JPS5925865B2 - Automobile exhaust gas purification device - Google Patents

Automobile exhaust gas purification device

Info

Publication number
JPS5925865B2
JPS5925865B2 JP10796375A JP10796375A JPS5925865B2 JP S5925865 B2 JPS5925865 B2 JP S5925865B2 JP 10796375 A JP10796375 A JP 10796375A JP 10796375 A JP10796375 A JP 10796375A JP S5925865 B2 JPS5925865 B2 JP S5925865B2
Authority
JP
Japan
Prior art keywords
exhaust gas
ignition
engine
purification device
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10796375A
Other languages
Japanese (ja)
Other versions
JPS5232407A (en
Inventor
寅三 西宮
宜茂 大山
照夫 山内
幸男 宝諸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10796375A priority Critical patent/JPS5925865B2/en
Publication of JPS5232407A publication Critical patent/JPS5232407A/en
Publication of JPS5925865B2 publication Critical patent/JPS5925865B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は自動車特にガソリンエンジンを搭載した自動車
の排気ガス浄化装置に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas purification device for automobiles, particularly automobiles equipped with gasoline engines.

自動車排気ガスによる大気汚染が大きな社会問題として
とりあげられてから、排気ガスに対する規制も一段と厳
しくなり、自動車の持つ有効性を最大限に維持しつつ排
気汚染を最小限に抑えるような種々の浄化方式、浄化装
置が開発提案され、一部の装置については実用化されつ
つある。
Since air pollution caused by automobile exhaust gas has become a major social issue, regulations on exhaust gas have become even stricter, and various purification methods have been developed to minimize exhaust pollution while maximizing the effectiveness of automobiles. , purification devices have been developed and proposed, and some of the devices are being put into practical use.

しかしこれらの方式手段は、規制値を満足する点に重点
がおかれ、車の性能あるいは資源を若干犠牲にしている
However, these methods are focused on meeting regulatory values, at the expense of some vehicle performance or resources.

本発明は性能、燃費を犠牲にすることなく厳しい規制値
を満足する有効な装置を提供するものである。
The present invention provides an effective device that satisfies strict regulatory values without sacrificing performance or fuel efficiency.

本発明の特徴とするところは、空燃比を若干酸素過剰な
状態、例えば酸素過剰率が1.0附近あるいはそれより
大きい点で運転し、混合気を燃焼室内で可能なかぎり完
全燃焼すると同時に、完全燃焼を遂行するための種々の
手段を設けたところにある。
The present invention is characterized by operating the air-fuel ratio at a slightly excess oxygen state, for example, at a point where the oxygen excess ratio is around 1.0 or higher, and at the same time burning the air-fuel mixture as completely as possible in the combustion chamber. Various means are provided to achieve complete combustion.

具体的には、第1図に示すごとく一つの燃焼室1に少な
くとも2個の点火プラグ2,3を配置したエンジン4と
、排気ガス中の酸素濃度を検出する排気ガスセンサ10
と、この排気ガスセンサの出力を受け、排気ガス中の酸
素過剰率λを1.0附近から1.2附近となるよう吸気
通路5に設けられた前記燃料供給装置6からの空気燃料
の比を変化する制御回路11と電磁弁12、ならびに単
一の触媒でHC、COを酸化すると同時にNOを還元す
る三元触媒13を備えたところに特徴がある。
Specifically, as shown in FIG. 1, there is an engine 4 in which at least two spark plugs 2 and 3 are arranged in one combustion chamber 1, and an exhaust gas sensor 10 that detects the oxygen concentration in exhaust gas.
Based on the output of this exhaust gas sensor, the air-fuel ratio from the fuel supply device 6 provided in the intake passage 5 is adjusted so that the oxygen excess rate λ in the exhaust gas is from around 1.0 to around 1.2. It is characterized in that it is equipped with a variable control circuit 11, a solenoid valve 12, and a three-way catalyst 13 that oxidizes HC and CO and simultaneously reduces NO using a single catalyst.

