JPS5925634B2 - Waste incinerator ash sewage treatment method - Google Patents

Waste incinerator ash sewage treatment method

Info

Publication number
JPS5925634B2
JPS5925634B2 JP10448680A JP10448680A JPS5925634B2 JP S5925634 B2 JPS5925634 B2 JP S5925634B2 JP 10448680 A JP10448680 A JP 10448680A JP 10448680 A JP10448680 A JP 10448680A JP S5925634 B2 JPS5925634 B2 JP S5925634B2
Authority
JP
Japan
Prior art keywords
ash
wastewater
gas
neutralization
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10448680A
Other languages
Japanese (ja)
Other versions
JPS5730594A (en
Inventor
直治郎 高田
忠夫 村川
尚弘 竹井
常晴 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
JFE Engineering Corp
Original Assignee
Takuma Co Ltd
Hitachi Zosen Corp
Mitsubishi Heavy Industries Ltd
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd, Hitachi Zosen Corp, Mitsubishi Heavy Industries Ltd, Nippon Kokan Ltd filed Critical Takuma Co Ltd
Priority to JP10448680A priority Critical patent/JPS5925634B2/en
Publication of JPS5730594A publication Critical patent/JPS5730594A/en
Publication of JPS5925634B2 publication Critical patent/JPS5925634B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 本発明は、塵芥焼却工程で発生する灰汚水の中和法を改
良した灰汚水処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating ash wastewater which is an improved method for neutralizing ash wastewater generated in a waste incineration process.

塵芥焼却工程では、第1図に示すように塵芥焼却炉1及
び集塵器2から灰が発生し、この灰は入水洗槽3に投入
されて水で冷却される。
In the garbage incineration process, as shown in FIG. 1, ash is generated from the garbage incinerator 1 and the dust collector 2, and this ash is put into the water washing tank 3 and cooled with water.

従ってこの工程で灰汚水が発生するが、ここには有害な
重金属が含まれ、またアルカリ性であるため、そのまま
では放棄することができず、中和処理等の汚水処理を必
要とする。
Therefore, ash wastewater is generated in this process, but since it contains harmful heavy metals and is alkaline, it cannot be disposed of as is and requires wastewater treatment such as neutralization.

従来アルカリ性の灰汚水を中和するには、第1図に示す
ように灰汚水を灰沈澱槽4及びオーバフロ一槽5を経て
、中和槽6に入れ、ここで薬剤タンクから硫酸等の中和
用薬液を投入して中和し、さらに沈澱槽8で生成物を沈
澱分離した後上澄み液を入水洗槽3に再利用している。
Conventionally, in order to neutralize alkaline ash wastewater, as shown in Fig. 1, the ash wastewater passes through an ash settling tank 4 and an overflow tank 5, and then enters a neutralization tank 6, where it is poured into a sulfuric acid etc. from a chemical tank. A Japanese chemical solution is added for neutralization, and the product is further separated by precipitation in a settling tank 8, after which the supernatant liquid is reused in the washing tank 3.

しかし灰汚水は、アルカリ度が高く、通常灰汚水1m°
に対して濃硫酸換算2kg程度の薬液を投入しなければ
ならない。
However, ash wastewater has a high alkalinity, and usually 1 m° of ash wastewater
For this purpose, approximately 2 kg of concentrated sulfuric acid must be added.

例えば人口1千万人の都市では灰汚水が9000m/日
程度発生することから、投入薬液の量も濃硫酸換算18
トン/日と多くなり、そのコストは膨大なものとなる。
For example, in a city with a population of 10 million people, approximately 9,000 m/day of ash wastewater is generated, so the amount of chemical solution to be input is also 18 in terms of concentrated sulfuric acid.
The number of tons per day increases, and the cost becomes enormous.

