyrolysis step than when recycled to the second pyrolysis step.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を実施するための70−シートの1例を示
すものである。 15・・・第1熱分解反応器、16・・・第2熱分解反
応器、17・・蒸留塔。 特許出願人 千代田化工建設株式会社 代理人 弁理士 池 浦 敏 明  17−
The drawing shows an example of a 70-sheet for carrying out the invention. 15... First thermal decomposition reactor, 16... Second thermal decomposition reactor, 17... Distillation column. Patent Applicant Chiyoda Corporation Agent Patent Attorney Toshiaki Ikeura 17-

Claims (1)

【特許請求の範囲】[Claims] (1)重質油を熱分解するに際し、 (イ)該重質油を400〜500℃の温度で熱分解する
第1熱分解工程、 (ロ)該第1熱分解工程から熱分解油と第1熱分解残直
とを抜出す工程、 (ハ)該第1熱分解残渣を510〜650℃の温度で熱
分解する第2熱分解工程、 に)該第2熱分解工程から熱分解油と熱分解残渣とを抜
出す工程、 (ホ)該第1熱分解工程及び該第2熱分解工程からの熱
分解油を蒸留して蒸留物と蒸留残渣とに分離する工程、 (へ)該蒸留残渣を前記第1熱分解工程に循環する工程
、 からなることを特徴とする重質油から熱分解油を得る方
法。
(1) When pyrolyzing heavy oil, (a) a first pyrolysis step in which the heavy oil is pyrolyzed at a temperature of 400 to 500°C; (b) pyrolysis oil is removed from the first pyrolysis step; (c) a second pyrolysis step of pyrolyzing the first pyrolysis residue at a temperature of 510 to 650°C; d) pyrolysis oil from the second pyrolysis step; (e) a step of distilling the pyrolysis oil from the first pyrolysis step and the second pyrolysis step to separate it into a distillate and a distillation residue; A method for obtaining pyrolysis oil from heavy oil, comprising the step of circulating the distillation residue to the first pyrolysis step.
JP13546282A 1982-08-03 1982-08-03 Method for obtaining thermal cracked oil from heavy oil by two-stage thermal cracking Pending JPS5925886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13546282A JPS5925886A (en) 1982-08-03 1982-08-03 Method for obtaining thermal cracked oil from heavy oil by two-stage thermal cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13546282A JPS5925886A (en) 1982-08-03 1982-08-03 Method for obtaining thermal cracked oil from heavy oil by two-stage thermal cracking

Publications (1)

Publication Number Publication Date
JPS5925886A true JPS5925886A (en) 1984-02-09

Family

ID=15152274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13546282A Pending JPS5925886A (en) 1982-08-03 1982-08-03 Method for obtaining thermal cracked oil from heavy oil by two-stage thermal cracking

Country Status (1)

Country Link
JP (1) JPS5925886A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144422A (en) * 1984-12-10 1986-07-02 ベロイト コ−ポレ−ション Belt covered roll
JPH0679328A (en) * 1992-09-01 1994-03-22 Kawasaki Steel Corp High speed passing roll
KR20160127059A (en) * 2014-02-25 2016-11-02 사빅 글로벌 테크놀러지스 비.브이. A sequential cracking process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144422A (en) * 1984-12-10 1986-07-02 ベロイト コ−ポレ−ション Belt covered roll
JPH0679328A (en) * 1992-09-01 1994-03-22 Kawasaki Steel Corp High speed passing roll
KR20160127059A (en) * 2014-02-25 2016-11-02 사빅 글로벌 테크놀러지스 비.브이. A sequential cracking process
JP2017510687A (en) * 2014-02-25 2017-04-13 サウジ ベーシック インダストリーズ コーポレイションSaudi Basic Industries Corporaiton Sequential decomposition method
US10160920B2 (en) 2014-02-25 2018-12-25 Saudi Basic Industries Corporation Sequential cracking process

Similar Documents

Publication Publication Date Title
US2543884A (en) Process for cracking and coking heavy hydryocarbons
US4331533A (en) Method and apparatus for cracking residual oils
US2396036A (en) Shale distillation
JPS6072989A (en) Method for thermally cracking heavy oil
US2813916A (en) Production of hydrocarbons from heavy hydrocarbonaceous residues by two stage processwith the use of inert solids
JPS59157180A (en) Production of pitch suitable as fuel from petroleum heavy oil and cracked light oil
US3997428A (en) Vaporization of oil feed by addition of regenerated catalyst
JPS59157181A (en) Production of pitch suitable as fuel from petroleum heavy oil and cracked light oil
US2734851A (en) smith
JPS5898386A (en) Conversion of heavy oil or residual oil to gas and distillable hydrocarbon
JPS5925886A (en) Method for obtaining thermal cracked oil from heavy oil by two-stage thermal cracking
GB2124649A (en) Microspherical pitch
US4412908A (en) Process for thermal hydrocracking of coal
US2734020A (en) Catalyst
US2557748A (en) Process for hydrocarbon conversion
US2871183A (en) Conversion of hydrocarbons
JPS5944352B2 (en) Pituchi manufacturing method
US2873244A (en) High pressure thermal cracking and fluid coking
JPS58111891A (en) Thermal cracking of heavy oil
US2751334A (en) Continuous flash coking process
US4244805A (en) Liquid yield from pyrolysis of coal liquefaction products
GB2103650A (en) Microspherical pitch spheres
US4366048A (en) Fluid coking with the addition of solids
US5228981A (en) Coal as an additive to accelerate thermal cracking in coking
US2964460A (en) Liquid carbon black feedstock