尚、排気ガス再循環装置8も制御回路11で制御するよ
うにしても良い。
Note that the exhaust gas recirculation device 8 may also be controlled by the control circuit 11.

また熱反応器7は排気ガス中のCO,HCを酸化するも
ので、機関の要求によって適宜設けられるものである。
The thermal reactor 7 oxidizes CO and HC in the exhaust gas, and is provided as appropriate depending on the requirements of the engine.

以下図面に示す実施例にもとづき本発明の詳細な説明す
る。
The present invention will be described in detail below based on embodiments shown in the drawings.

第2図は第1図に示す本発明の特徴をおりこんだシステ
ム図である。
FIG. 2 is a system diagram incorporating the features of the present invention shown in FIG.

ここで14はバッテリ、15はイグニッションスイッチ
、16.17はそれぞれ第1、第2の点火コイル、18
,19は外付抵抗器、20.21は第1、第2のディス
l−IJピユータで、夫々分割しても良く、また一体構
造に形成しても良いことは勿論である。
Here, 14 is a battery, 15 is an ignition switch, 16.17 is a first and second ignition coil, respectively, and 18
, 19 are external resistors, and 20 and 21 are first and second I-IJ computers, which may be divided into separate units or formed into an integral structure, of course.

22は点火、信号発生器で、機械的接点あるいはトラン
ジスタによる半導体スイッチで構成される。
Reference numeral 22 denotes an ignition and signal generator, which is composed of a mechanical contact or a semiconductor switch using a transistor.

23は吸気管、24は排気管である。23 is an intake pipe, and 24 is an exhaust pipe.

第3図は空気過剰率λに対するCO、HC。Figure 3 shows CO and HC versus excess air ratio λ.

N0202、燃費、トルクを示したものである。N0202, fuel efficiency, and torque are shown.

現在の排気対策においては、処理のむずかしいNOのピ
ーク値付近をさけるため、λ=0.8付近の濃混合気対
策やλ=1.2〜1.4の希薄混合気対策が主流を占め
ているが、濃混合気対策においては燃費の増大を招き、
また希薄混合気対策においては出力低下に伴なう運転性
の悪化を招く欠点があり、排気対策として抜本的対策が
望まれている。
Current exhaust gas countermeasures mainly focus on measures for rich mixtures around λ = 0.8 and lean mixtures at λ = 1.2 to 1.4 in order to avoid the NO peak values that are difficult to treat. However, countermeasures for rich mixtures lead to increased fuel consumption.
Furthermore, countermeasures against lean mixtures have the drawback of deteriorating driveability due to a decrease in output, and drastic countermeasures are desired as a countermeasure against exhaust emissions.

一方単一の触媒でHC、COを酸化すると同時にNOx
を還元する三元触媒13が開発された。
On the other hand, a single catalyst oxidizes HC, CO and NOx at the same time.
A three-way catalyst 13 was developed to reduce .

三元触媒は第4図に示すごとく、酸素過剰率λが1.0
附近でHC,CO,NOxの浄化率が90係以上となる
特性を備えているので、エンジンに供給する混合気の空
気、燃料の比を制御することにより大巾な排気ガス浄化
が可能となる。
As shown in Figure 4, the three-way catalyst has an oxygen excess ratio λ of 1.0.
Since it has the characteristic that the purification rate of HC, CO, and NOx is 90 or higher in the vicinity, it is possible to purify exhaust gas to a large extent by controlling the ratio of air and fuel in the mixture supplied to the engine. .

第2図において、個々の動作を説明すると、燃料供給装
置6は吸入空気量に見合う燃料を計量噴出し、エンジン
4内の燃焼室1に定められた空気燃料比の混合気を供給
する。
In FIG. 2, individual operations will be explained. The fuel supply device 6 measures and injects fuel corresponding to the amount of intake air, and supplies a mixture having a predetermined air-fuel ratio to the combustion chamber 1 in the engine 4.

本実施例においてはλ=1.0あるいはλ=1.0以上
の空燃比となるよう設定される。
In this embodiment, the air-fuel ratio is set to λ=1.0 or λ=1.0 or more.