また灰汚水のアルカリ度は、主に水酸化カルシウムに起
因しており、これが灰汚水処理工程中に空気中の炭酸ガ
スに触れると、配管中に除徐に沈着し、スケーリングが
短期間のうちに発生してしまう。
In addition, the alkalinity of ash wastewater is mainly caused by calcium hydroxide, and when this comes into contact with carbon dioxide gas in the air during the ash wastewater treatment process, it gradually deposits in pipes and causes scaling in a short period of time. It occurs in

又このスケーリングは固く、その清掃作業が困難である
Also, this scaling is hard and difficult to clean.

このことから本発明者は、塵芥焼却工程で発生する排ガ
スには炭酸ガスが8〜12%含まれ、この炭酸ガスがア
ルカリを中和する作用を有することに着目した。
Based on this, the present inventor noticed that the exhaust gas generated in the garbage incineration process contains 8 to 12% carbon dioxide gas, and that this carbon dioxide gas has the effect of neutralizing alkali.

本発明は、上記排ガスの特性を利用してなされたもので
、その目的とするところは、薬液費ががからずに効率よ
く中和でき、又スケーリングを防止し、重金属類を沈澱
させることができる塵芥焼却炉の灰汚水処理方法を提供
するものである。
The present invention was made by taking advantage of the above-mentioned characteristics of exhaust gas, and its purpose is to neutralize it efficiently without incurring high chemical costs, to prevent scaling, and to prevent heavy metals from being precipitated. The present invention provides a method for treating ash wastewater from a garbage incinerator.

すなわち本発明は、塵芥焼却工程で生じる灰汚水及び気
液接触装置に直接投入した集塵灰と、該工程で生じる排
ガスとを気液接触させて、灰汚水及び灰スラリーを排ガ
ス中の炭酸ガス処理し、処理した灰汚水の上澄液を用い
て灰を水洗することを特徴とする塵芥焼却炉の灰汚水処
理方法である。
That is, the present invention brings ash sewage generated in the garbage incineration process and collected ash directly charged into a gas-liquid contact device into gas-liquid contact with the exhaust gas generated in the process, and converts the ash sewage and ash slurry into carbon dioxide gas in the exhaust gas. This is a method for treating ash sewage for a garbage incinerator, which is characterized in that the ash is washed with water using a supernatant liquid of the treated ash sewage.

以下本発明を図面を参照して説明する。The present invention will be explained below with reference to the drawings.

・本発明方法は、第2図に示すように塵芥焼却炉11で
発生した灰をそれぞれ天水洗槽13に投入し、ここに冷
却水を入れて灰汚水を生成する。
- In the method of the present invention, as shown in FIG. 2, the ash generated in the garbage incinerator 11 is put into a rainwater washing tank 13, and cooling water is added thereto to generate ash wastewater.

灰汚水は灰沈澱槽14に入って灰を沈澱させた後オーバ
フロ一槽15に入る。
The ash wastewater enters an ash settling tank 14 to precipitate ash, and then enters an overflow tank 15.

オーバフロ一槽15の灰汚水はポンプ160作用によっ
て一定量気液接触装置17に投入される。
A fixed amount of the ash wastewater in the overflow tank 15 is fed into the gas-liquid contact device 17 by the action of the pump 160.

また集塵器12で生じた灰は、天水洗槽13に投入せず
、気液接触装置17に直接投入する。
Further, the ash generated in the dust collector 12 is not put into the rainwater washing tank 13 but directly into the gas-liquid contact device 17.

一方集塵器12を通った排ガスは、一部上記気液接触装
置17に投入され、残りは外部に排出される。
On the other hand, part of the exhaust gas that has passed through the dust collector 12 is input into the gas-liquid contact device 17, and the rest is discharged to the outside.

この気液接触装置17は、例えば複数の突起を設けた円
盤18を水平方向に回転させる構造で、その下方から排
ガスを入れ、上方から灰汚水及び灰を入れることにより
これらを気液接触させ、排ガス中の炭酸ガスにより灰汚
水中の水酸化カルシウム等を中和する。
This gas-liquid contact device 17 has a structure in which, for example, a disk 18 provided with a plurality of protrusions is rotated in the horizontal direction, and exhaust gas is introduced from below, and ash wastewater and ash are introduced from above to bring them into gas-liquid contact. Carbon dioxide gas in the exhaust gas neutralizes calcium hydroxide, etc. in the ash wastewater.

