JPS5925881B2 - hydraulic control device - Google Patents

hydraulic control device

Info

Publication number
JPS5925881B2
JPS5925881B2 JP49009678A JP967874A JPS5925881B2 JP S5925881 B2 JPS5925881 B2 JP S5925881B2 JP 49009678 A JP49009678 A JP 49009678A JP 967874 A JP967874 A JP 967874A JP S5925881 B2 JPS5925881 B2 JP S5925881B2
Authority
JP
Japan
Prior art keywords
control
point
valve
pressure
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49009678A
Other languages
Japanese (ja)
Other versions
JPS49104079A (en
Inventor
シユヴエリン ギユンテル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS49104079A publication Critical patent/JPS49104079A/ja
Publication of JPS5925881B2 publication Critical patent/JPS5925881B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • F15B13/0417Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86574Supply and exhaust
    • Y10T137/8667Reciprocating valve
    • Y10T137/86694Piston valve
    • Y10T137/8671With annular passage [e.g., spool]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87169Supply and exhaust
    • Y10T137/87177With bypass
    • Y10T137/87185Controlled by supply or exhaust valve

Description

【発明の詳細な説明】 本発明は油圧式制御装置に関する。[Detailed description of the invention] The present invention relates to a hydraulic control device.

この場合油圧式制御装置は、作業装置の制御に適した方
向制御弁と、この方向制御弁への供給路内に送られた作
動油を直接戻り路に戻す切換弁とを備えている。
In this case, the hydraulic control device includes a directional control valve suitable for controlling the working device, and a switching valve that returns the hydraulic fluid sent into the supply path to the directional control valve directly to the return path.

方向制御弁内の1つの制御部材は中立位置では作業装置
に通じる少なくとも1つの作業装置室を遮断し、かつ2
つの作業位置では選択的に供給路又は戻り路と連通ずる
One control member in the directional control valve blocks at least one work equipment chamber leading to the work equipment in the neutral position, and
The two working positions are selectively connected to the supply or return path.

切換弁には供給路から分岐していて方向制御弁内の制御
部材によって制御可能な1つの制御流路が一流路区分を
介して接続されており、この制御流路内には1つの絞り
個所が設けられていて、この絞り個所の前後に生ずる圧
力差が切換弁の閉鎖部材に1つの閉鎖ばねの力に抗して
開放方向の作用を及ぼすことができる。
A control channel, which branches off from the supply channel and can be controlled by a control element in the directional control valve, is connected to the switching valve via a channel section, in which a throttle point is provided. is provided, and the pressure difference that occurs across this throttle point can exert an effect on the closing member of the switching valve in the opening direction against the force of a closing spring.

このような油圧式制御装置の場合、方向制御弁内の制御
部材が中立位置を占めている時はポンプ流の一部が制御
流として制御流路を経由してタンクへ還流し、残りはす
べて制御流路内の絞り個所前後の圧力差に基いて開く切
換弁からバイパス流として戻り路へ戻される。
In the case of such a hydraulic control device, when the control member in the directional control valve is in the neutral position, part of the pump flow is returned to the tank via the control flow path as a control flow, and the rest is all The flow is returned to the return path as a bypass flow from a switching valve that opens based on the pressure difference before and after the throttle point in the control flow path.

制御部材が中立位置から作業位置へ移動操作された場合
、制御流路が絞られることによって切換弁、ひいてはバ
イパス流路が閉鎖制御を受け、供給路内の圧力上昇によ
って作業装置側へ通ずる流路が開放制御される。
When the control member is operated to move from the neutral position to the work position, the control flow path is narrowed and the switching valve and, by extension, the bypass flow path are controlled to close, and the pressure in the supply path increases, causing the flow path leading to the work equipment side to close. is controlled to open.

この過度的経過の時ポンプ流がバイパス流および作業装
置への作業流および制御流の3つの流れになる。
During this transient phase, the pump flow becomes three flows: a bypass flow, a working flow to the work equipment, and a control flow.

最終的にポンプ流は作業流および制御流の2つに落ち着
く。
Eventually, the pump flow settles into two, a working flow and a control flow.

既にこのような形式の油圧式制御装置が知られている(
米国特許第2489435号明細書参照)。
This type of hydraulic control device is already known (
(See US Pat. No. 2,489,435).

この公知例の場合、方向制御弁内の制御スプールに、作
業装置への作業流および制御流路を経由する制御流のた
めに流過横断面を変えた過渡区域が設けられている。
In this known example, the control spool in the directional control valve is provided with a transition zone with a different flow cross section for the working flow to the working device and the control flow via the control channel.

しかし実地においては満足すべき微制御が得られない。However, in practice, satisfactory fine control cannot be obtained.