ここで、λ=1.0を検出するセンサとしては排気ガス
中の酸素濃度に対し所定の出力電圧を発生する排気ガス
センサ10が用いられるが、これに限らず、燃焼室内の
燃焼時の空燃比を検出するセンサで良い。
Here, as a sensor for detecting λ=1.0, the exhaust gas sensor 10 that generates a predetermined output voltage with respect to the oxygen concentration in the exhaust gas is used, but the sensor is not limited to this, and the air-fuel ratio during combustion in the combustion chamber is A sensor that detects this is fine.

そして、制御回路11の働きによって電磁弁12が駆動
され燃料の供給量が正確に制御される。
The solenoid valve 12 is driven by the control circuit 11 to accurately control the amount of fuel supplied.

また、燃焼室1内には複数個の点火プラグ2゜3が配置
され、これらプラグの着火時間は制御手段9によって決
定される。
Further, a plurality of spark plugs 2 and 3 are arranged within the combustion chamber 1, and the ignition times of these plugs are determined by a control means 9.

点火プラグ2が基準側であり、点火プラグ3が制御側で
あるとすると、点火プラグ2はエンジン4のタイミング
ギヤ25によって決定された時間で着火するのに対し、
点火プラグ3は点火プラグ2側の着火時間を検出しこれ
を基準として決定される。
Assuming that the spark plug 2 is on the reference side and the spark plug 3 is on the control side, the spark plug 2 ignites at a time determined by the timing gear 25 of the engine 4;
The spark plug 3 is determined by detecting the ignition time of the spark plug 2 side and using this as a reference.

そして制御側プラグ3の着火時間は基準側プラグの着火
時間より最大15° (クランク角)、最小1° (は
ぼ同相)の範囲内で任意に制御されうる。
The ignition time of the control side plug 3 can be arbitrarily controlled within a range of a maximum of 15° (crank angle) and a minimum of 1° (approximately in phase) from the ignition time of the reference side plug.

この様態を示したのが第5図であり、基準側点火プラグ
2の着火時間aはディストリビュータの真空進角特性お
よびガバナー進角特性によって、予め定められたもので
あるのに対し、制御側点火プラグ3の着火時間すは、基
準側点火プラグの着火時間aに対しである一定の時間差
をもつように設定されるか(時間差一定)、あるいは後
述する排気ガス再循環装置の制御と関連づけて制御され
る(連続制御)ものであり、その選択は規制値の動向、
運転条件、コストなどによって決定されうる要素となる
This situation is shown in FIG. 5, where the ignition time a of the reference side spark plug 2 is predetermined by the vacuum advance characteristics of the distributor and the governor advance characteristics, whereas the ignition time a of the reference side spark plug 2 The ignition time of the plug 3 is set to have a certain time difference from the ignition time a of the reference side spark plug (constant time difference), or is controlled in conjunction with the control of the exhaust gas recirculation device, which will be described later. (continuous control), and the selection is based on the trend of regulatory values,
This is a factor that can be determined by operating conditions, cost, etc.

排気ガス再循環装置(EGR)は周知の通り、排気ガス
の一部を吸気系に供給し、燃焼時の最高温度を下げNO
の発生を抑止するものである。
As is well known, the exhaust gas recirculation system (EGR) supplies part of the exhaust gas to the intake system, lowering the maximum temperature during combustion and increasing NO
This is to prevent the occurrence of

NOの発生を抑える方法として、点火時期を遅角する方
法もあるが、第6図の如く、同一空燃比においては点火
時期を遅らせるより排気ガス還流率を増大した方が、同
−NOに対し出力の低下が少ないという実験データが得
られており、本実施例では排気ガス還流率を検出し、二
つのプラグの着時間を制御する手段を採っている。
One way to suppress the generation of NO is to retard the ignition timing, but as shown in Figure 6, at the same air-fuel ratio, increasing the exhaust gas recirculation rate is better than retarding the ignition timing. Experimental data has been obtained that shows that there is little decrease in output, and in this embodiment, the exhaust gas recirculation rate is detected and a means is used to control the wearing time of the two plugs.