中和後の生成物(主に炭酸カルシウム)及び排汚水は、
シラフナ19に入り汚泥灰を沈澱するとともに上澄液と
分離する。
The products after neutralization (mainly calcium carbonate) and wastewater are
The sludge ash enters Shirafuna 19 and is separated from the supernatant liquid.

汚泥灰は汚泥灰ピット20に入り、又上澄液は上記天水
洗槽13に冷却水として投入される。
The sludge ash enters the sludge ash pit 20, and the supernatant liquid is fed into the rainwater washing tank 13 as cooling water.

この方法によれば、従来そのまま排出されていた排ガス
中の炭酸ガスを利用して灰汚水を中和するので、薬液費
をかけることなく効率よく中和できる。
According to this method, the ash wastewater is neutralized using carbon dioxide gas in the exhaust gas, which was conventionally discharged as is, so that the ash wastewater can be efficiently neutralized without incurring the cost of chemicals.

また炭酸ガスは灰汚水中に飽和量以上溶解しないので、
気液接触装置17に排ガスを十分吹込むことができ、ま
た吹込量の制御も容易である。
In addition, carbon dioxide gas does not dissolve in ash wastewater in excess of the saturated amount, so
The exhaust gas can be sufficiently blown into the gas-liquid contact device 17, and the amount of blown gas can be easily controlled.

またシラフナ19で分離した上澄液中には炭酸ガスが溶
解しているので、これを天水洗槽13に投入した際に一
部中和反応がおこって、灰汚水中に溶解している水酸化
カルシウムの量を減少することができるので、配管中で
のスケーリングの発生を防止することができる。
In addition, carbon dioxide gas is dissolved in the supernatant liquid separated by Shirafuna 19, so when it is put into the rainwater washing tank 13, a partial neutralization reaction occurs, and the water dissolved in the ash wastewater is Since the amount of calcium oxide can be reduced, scaling in the piping can be prevented.

また排ガス中には炭酸ガスが8〜12%と多く含まれて
いるため、小量投入するだけで中和処理することができ
、このため気液接触装置17も小型ですみ、既設塵芥焼
却設備の改造も容易で、設置スペースも僅かである。
In addition, since the exhaust gas contains a large amount of carbon dioxide (8-12%), it can be neutralized by just adding a small amount. Therefore, the gas-liquid contact device 17 can also be small, and the existing garbage incineration equipment It is easy to modify and requires only a small amount of installation space.

また中和後の生成物である炭酸カルシウムは凝集剤とし
ての役割を持ち、灰汚水中の重金属類を含んで沈澱する
Calcium carbonate, which is a product after neutralization, acts as a flocculant and precipitates containing heavy metals in the ash wastewater.

このため灰汚水を清浄化し、各種汚水処理設備の規模を
低減でき、さらにはこれを不要とできるなどの利点を有
する。
Therefore, it has the advantage of purifying ash wastewater, reducing the scale of various sewage treatment facilities, and even making them unnecessary.

即ち塵芥焼却炉11で発生する主版は、水中において重
金属類をほとんど溶出しないのに対し、集塵器12で発
生する集塵灰は水中において、重金属類を溶出する。
That is, the main plate generated in the garbage incinerator 11 hardly elutes heavy metals in water, whereas the collected ash generated in the dust collector 12 elutes heavy metals in water.

このため集塵灰を天水洗槽13に投入すると、重金属類
の多くは灰汚水中に移行するが、一部は水に溶けた状態
で灰汚泥中に存在する。
Therefore, when the collected dust ash is put into the rainwater washing tank 13, most of the heavy metals are transferred to the ash sludge, but some of the heavy metals remain in the ash sludge in a state dissolved in water.