即ち、中立位置から作業位置への制御スプールの移動操
作に伴って、ポンプ流が作業流および制御流の2つに落
ち着くまでの間常に過度の圧力上昇が生ずるのである。
That is, as the control spool is moved from the neutral position to the working position, an excessive pressure increase occurs whenever the pump flow settles into two, the working flow and the control flow.

このような過度の圧力上昇は微制御を著しく妨げるか又
はポンプに不都合な負荷を及ぼすことになる。
Such an excessive pressure increase can significantly impede fine control or place an undesirable load on the pump.

本発明の目的は、冒頭に述べた形式の油圧式制御装置に
おいて、前記欠点を除くと共に簡単な手段によって一層
良好な微制御特性が得られるようにすることである。
SUMMARY OF THE INVENTION The object of the invention is to eliminate the aforementioned disadvantages in a hydraulic control device of the type mentioned at the outset and to make it possible to obtain better fine control characteristics by simple means.

この目的を本発明は次のようにして達成した。This object was achieved by the present invention as follows.

即ち、供給路から作業装置に通じる流路内に第二の絞り
個所を設けたのである。
That is, a second constriction point is provided in the flow path leading from the supply path to the working device.

この第二の絞り個所は制御流路内の第一の絞り個所の上
流側に、かつ切換弁に対して並列に設けられており、第
一の絞り個所よりも大きな流過横断面を有している。
This second throttling point is arranged upstream of the first throttling point in the control channel and parallel to the switching valve and has a larger flow cross section than the first throttling point. ing.

このような構成によれば、第二の絞り個所に生ずる圧力
差の利用によって過渡範囲における過度の圧力上昇が大
幅に減少されて微制御が著しく改良される。
With such an arrangement, by utilizing the pressure difference occurring at the second throttling location, excessive pressure build-up in the transient range is significantly reduced and the fine control is significantly improved.

また、作動油を戻り路へ直接導出する切換弁の持つ利点
を十分利用することができる。
Furthermore, the advantage of the switching valve that directs the hydraulic fluid directly to the return path can be fully utilized.

これら2つの利点は従来併せ持つことができなかった。Conventionally, these two advantages could not be combined.

さらに、本発明による構造上の処置は極めて安価であり
、現有の制御装置にも大きな変更を加えることな〈実施
できる。
Furthermore, the structural measures according to the invention are extremely inexpensive and can be implemented without major modifications to existing control systems.

可能な限り小さな制御流によって微制御範囲における可
能な限り大きな作動油量に影響をあたえることができる
ならば、前記の利点は特に効果的である。
This advantage is particularly advantageous if it is possible to influence as large a quantity of hydraulic fluid as possible in the fine control range with the smallest possible control flow.

次に図示の実施例につき本発明を説明する:第1図には
接続板11と方向制御弁12を有するケーシング28と
端板13とから成る油圧式制御装置10が示されている
The invention will now be explained with reference to the exemplary embodiment shown: FIG. 1 shows a hydraulic control device 10 consisting of a housing 28 with a connecting plate 11 and a directional control valve 12, and an end plate 13.

接続板11は供給路15と戻り路16との間に接続され
ている切換弁14を備えている。
The connecting plate 11 is provided with a switching valve 14 connected between a supply channel 15 and a return channel 16 .

切換弁14は供給路15から作動油を直接に戻り路16
へ戻すことがで入る(後述)。
The switching valve 14 directs hydraulic oil from the supply path 15 to the return path 16.
It can be entered by returning it to (described later).

この切換弁14の閉鎖部材17は圧力室18内に配置さ
れた閉鎖はね19によって閉鎖位置、つまり供給路15
から戻り路16への連通を制御縁21で遮断する閉鎖位
置への方向で押されている。
The closing member 17 of this switching valve 14 can be moved into the closed position by means of a closing spring 19 arranged in the pressure chamber 18, i.e. the supply channel 15
in the direction of the closed position in which communication from the control edge 21 to the return path 16 is interrupted.

ポンプ導管に接続されている供給路15は接続板11の
フランジ面24へ開口していて、ケーシング28内の流
入路39および逆止弁38を経て方向制御弁12の流入
室31へ通じている。
The supply channel 15 connected to the pump line opens into the flange surface 24 of the connecting plate 11 and leads via an inlet channel 39 in the housing 28 and a check valve 38 to the inlet chamber 31 of the directional control valve 12. .

図面では流入路39の分枝が実線で図示されているが、
この分枝は方向制御弁12と並列接続することのできる
同種の図示してない方向制御弁へ作動油を供給すること
ができる点を暗示している。
In the drawing, the branches of the inflow channel 39 are shown as solid lines, but
This branch implies that a similar type of directional control valve (not shown), which can be connected in parallel with the directional control valve 12, can be supplied with hydraulic fluid.