第7図はその一例で、吸入負圧あるいは吸入空気量と関
連した排気ガス還流率と両プラグの着火時間差(クラン
ク角)とは図示のような関係をもち、加速時、減速時、
始動時等はこれら関係をきり離し、独立した制御をする
ことが有効である。
Figure 7 is an example of this.The exhaust gas recirculation rate, which is related to the intake negative pressure or intake air amount, and the ignition time difference (crank angle) between the two plugs have a relationship as shown in the figure, and during acceleration, deceleration,
It is effective to separate these relationships and perform independent control during startup, etc.

第8図は第2図に示す2つの点火プラグの着火時間を制
御する制御手段9の一実施例図で、第9図はその動作説
明図である。
FIG. 8 is a diagram showing one embodiment of the control means 9 for controlling the ignition time of the two spark plugs shown in FIG. 2, and FIG. 9 is an explanatory diagram of its operation.

以下その構成と動作を説明する。The configuration and operation will be explained below.

点火信号発生器22がオフすると、コンデンサ25に充
電された電圧はツェナーダイオード26を介してトラン
ジスタ27のベースに与えられ該トランジスタ27がオ
ンし、トランジスタ28もオンする。
When the ignition signal generator 22 is turned off, the voltage charged in the capacitor 25 is applied to the base of the transistor 27 via the Zener diode 26, turning on the transistor 27 and turning on the transistor 28 as well.

するとトランジスタ29のベース電位は零電位となるの
で、該トランジスタ29はオフし、最後のパワートラン
ジスタ30もオフし、最初に点火すべき第1の点火コイ
ル16の一次電流を遮断し、2次側に高電圧を誘起し、
第1のプラグ2にアークをとばす。
Then, the base potential of the transistor 29 becomes zero potential, so the transistor 29 is turned off, and the last power transistor 30 is also turned off, cutting off the primary current of the first ignition coil 16 that should be ignited first, and turning off the secondary side. induces high voltage in
An arc is blown to the first plug 2.

一方点火信号発生器22の断続信号を検出し、ワンショ
ットマルチバイブレーク回路31.32の回路定数によ
って所定の遅延時間が得られる。
On the other hand, an intermittent signal from the ignition signal generator 22 is detected, and a predetermined delay time is obtained by the circuit constants of the one-shot multi-bye break circuits 31 and 32.

第9図はその様態を示したもので、aはブレーカポイン
トのオン、オフによる電位差、bは第1のコイル16の
2次電圧波形、Cはワンショットマルチバイブレーク回
路31の出力パルス波形、dはワンショットマルチバイ
ブレーク回路32の出力パルス波形、e、fは第2のコ
イル17の2次電圧波形で、eは遅れ時間を最小とした
とき、fは遅れ時間を最大としたときのものである。
FIG. 9 shows this situation, where a is the potential difference due to turning on and off of the breaker point, b is the secondary voltage waveform of the first coil 16, C is the output pulse waveform of the one-shot multi-by-break circuit 31, and d is the output pulse waveform of the one-shot multi-by-break circuit 32, e and f are the secondary voltage waveforms of the second coil 17, e is the waveform when the delay time is the minimum, and f is the waveform when the delay time is the maximum. be.

ここでワンショットマルチバイブレーク回路31の遅れ
時間Tc1の整定は可変抵抗33の抵抗値R33とコン
デンサ34の容量C34によって定まる時定数Tc1L
、C34・R33によって決まり、実験によると最小2
00μSから最大3msの範囲内で変化することが実用
上好適である。
Here, the delay time Tc1 of the one-shot multi-bye break circuit 31 is set by a time constant Tc1L determined by the resistance value R33 of the variable resistor 33 and the capacitance C34 of the capacitor 34.
, C34 and R33, and according to experiments, the minimum is 2
Practically, it is preferable for the time to change within a range from 00 μS to 3 ms at maximum.