この灰汚泥は、汚泥灰ビット20へ引抜かれるが、水に
溶けた状態の重金属類を含むためそのままでは放棄でき
ない。
This ash sludge is drawn into the sludge ash bit 20, but cannot be discarded as it is because it contains heavy metals dissolved in water.

これに対し、この発明では、集塵灰を直接気液接触装置
17に投入しているので、集塵灰中の重金属類が炭酸カ
ルシウムにより凝集され、溶出不能な形に固形化され、
このまま放棄が可能となる。
In contrast, in the present invention, since the collected dust ash is directly fed into the gas-liquid contact device 17, the heavy metals in the collected dust ash are aggregated by calcium carbonate and solidified in a form that cannot be eluted.
This can be abandoned as is.

従って上述したような利点を有することとなる。Therefore, it has the advantages described above.

次に本発明の効果を確認すべくおこなった実験例及び実
施例につき説明する。
Next, experimental examples and examples conducted to confirm the effects of the present invention will be explained.

実験例 気液接触装置17として第3図に示すように突起を設け
た円盤18を槽内に設けてこれを回転するようにし、そ
の下方から空気21、炭酸ガス22及び窒素ガス23の
混合ガスを排ガスとして吹込み、上方から灰汚水を冷却
管24を通して投入することにより、灰汚水を中和処理
した。
Experimental example As shown in FIG. 3, as a gas-liquid contact device 17, a disk 18 with protrusions is provided in a tank and rotated, and a mixed gas of air 21, carbon dioxide gas 22, and nitrogen gas 23 is supplied from below. was blown in as exhaust gas, and the ash wastewater was introduced from above through the cooling pipe 24 to neutralize the ash wastewater.

なお図中25はガスメータ、26はヒーター、27は温
度計、28はpH測定計、29は駆動モータ、30はレ
コーダである。
In the figure, 25 is a gas meter, 26 is a heater, 27 is a thermometer, 28 is a pH meter, 29 is a drive motor, and 30 is a recorder.

この実験条件は以下のとおりである。The experimental conditions are as follows.

灰汚水容量 31 灰汚水pH12,6(灰中の消石灰 による) 灰汚水アルカリ度 100 e、p、m。Ash sewage capacity 31 Ash wastewater pH 12.6 (slaked lime in ash) by) Ash wastewater alkalinity 100 e, p, m.

灰汚水の灰濃度 5 % 灰汚水温度 40’C 合成排ガス中の炭酸 9 % ガス濃度 合成排ガス/灰汚水 3.51/秒)71円盤の
線速度 6 m/秒この実1験により、
反応時間とpH値、アルカリ度及び炭酸ガスの吸収効率
を測定した結果第1表の如くであった。
Ash concentration in ash sewage 5% Ash sewage temperature 40'C Carbonic acid in synthetic flue gas 9% Gas concentration Synthetic flue gas/ash sewage 3.51/sec) Linear velocity of 71 disk 6 m/sec Based on this experiment,
The reaction time, pH value, alkalinity and carbon dioxide absorption efficiency were measured and the results are shown in Table 1.

上表によれば短時間で中和処理がなされて、処理液が中
和され、しかもアルカリ度が0であるから固形物中にも
残留消石灰が含まれていないことが認められた。
According to the above table, the neutralization treatment was carried out in a short period of time, the treatment liquid was neutralized, and since the alkalinity was 0, it was confirmed that no residual slaked lime was contained in the solids.

実施例 1 第2図に示す処理装置において、集塵器12の灰を直接
気液接触装置17に投入して、これら灰汚水及び灰スラ
リーを中和処理した。
Example 1 In the processing apparatus shown in FIG. 2, the ash from the dust collector 12 was directly charged into the gas-liquid contacting device 17, and the ash wastewater and ash slurry were neutralized.

その実施条件は以下のとおりである。The implementation conditions are as follows.