流入室31へ通ずる供給路15から接続板11内におい
て分枝通路22が分枝している。
A branch passage 22 branches off within the connecting plate 11 from the supply passage 15 leading to the inlet chamber 31 .

この分岐通路22は第一の絞り個所23を有し、切換弁
14の圧力室18と接続板11のフランジ面24とへ開
口している。
This branch channel 22 has a first throttle point 23 and opens into the pressure chamber 18 of the switching valve 14 and into the flange surface 24 of the connecting plate 11 .

分岐通路22の上流側に、供給路15は第二の絞り個所
25を有している。
Upstream of the branch channel 22, the feed channel 15 has a second constriction point 25.

この第二の絞り個所25は第一の絞り個所23における
よりも大きな流過横断面を有する。
This second throttling point 25 has a larger flow cross section than the first throttling point 23 .

また、供給路15は、戻り路16へ通ずる方向制御弁1
2からの作動油の契り通路27に接続された圧力制限弁
26によって過圧を防止されている。
Further, the supply path 15 is connected to the directional control valve 1 which communicates with the return path 16.
Overpressure is prevented by a pressure limiting valve 26 connected to a hydraulic oil passage 27 from 2.

方向制御弁12はスプール孔29を有するケーシング2
8を備えており、スプール孔29は局所的に限定されて
1つの流入室31.2つの作業装置室32 、33.2
つの契り室34,35及び2つの互いに隣接する制御室
36.37を形成するように拡大されている。
The directional control valve 12 has a casing 2 having a spool hole 29.
8, and the spool hole 29 is locally limited to form one inflow chamber 31 and two working device chambers 32, 33.2.
It is enlarged to form two hinged chambers 34, 35 and two mutually adjacent control chambers 36,37.

流入室31は既に述べたように逆止弁38と流入路39
とを介して接続板11内の供給路15と接続しており、
両方の戻り室34,35は別の通路41によって互いに
連通している。
As already mentioned, the inflow chamber 31 has a check valve 38 and an inflow passage 39.
It is connected to the supply path 15 in the connection plate 11 via
The two return chambers 34, 35 communicate with each other by a further passage 41.

更に1つの通路42が戻り室34,35を戻り通路27
と接続している。
A further passage 42 connects the return chambers 34, 35 to the return passage 27.
is connected to.

1つの通路43が制御室36と接続板11内の分岐通路
22とを接続しており、通路44が制御室37から端板
13に接するフランジ面に通じている。
One passage 43 connects the control chamber 36 and the branch passage 22 in the connecting plate 11 , and a passage 44 leads from the control chamber 37 to the flange surface in contact with the end plate 13 .

前記スプール孔29内では制御スプール45が摺動案内
されている。
A control spool 45 is slidably guided in the spool hole 29.

この制御スプール45は2つのピストン区分46.47
に制御縁48を有し、該制御縁には複動式作業装置に対
する作動油の供給および戻りの制御のための微制御切欠
部49が形成されている。
This control spool 45 has two piston sections 46, 47
The control edge 48 has a control edge 48 formed with a fine control notch 49 for controlling the supply and return of hydraulic fluid to the double-acting working device.

2つの附加的なピストン区分51,52も制御縁53を
有し、これらの制御縁には分岐通路22からの制御流の
制御を行う微制御切欠部54が設けられている。
The two additional piston sections 51, 52 also have control edges 53, which are provided with fine control recesses 54 for controlling the control flow from the branch channel 22.

複動式戻し装置55は制御スプール45を中立位置(図
示の位置)に保持し、この位置から制御スプール45は
図で見て左右の両作業位置へ移動操作される。
The double-acting return device 55 holds the control spool 45 in a neutral position (the position shown), and from this position the control spool 45 can be operated into both left and right working positions as seen in the figures.

端板13には通路56が設けられており、この通路56
は方向制御弁12側の前記通路44と通路42とを接続
している。
A passage 56 is provided in the end plate 13, and this passage 56
connects the passage 44 and the passage 42 on the directional control valve 12 side.

この通路56は制御流路の一流路部分をなす分岐通路2
2と通路43゜44と制御室36,37と共に供給路1
5から戻り路16へ通じる制御流路57の一部を成して
いる。
This passage 56 is the branch passage 2 which forms the first passage part of the control passage.
2 and the passage 43° 44 and the control room 36, 37 together with the supply passage 1
5 to the return path 16.

以上の本発明による油圧式の制御装置の作用形式は次の
通りである: 第1図には方向制御弁12の制御スプール45が中立位
置を占めている状態で制御装置が示されており、作動油
は流れていない。
The mode of operation of the hydraulic control device according to the invention is as follows: In FIG. 1, the control device is shown with the control spool 45 of the directional control valve 12 in a neutral position; Hydraulic oil is not flowing.