さらにワンショットマルチバイブレーク回路32の出力
は、コンデンサ35の容量C35と抵抗36の抵抗値R
36の時定数TC2==、C35’ R36により一定
のパルス幅をもった出力パルスとして導出する。
Furthermore, the output of the one-shot multi-bye break circuit 32 is the capacitance C35 of the capacitor 35 and the resistance value R of the resistor 36.
36 time constants TC2==, C35' and R36, an output pulse having a constant pulse width is derived.

したがって抵抗33あるいはコンデンサ34の定数を変
化することによって第1プラグと第2プラグとの着火時
間を任意に変化することができる。
Therefore, by changing the constant of the resistor 33 or the capacitor 34, it is possible to arbitrarily change the ignition time between the first plug and the second plug.

たとえば、抵抗33の抵抗値をスロットルバルブの開度
変化または吸気管負圧の変動、あるいはEGR制御バル
ブの動作と関連して変化することにより、運転条件に見
合う着火時間の制御が可能となる。
For example, by changing the resistance value of the resistor 33 in conjunction with changes in the opening of the throttle valve, fluctuations in the intake pipe negative pressure, or operation of the EGR control valve, it is possible to control the ignition time in accordance with the operating conditions.

本発明は以上の説明で明らかなごとく、1つの燃焼室に
少なくとも2個の点火プラグを配置して燃焼の安定化を
図り、しかも三元触媒が良好に作動するように空燃比を
正確に制御できるので、総合的に燃料消費量の低減、運
転性の向上、排気有害成分の低減を図ることができるも
のである。
As is clear from the above description, the present invention aims at stabilizing combustion by arranging at least two spark plugs in one combustion chamber, and also accurately controls the air-fuel ratio so that the three-way catalyst operates well. Therefore, it is possible to comprehensively reduce fuel consumption, improve drivability, and reduce harmful exhaust components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、第2図は本発明の一実施例を
示すシステム図、第3図は空気過剰率と排気ガス成分お
よびエンジン特性の関係を示す特性図、第4図は三元触
媒の特性図、第5図はエンジン回転数と2個の点火プラ
グの進角特性を示す特性図、第6図は同一空燃比におけ
る点火時期遅延と排気ガス還流率とに対するNOの量と
の関係を示す特性図、第7図は吸入負圧あるいは吸入空
気量と排気ガス還流率および両プラグの着火時間差との
関係を示す特性図、第8図は第2図の2つの点火プラグ
の着火時間を制御する手段の一実施例を示す回路図、第
9図は第8図の実施例の動作を説明する動作波形図であ
る。 1・・・・・・燃焼室、2,3・・・・・・点火プラグ
、4・・・・・・エンジン、5・・・・・・吸気通路、
6・・・・・・燃料供給装置、7・・・・・・熱反応器
、8・・・・・・排気ガス再循環装置、9・・・・・・
制御手段、11・・・・・・制御回路、13・・・・・
・三元触媒。
Fig. 1 is a principle diagram of the present invention, Fig. 2 is a system diagram showing an embodiment of the present invention, Fig. 3 is a characteristic diagram showing the relationship between excess air ratio, exhaust gas components, and engine characteristics. A characteristic diagram of a three-way catalyst. Figure 5 is a characteristic diagram showing engine speed and advance characteristics of two spark plugs. Figure 6 is a diagram showing the amount of NO versus ignition timing delay and exhaust gas recirculation rate at the same air-fuel ratio. Figure 7 is a characteristic diagram showing the relationship between intake negative pressure or intake air amount, exhaust gas recirculation rate, and ignition time difference between the two plugs, Figure 8 is a characteristic diagram showing the relationship between the two spark plugs in Figure 2. FIG. 9 is a circuit diagram showing an embodiment of the means for controlling the ignition time of FIG. 9, and FIG. 9 is an operation waveform diagram explaining the operation of the embodiment of FIG. 1... Combustion chamber, 2, 3... Spark plug, 4... Engine, 5... Intake passage,
6... Fuel supply device, 7... Thermal reactor, 8... Exhaust gas recirculation device, 9...
Control means, 11... Control circuit, 13...
・Three-way catalyst.