実施条件 集塵灰投入量 180klliI/H ※ 灰汚水流量 15 m/H 灰汚水pH (中和前)12°6 灰汚水アルカリ 度 (中和前)20°10“p、m 灰汚水温度 39 °C 排ガス中の炭酸 1□ % ガス濃度 排ガス/灰汚水 3,5 (771”/4()/
(シ主)円盤の線速度 6 m/秒 この実施条件でおこなった灰汚水の中和処理結果を下記
に示す。
Implementation conditions Dust collection ash input amount 180klliI/H * Ash wastewater flow rate 15 m/H Ash wastewater pH (before neutralization) 12°6 Ash wastewater alkalinity (before neutralization) 20°10"p, m Ash wastewater temperature 39 ° C Carbonic acid in flue gas 1□ % Gas concentration flue gas/ash sewage 3,5 (771”/4()/
(Main) Disk linear velocity: 6 m/sec The results of neutralization of ash wastewater carried out under these conditions are shown below.

実施結果 灰汚水pH(中和後)7.0 炭酸ガスの吸収効率 61 % 灰汚水のアルカリ度 (中和後)00□p°m この実施結果から灰汚水が効果的に中和されることが確
認された。
Results: pH of ash sewage (after neutralization): 7.0 Carbon dioxide absorption efficiency: 61% Alkalinity of ash sewage (after neutralization): 00□p°m From these implementation results, it is clear that ash sewage is effectively neutralized. was confirmed.

またこの中和処理を継続しておこなったところ、従来方
法でスケーリングによる閉塞が生じた期間の2倍の期間
が経過しても灰汚水配管の閉塞は生じなかった。
Furthermore, when this neutralization treatment was continued, no clogging of the ash wastewater pipe occurred even after a period twice as long as the period in which clogging occurred due to scaling in the conventional method.

更に中和後の灰汚水スラリーをシラフナにて固液分離し
、その上澄液中の重金属類を測定したところ、第2表に
示すように中和前の灰汚水に比し、大巾に減少しており
、炭酸カルシウムの重金属凝集作用が認められた。
Furthermore, the ash wastewater slurry after neutralization was separated into solid and liquid using Shirafuna, and the heavy metals in the supernatant liquid were measured. The heavy metal aggregation effect of calcium carbonate was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の灰汚水処理方法を示す説明図、第2図は
本発明の一例を示す灰汚水処理方法の説明図、第3図は
本発明の実験例を示す説明図である。 1.11・・・・・・塵芥焼却炉、2,12・・・・・
・集塵器、3.13・・・・・・入水洗槽、4,14・
・・・・・灰沈澱槽、5.15・・・・・・オーバフロ
一槽、6・・・・・・中和槽、7・・・・・・薬剤タン
ク、8・・・・・・沈澱槽、16・・・・・・ポンプ、
17・・・・・・気液接触装置、18・・・・・・円盤
、19・・・・・・シラフナ、20・・・・・・汚泥灰
ピット。
FIG. 1 is an explanatory diagram showing a conventional ash wastewater treatment method, FIG. 2 is an explanatory diagram of an ash wastewater treatment method showing an example of the present invention, and FIG. 3 is an explanatory diagram showing an experimental example of the present invention. 1.11... Garbage incinerator, 2,12...
・Dust collector, 3.13...Water wash tank, 4,14・
... Ash settling tank, 5.15 ... Overflow tank, 6 ... Neutralization tank, 7 ... Chemical tank, 8 ... Sedimentation tank, 16...pump,
17... Gas-liquid contact device, 18... Disk, 19... Shirafuna, 20... Sludge ash pit.