この状態でポンプ(図示せず)によって作動油が供給路
15へ送られた場合、作動油の一部だけが第一の絞り個
所23を有する分岐通路22を含めて開放されている制
御流路57を経て戻り路16へ流れる。
When hydraulic oil is sent to the supply path 15 by a pump (not shown) in this state, only a portion of the hydraulic oil is opened in the control flow path including the branch passage 22 having the first throttle point 23. 57 and flows to the return path 16.

というのは、第一の絞り個所23の前後に生ずる圧力差
によって切換弁14の閉鎖部材17が図示の閉鎖位置か
ら閉鎖ばね19に抗して開放位置へ押されて、作動油の
大部分が供給路15からほとんど絞り作用を受けずに直
接戻り路16へ戻ることになるからである。
This is because the pressure difference occurring before and after the first throttling point 23 pushes the closing member 17 of the switching valve 14 from the closed position shown into the open position against the closing spring 19, so that most of the hydraulic fluid is dissipated. This is because the water returns directly from the supply path 15 to the return path 16 without being subjected to any throttling action.

この場合、作動油は流過横断面の大きい方の第二の絞り
個所と流過横断面の小さい方の第一の絞り個所とを順次
流過するが、上流側の第二の絞り個所25は事実上有効
には働かない。
In this case, the hydraulic fluid sequentially passes through the second throttle point with a larger flow cross section and the first throttle point with a smaller flow cross section, but the hydraulic fluid passes through the second throttle point 25 on the upstream side. does not actually work effectively.

というのは第一の絞り個所23よりも流過横断面が太き
いためその絞り作用が無きに等しい程小さいからである
This is because the flow cross section is wider than the first throttling point 23, so that its throttling effect is so small as to be negligible.

両方の絞り個所にわたる全圧力低下は閉鎖はね19によ
って規定されて常に一定しており、従ってもっばら下流
側の第一の絞り個所23における全圧力低下が切換弁1
4の閉鎖部材1Tへ作用することになり、この場合制御
流路57を流れる作動油の流量は切換弁14と協働する
第一の絞り個所23によってほぼ一定に保たれる。
The total pressure drop across both throttle locations is always constant, defined by the closing spring 19, so that the total pressure drop across the first downstream throttle location 23 is always constant.
4, the flow rate of the hydraulic oil flowing through the control channel 57 is kept approximately constant by the first throttle point 23 cooperating with the switching valve 14.

制御スプール45が1つの作業位置へ向かって右へ操作
されると、微制御切欠部54を有する一方の制御縁53
が制御流路57内の作動油の流れを絞る。
When the control spool 45 is operated to the right towards one working position, one control edge 53 with a fine control notch 54
throttles the flow of hydraulic oil in the control flow path 57.

その結果、分岐通路22へ引き続き流れる作動油、要す
るに第一の絞り個所23を経て流れる作動油は破線で示
す制御流路分岐区分を介して切換弁14の圧力室18内
の圧力を高め、開放位置を占めていた閉鎖部材17を閉
鎖側へ押し動かす。
As a result, the hydraulic oil that continues to flow into the branch channel 22, that is to say via the first throttle point 23, increases the pressure in the pressure chamber 18 of the switching valve 14 via the control channel branch section shown in broken lines and opens it. The closing member 17 that has been in position is pushed toward the closing side.

これによって供給路15内の圧力が高まる。供給路15
内の圧力上昇が作業装置圧と逆止弁38の設定圧との合
計を上回ると、作動油は供給路15から逆止弁38を経
て流入室31へ流入し、ピストン区分47の制御縁48
から一方の作業装置室33内へ流入する。
This increases the pressure within the supply path 15. Supply route 15
If the pressure increase within exceeds the sum of the implement pressure and the set pressure of the check valve 38 , the hydraulic oil flows from the supply channel 15 via the check valve 38 into the inflow chamber 31 and the control edge 48 of the piston section 47 .
and flows into one of the working equipment chambers 33.

同時に、作業装置から還流する作動油が他方の作業装置
室32から戻り室34を経て戻り路16へ流れることが
できる。
At the same time, hydraulic fluid returning from the working device can flow from the other working device chamber 32 to the return passage 16 via the return chamber 34 .

この場合、供給路15から作業装置室33へ向かって流
れる作動油によって、第一の絞り個所23よりも大きな
流過横断面を有する第二の絞り個所25の前後にも明確
な圧力差が生ずる。
In this case, the hydraulic oil flowing from the supply channel 15 towards the working device chamber 33 also creates a distinct pressure difference across the second throttle point 25, which has a larger flow cross section than the first throttle point 23. .