Claims (1)

【特許請求の範囲】[Claims] 11つの燃焼室に少なくとも2個の点火プラグを配置し
たエンジンと、前記エンジンに混合気を供給する礁料供
給装置と、排気ガス中の酸素濃度を検出する排気ガスセ
ンサと、前記排気ガスセンサの出力を受は排気ガス中の
酸素過剰率λを1.0付近から1.2付近になるように
前記燃料供給装置からの混合気濃度を制御する制御回路
と、単一の触媒でHC、COを酸化すると同時にNOを
還元する三元触媒とを組み合せてなる自動車排気ガス浄
化装置。
an engine in which at least two spark plugs are arranged in eleven combustion chambers, a fuel supply device that supplies a mixture to the engine, an exhaust gas sensor that detects the oxygen concentration in exhaust gas, and an output of the exhaust gas sensor that detects the oxygen concentration in the exhaust gas. The receiver includes a control circuit that controls the mixture concentration from the fuel supply device so that the oxygen excess rate λ in the exhaust gas ranges from around 1.0 to around 1.2, and a single catalyst that oxidizes HC and CO. This is an automobile exhaust gas purification device that combines a three-way catalyst that simultaneously reduces NO.
JP10796375A 1975-09-08 1975-09-08 Automobile exhaust gas purification device Expired JPS5925865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10796375A JPS5925865B2 (en) 1975-09-08 1975-09-08 Automobile exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10796375A JPS5925865B2 (en) 1975-09-08 1975-09-08 Automobile exhaust gas purification device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP58136623A Division JPS59170419A (en) 1983-07-25 1983-07-25 Exhaust gas purifier for car

Publications (2)

Publication Number Publication Date
JPS5232407A JPS5232407A (en) 1977-03-11
JPS5925865B2 true JPS5925865B2 (en) 1984-06-21

Family

ID=14472496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10796375A Expired JPS5925865B2 (en) 1975-09-08 1975-09-08 Automobile exhaust gas purification device

Country Status (1)

Country Link
JP (1) JPS5925865B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105310U (en) * 1978-01-07 1979-07-25
FR2543617B1 (en) * 1983-03-29 1985-07-12 Renault CYLINDER HEAD FOR COMPRESSION IGNITION COMBUSTION ENGINES

Also Published As

Publication number Publication date
JPS5232407A (en) 1977-03-11

Similar Documents

Publication Publication Date Title
US5626117A (en) Electronic ignition system with modulated cylinder-to-cylinder timing
JPH0797957A (en) Exhaust gas purifying device of internal combustion engine
JP2008190511A (en) Exhaust gas reduction device for direct injection gasoline engine
US4574588A (en) Automobile exhaust purifying system
GB1501054A (en) Control of an internal combustion engine
US3935844A (en) Ignition timing control system
US3964454A (en) Differential ignition timing firing control system
JP2003120386A (en) Method and apparatus for controlling operation of internal combustion engine
JPH11148452A (en) Ignition device for cylinder injection gasoline engine
JPS6056900B2 (en) Fuel control device for internal combustion engines
JPS5925865B2 (en) Automobile exhaust gas purification device
Camp et al. Closed-Loop Electronic Fuel and Air Control of Internal Combustion Engines
JPS6160246B2 (en)
JP3485838B2 (en) Ignition control device for internal combustion engine
JP2822804B2 (en) Control device for internal combustion engine
JPH0783148A (en) Control device for internal combustion engine
JP2000130214A (en) Exhaust emission control device for internal combustion engine
JPH05272396A (en) Fuel injection control device for internal combustion engine
JP3477762B2 (en) Exhaust gas purification device for internal combustion engine
JP3325975B2 (en) Engine control device
JP2596110B2 (en) Ignition timing control device for internal combustion engine
JP6494190B2 (en) Control device for internal combustion engine
JP2688928B2 (en) Engine ignition timing control device
JPH0732940Y2 (en) Ignition timing control device for internal combustion engine
JPH05272395A (en) Fuel injection control device for internal combustion engine