Claims (1)

【特許請求の範囲】[Claims] 1 塵芥焼却工程で生じる灰汚水及び気液接触装置へ直
接投入した集塵灰と、該工程で生じる排ガスとを気液接
触させて、灰汚水及び灰スラリーを排ガス中の炭酸ガス
で処理し、処理した灰汚水の上澄液を用いて灰を水洗す
ることを特徴とする塵芥焼却炉の灰汚水処理方法。
1 Bringing the ash wastewater generated in the garbage incineration process and the collected dust directly charged into the gas-liquid contact device into gas-liquid contact with the exhaust gas generated in the process, the ash wastewater and ash slurry are treated with carbon dioxide gas in the exhaust gas, A method for treating ash wastewater in a garbage incinerator, characterized by washing the ash with water using a supernatant liquid of the treated ash wastewater.
JP10448680A 1980-07-30 1980-07-30 Waste incinerator ash sewage treatment method Expired JPS5925634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10448680A JPS5925634B2 (en) 1980-07-30 1980-07-30 Waste incinerator ash sewage treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10448680A JPS5925634B2 (en) 1980-07-30 1980-07-30 Waste incinerator ash sewage treatment method

Publications (2)

Publication Number Publication Date
JPS5730594A JPS5730594A (en) 1982-02-18
JPS5925634B2 true JPS5925634B2 (en) 1984-06-19

Family

ID=14381876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10448680A Expired JPS5925634B2 (en) 1980-07-30 1980-07-30 Waste incinerator ash sewage treatment method

Country Status (1)

Country Link
JP (1) JPS5925634B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219352A (en) * 1986-03-20 1987-09-26 Alpine Electron Inc Detecting device for generation of rolling-in of tape

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1715297A (en) * 1996-02-23 1997-09-10 B.C. Research Inc. Treatment process for contaminated waste
JP2005246225A (en) * 2004-03-03 2005-09-15 Dowa Mining Co Ltd Treating method for fly ash combined with fixation of carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219352A (en) * 1986-03-20 1987-09-26 Alpine Electron Inc Detecting device for generation of rolling-in of tape

Also Published As

Publication number Publication date
JPS5730594A (en) 1982-02-18

Similar Documents

Publication Publication Date Title
RU2238246C2 (en) Method for reducing of dissolved metal and non-metal concentration in aqueous solution
US3377271A (en) Process for the treatment of waste-containing waters
Hlabela et al. Barium carbonate process for sulphate and metal removal from mine water
JP2000117270A (en) Treatment of metal-containing waste water and method for recovering valuable metal
CN113149263A (en) Method for treating acidic wastewater by resource utilization of sodium-based desulfurized fly ash
JP4747382B1 (en) Flue gas purification treatment method
CN103030231B (en) Recovery system and recovery process for desulfurized seawater
KR950002347B1 (en) Process for the treatment of wash water from the gas washing system of an iron ore reduction plant
JPS5925634B2 (en) Waste incinerator ash sewage treatment method
JPS59166290A (en) Method for removing harmful component in waste water of smoke scrubbing
EP0769479A1 (en) Process for cleaning a waste water stream or the like
CN115626742A (en) Method for treating wastewater from activated carbon acid production by using converter flue gas washing circulating water sewage
US1799444A (en) Method and apparatus for treatment of wastes
US2989147A (en) Hcn removal
CN114479957A (en) Method and system for desulfurizing and dechlorinating blast furnace gas
JPS60139319A (en) Method of removing sulfur dioxide from flue gas of combustion apparatus by washing by liquid having oxidation action
FI65712C (en) PROCEDURE FOR THE EXPLORATION OF CYANIDES IN THE METALLURGICAL INDUSTRY OF ALSTRADE GASERS TVAETTVATTEN
JP2003205293A (en) Method for treating heavy metal-containing waste water
JPS625027B2 (en)
JPS58219983A (en) Removal of ammonia in ammonium sulfate solution
JPS6320093A (en) Treatment of fluorine-containing waste water
SU611891A1 (en) Method of treating washing water sediment
Owen Water pollution in the steel industry
JPH07222984A (en) Method of cleaning acidic or alkaline waste water and liquid raw condensate
JPS54156346A (en) Purification of metal plating waste water