すなわち、前述の中立位置の時にはたんにわずかな作動
油、要するに制御流が、第一の絞り個所23を経て制御
流路57へ流れるだけで、この第一の絞り個所23には
圧力差が生ずるものの、流過横断面の大きい第二の絞り
個所25においては事実上絞り作用は無きに等しかった
That is, in the above-mentioned neutral position, only a small amount of hydraulic oil, in other words, a control flow, flows through the first throttle point 23 into the control flow path 57, and a pressure difference is created in this first throttle point 23. However, at the second throttling point 25, where the flow cross section is large, there is virtually no throttling effect.

しかし、前述のような供給路15内の圧力上昇によって
作動油が作業装置室33へも流れると、第二の絞り個所
25が絞り作用を増して圧力差を生ずることになる。
However, if the hydraulic fluid also flows into the working device chamber 33 due to the pressure increase in the supply path 15 as described above, the second throttling point 25 will increase its throttling action and create a pressure difference.

ところで、両方の絞り個所23.25によって生ぜしめ
られる全圧力降下は閉鎖はね19によって規定され、従
って閉鎖部材17のどの位置においても一定のままであ
る。
Incidentally, the total pressure drop produced by the two throttle points 23,25 is determined by the closing spring 19 and therefore remains constant in every position of the closing member 17.

云いかえるならば、供給路15における作動油の圧力は
図で見て閉鎖部材17の左側へ作用して閉鎖部材を右へ
(開放方向)動かそうとし、これに対して閉鎖はね19
のばね力と、第1並びに第2の絞り個所23.25によ
って減少せしめられる作動油圧力との総合力は閉鎖部材
17の右側へ作用して閉鎖部材を左へ(閉鎖方向)動か
そうとする。
In other words, the pressure of the hydraulic fluid in the supply channel 15 acts on the left side of the closing member 17 as seen in the figure and tends to move the closing member to the right (in the opening direction), whereas the closing spring 19
The combined force of the spring force and the hydraulic pressure reduced by the first and second throttle points 23.25 acts on the right side of the closing member 17 and tends to move it to the left (in the closing direction). .

従って、今や流過横断面の大きい第2の絞り個所25が
絞り作用を増して圧力差を生じたこと、即ち第2の絞り
個所における圧力降下の増大は第1の絞り個所23にお
ける圧力降下分が相応に小さくなることを意味する。
Therefore, the second throttling point 25 with the larger flow cross-section now has an increased throttling effect and produces a pressure difference, i.e. the increase in pressure drop at the second throttling point is equal to the pressure drop at the first throttling point 23. This means that it becomes correspondingly smaller.

このことは、Q=aJΔP1即ち流過量Qは圧力差ΔP
の平方根と定数aとの積に等しい結果として、制御流路
5Tの微制御切欠部54の上流側、ひいては圧力室18
へ通ずる流路22の圧力の低下、要するに閉鎖部材17
の左側に作用する前記総合力の減少につながる。
This means that Q=aJΔP1, that is, the flow rate Q is the pressure difference ΔP
As a result equal to the product of the square root of
The reduction in pressure in the flow path 22 leading to the closure member 17
This leads to a decrease in the overall force acting on the left side of .

この結果、供給路15から切換弁14を経て戻り路16
へ通ずるパイパス流路を閉ざそうとする閉鎖制御力がい
ちはやく緩和されて供給路15から作動油がバイパスさ
れ、供給路15の圧力上昇は公知例におけるような過度
の上昇に至ることなく落ち着く。
As a result, the supply path 15 passes through the switching valve 14 and the return path 16
The closing control force that attempts to close the bypass passage leading to the supply passage 15 is immediately relaxed, the hydraulic oil is bypassed from the supply passage 15, and the pressure increase in the supply passage 15 settles down without reaching an excessive increase as in the known example.

第2図には公知例について種種の作業装置圧の時の制御
スプール移動に関連する圧力の経過が特性曲線で示され
ており、第4図には本発明の制御装置について同様の圧
力の経過が特性曲線で示されている。
FIG. 2 shows characteristic curves of the pressure profile associated with the movement of the control spool at various working device pressures for a known example, and FIG. 4 shows a similar pressure profile for the control device of the invention. is shown in the characteristic curve.

第3図には公知例について種種の作業装置圧の時の制御
スプールの移動に関連する流過量が特性曲線で示されて
おり、第5図には本発明の制御装置について同様の流過
量が特性曲線で示されている。
FIG. 3 shows characteristic curves of the flow rate associated with the movement of the control spool at various working device pressures for a known example, and FIG. 5 shows a similar flow rate for the control device of the invention. Shown as a characteristic curve.

第4図から明らかなように、供給路15内の圧力Pの上
昇は制御スプール45の移動量Sに関連して特性曲線6
1に従って経過し、かつその都度の作業装置圧に関連し
て特性曲線62〜65に従って経過する。
As is clear from FIG. 4, the pressure P in the supply channel 15 increases as a function of the displacement S of the control spool 45 on the characteristic curve 6.
1 and, depending on the respective working device pressure, according to the characteristic curves 62 to 65.

特性曲線61から特性曲線62〜65へ移行する際の圧
力の上昇は第二の絞り個所25の影響で比較的僅かにと
どまり、この影響は制御スプールの移動量が大きくなる
につれて強力になる。
The increase in pressure during the transition from characteristic curve 61 to characteristic curves 62 to 65 is relatively small due to the influence of second throttling point 25, and this influence becomes stronger as the displacement of the control spool increases.

第2図には、本発明による第二の絞り個所25を有して
ない公知の制御装置における相応の特性曲線が符号66
〜69で示されている。
FIG. 2 shows a corresponding characteristic curve at 66 for a known control device which does not have a second throttle point 25 according to the invention.
~69.

この際の圧力上昇は作業装置の圧力が低い場合、先ず特
性曲線61に沿って作業装置圧の伺倍かに飛躍的に急上
昇し、次いで特性曲線66に沿って所定の作業装置圧ま
で低下する。
At this time, when the pressure of the working equipment is low, the pressure rises rapidly along the characteristic curve 61 to twice the working equipment pressure, and then decreases to a predetermined working equipment pressure along the characteristic curve 66. .

作業装置の圧力が高い場合には特性曲線69における平
坦化が示すように、圧力過剰上昇が圧力制限弁の応動を
惹起する。
If the pressure in the working device is high, as shown by the flattening in characteristic curve 69, an excess pressure buildup will cause the pressure limiting valve to react.

第5図の本発明における流過量の特性曲線は、圧力過剰
上昇の影響が第二の絞り個所25によって著しく解消さ
れるので、第3図の公知例における特性曲線と比較する
とその経過が著しくなだらかである。
The characteristic curve of the flow rate according to the present invention shown in FIG. 5 has a significantly smoother course compared to the characteristic curve according to the known example shown in FIG. It is.

従って公知の装置に較べると微制御が極めて敏感に行な
われる。
Fine control is therefore very sensitive compared to known devices.

制御スプール45は他の作業位置への移動操作に際して
も切換弁と協働して同様の微制御を伴う。
The control spool 45 cooperates with the switching valve to provide similar fine control during movement operations to other working positions.

この本発明の制御装置10の場合、閉鎖部材17は圧力
制限弁26と協働してパイロット式圧力制御弁を構成し
てもよい。
In the case of this control device 10 according to the invention, the closing member 17 may cooperate with the pressure limiting valve 26 to form a pilot pressure control valve.

また、方向制御弁の構造形式を変えることも可能であっ
て、例えば図示の直動スプールを備えた方向制御弁の代
りに、ポペット形の方向制御弁を使用することが可能で
ある。
It is also possible to vary the construction of the directional control valve, for example, instead of the illustrated directional control valve with a direct-acting spool, it is possible to use a poppet-type directional control valve.

このいづれの弁構造形式の場合でも、所望の制御機能を
発揮させるために単一の制御部材を用いるか、或は互い
に分離された2つの制御部材を用いるかは問題外である
With either of these valve construction types, it does not matter whether a single control member or two control members separated from each other are used to perform the desired control function.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は部分的に断面を示した油圧式制御装置の略示図
、第2図は公知例において作業装置圧が種々異なる場合
の、制御スプール移動量に関連した圧力経過を示すグラ
フ、第3図は公知例において作業装置圧が種々異なる場
合の、制御スプール移動量に関連した流過量経過を示す
グラフ、第4図は本発明の制御装置において種々異なる
作業装置圧下での、制御スプール移動量に関連した圧力
経過を示すグラフ、第5図は本発明の制御装置における
種々異なる作業装置圧下での、制御スプール移動量に関
連した流過量経過を示すグラフである。 10・・・・・・制御装置、11・・・・・・接続板、
12・・・・・一方向制御弁、13・・−・・・端板、
14・・・・・一切換弁、15・・・・・・供給路、1
6・・・・・・契り路、17・・・・−・閉鎖部材、1
8・・・・・・圧力室、19・・・・・・押しばね、2
1,48゜53・・・・・・制御縁、22・・・・・・
分岐通路、23・・・・・・第一の絞り個所、24・・
・・・・フランジ面、25・・・・・・第二の絞り個所
、26・・・・・・圧力制限弁、27・・・・・・戻り
通路、28・・・・・−ケーシング、29・・・・・・
スプール孔、31・・・・・・流入室、32 、33・
・・・・・作業装置室、34.35・・・・・・戻り室
、36.37・・・・・・制御室、38・・・・・・逆
止弁、39・・・・・・流入通路、41,43゜44.
56・・・・・・通路、42・・・・・・通路、45・
・・・・・制御スプール、46,47,5L52・・・
・・・ピストン区分、49,54・・・・・・微制御切
欠部、55・・・・・・戻し装置、57・・・・・・制
御流路、61〜69・・・・・・特性曲線、P・・・・
・・圧力、Q・・・・・一流過量、S・・・・・・制御
スプール移動量。
FIG. 1 is a schematic diagram of a hydraulic control device partially shown in cross section; FIG. FIG. 3 is a graph showing the flow rate progression in relation to the amount of movement of the control spool in the case of various working device pressures in a known example, and FIG. FIG. 5 is a graph showing the flow rate curve as a function of the control spool displacement under different working device pressures in a control device according to the invention. 10...control device, 11...connection board,
12... One-way control valve, 13... End plate,
14... All changeover valve, 15... Supply path, 1
6...Keyway, 17...--Closing member, 1
8...Pressure chamber, 19...Press spring, 2
1,48°53... Control edge, 22...
Branch passage, 23...First constriction point, 24...
... Flange surface, 25 ... Second throttle point, 26 ... Pressure limiting valve, 27 ... Return passage, 28 ... - Casing, 29...
Spool hole, 31...Inflow chamber, 32, 33...
...Working equipment room, 34.35...Return room, 36.37...Control room, 38...Check valve, 39...・Inflow passage, 41, 43° 44.
56...Aisle, 42...Aisle, 45.
...Control spool, 46, 47, 5L52...
... Piston section, 49, 54 ... Fine control notch, 55 ... Return device, 57 ... Control flow path, 61 to 69 ... Characteristic curve, P...
...Pressure, Q...First flow overflow, S...Control spool movement amount.

Claims (1)

【特許請求の範囲】[Claims] 1 油圧式制御装置であって、作業装置の制御に適した
方向制御弁と、方向制御弁への供給路内に送られた作動
油を直接戻り路に戻す切換弁とを備え、方向制御弁内の
可動の制御部材が中立位置では作業装置に通じる少なく
とも1つの作業装置室を遮断し、2つの作業位置ではこ
の作業装置室を選択的に供給路又は戻り路と連通し、切
換弁は供給路から分岐していて方向制御弁内の制御部材
によって制御可能な1つの制御流路の作用を受けており
、この制御流路内には前記制御部材の上流側に1つの絞
り個所が設けられていて、この絞り個所の前後の圧力差
が切換弁の閉鎖部材に閉鎖ばねの力に抗して開放方向の
作用を及ぼす形式のものにおいて、前記絞り個所23の
ほかに、供給路15から作業装置室32.33に通じる
流路内に第二の絞り個所25が設けられており、この絞
り個所25は前記第一の絞り個所23の上流側に切換弁
14に対して並列に設けられていて第一の絞り個所23
よりも大きな流過横断面を有していることを特徴とする
油圧式制御装置。
1 A hydraulic control device, which is equipped with a directional control valve suitable for controlling working equipment and a switching valve that returns hydraulic oil sent into the supply path to the directional control valve directly to the return path. A movable control member in the neutral position shuts off at least one work implement chamber leading to the work implement and in the two work positions selectively communicates this work implement chamber with the supply or return path; The directional control valve is operated by a control channel which branches off from the flow path and is controllable by a control member in the directional control valve, and in which a throttle point is provided upstream of the control member. In the case of a type in which the pressure difference before and after the constriction point acts on the closing member of the switching valve in the opening direction against the force of the closing spring, in addition to the constriction point 23, there is a A second throttle point 25 is provided in the flow path leading to the device chamber 32 , 33 , which throttle point 25 is arranged upstream of the first throttle point 23 and parallel to the switching valve 14 . First drawing point 23
Hydraulic control device characterized in that it has a flow cross section larger than .
JP49009678A 1973-01-24 1974-01-22 hydraulic control device Expired JPS5925881B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2303286A DE2303286C2 (en) 1973-01-24 1973-01-24 Hydraulic control device
DE2303286 1973-01-24

Publications (2)

Publication Number Publication Date
JPS49104079A JPS49104079A (en) 1974-10-02
JPS5925881B2 true JPS5925881B2 (en) 1984-06-22

Family

ID=5869776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49009678A Expired JPS5925881B2 (en) 1973-01-24 1974-01-22 hydraulic control device

Country Status (6)

Country Link
US (1) US3924655A (en)
JP (1) JPS5925881B2 (en)
DE (1) DE2303286C2 (en)
FR (1) FR2214828B1 (en)
GB (1) GB1427466A (en)
IT (1) IT1003472B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109561A (en) * 1976-11-26 1978-08-29 Caterpillar Tractor Co. Control valve arrangement with a preconditioned relief valve and a flow force compensated valve spool
DE2716694A1 (en) * 1977-04-15 1978-10-19 Bosch Gmbh Robert Hydraulic cylinder controller with control plunger - has choke between loading spring and inner closing element
DE2804045A1 (en) * 1978-01-31 1979-08-09 Bosch Gmbh Robert CONTROL DEVICE FOR A HYDRAULICALLY OPERATED CONSUMER
US4176685A (en) * 1978-02-09 1979-12-04 Robert Bosch Gmbh Valve arrangement for controlling the flow of hydraulic fluid to and from a user
DE3007787A1 (en) * 1980-02-29 1981-09-17 Linde Ag, 6200 Wiesbaden Control unit with slide valve - has second flow channel with throttle and sealing valve, with connected actuators
DE3141143A1 (en) * 1981-10-16 1983-04-28 Robert Bosch Gmbh, 7000 Stuttgart Hydraulic control device
JPS6051301U (en) * 1983-09-16 1985-04-11 株式会社トキメック Lifting device hydraulic circuit
DE3406570A1 (en) * 1984-02-23 1985-09-12 Mannesmann Rexroth GmbH, 8770 Lohr ELECTROMAGNET / VALVE ARRANGEMENT
GB8408635D0 (en) * 1984-04-04 1984-05-16 Lucas Ind Plc Control valve
JP2004301190A (en) * 2003-03-28 2004-10-28 Aisin Seiki Co Ltd Hydraulic control device
JP4692384B2 (en) * 2006-05-19 2011-06-01 株式会社デンソー solenoid valve
CN106051277A (en) * 2016-07-11 2016-10-26 润琛液压机械南通有限公司 Hydraulic valve dedicated to windlass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2489435A (en) * 1948-03-22 1949-11-29 Vickers Inc Power transmission
DE1090480B (en) * 1957-07-19 1960-10-06 Kaemper Motoren G M B H Control device for preferably several hydraulic drives supplied by one pump
DE1475958B2 (en) * 1965-11-20 1972-10-12 Robert Bosch Gmbh, 7000 Stuttgart CONTROL DEVICE FOR AT LEAST TWO HYDRAULIC CONSUMERS SUPPLIED BY A PRESSURE MEDIUM SOURCE
US3722543A (en) * 1971-11-02 1973-03-27 Hydraulic Industries Pressure compensated control valve

Also Published As

Publication number Publication date
IT1003472B (en) 1976-06-10
JPS49104079A (en) 1974-10-02
GB1427466A (en) 1976-03-10
DE2303286A1 (en) 1974-07-25
US3924655A (en) 1975-12-09
DE2303286C2 (en) 1982-03-11
FR2214828A1 (en) 1974-08-19
FR2214828B1 (en) 1978-02-10

Similar Documents

Publication Publication Date Title
US4250794A (en) High pressure hydraulic system
US3976097A (en) Hydraulic control arrangement
US4020867A (en) Multiple pressure compensated flow control valve device of parallel connection used with fixed displacement pump
US4342256A (en) Control device for a hydraulic motor
JPH05509376A (en) Load check, pressure compensation valve
US7219591B2 (en) Hydraulic control arrangement
JPH0814215A (en) Meter-out regenerating valve gear
US3595264A (en) Load control and holding valve
JPS5925881B2 (en) hydraulic control device
US3911942A (en) Compensated multifunction hydraulic system
CA1103127A (en) Combination check and flow control valve for hydraulic systems
US3979907A (en) Priority control valve
US4141280A (en) Dual pump flow combining system
DE19831595A1 (en) Hydraulic switch to control consumer by non-load-dependent flow distribution, with control device supplying extra load in closing direction when limit of regulating piston of pressure meter is exceeded
EP0008523B1 (en) Improvements relating to hydraulic control systems
US3770007A (en) Dual direction flow control valve
US4080994A (en) Control arrangement for supplying pressure fluid to at least two hydraulically operated consumer devices
US3746040A (en) Directional control valve
JPS595165B2 (en) hydraulic control device
US4022023A (en) Hydraulic circuit for controlling actuators in a construction vehicle
US3989062A (en) Source fluid supply and pressure control system for hydraulic motors
US4194532A (en) Control valve with bypass means
US4121501A (en) Flow combining system for dual pumps
US3776273A (en) Directional control valve
US4162874A (en) Horsepower summation control for variable displacement