JPS5925364A - Stabilization of interferon-beta having no saccharic chain - Google Patents

Stabilization of interferon-beta having no saccharic chain

Info

Publication number
JPS5925364A
JPS5925364A JP57135421A JP13542182A JPS5925364A JP S5925364 A JPS5925364 A JP S5925364A JP 57135421 A JP57135421 A JP 57135421A JP 13542182 A JP13542182 A JP 13542182A JP S5925364 A JPS5925364 A JP S5925364A
Authority
JP
Japan
Prior art keywords
interferon
beta
ifn
saccharic
chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57135421A
Other languages
Japanese (ja)
Inventor
Hitoshi Ozawa
均 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP57135421A priority Critical patent/JPS5925364A/en
Publication of JPS5925364A publication Critical patent/JPS5925364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the titled compound useful asa drug, by adding an inorganic salt to interferon-beta having no saccharic chain. CONSTITUTION:An inorganic salt(e.g., salt, potassium chloride, ammonium sulfate, etc.) is added to interferon-beta (interferon-beta produced from a microorganism by recombination DNA technique), so that interferon having no saccharic chain is stabilized. The concentration of the inorganic salt is preferably >=0.3M, especially preferably 0.5-1.0M. The interferon-beta is deactivated at a temperature by about 15 deg.C lower than interferon-beta produced by human fibroblast and unstable, however, this method improves the unstability.

Description

【発明の詳細な説明】 本発明はインターフェロン−βの安定化方法に関する。[Detailed description of the invention] The present invention relates to a method for stabilizing interferon-β.

特に糖鎖を持たないインターフェロンβ分子の安定化方
法に関する。
In particular, it relates to a method for stabilizing interferon β molecules that do not have sugar chains.

インターフェロン(IFN)はウィルスや二本鎖RNA
などの刺激によって、動物細胞が産生ずるウィルス増殖
抑制あるいは抗癌作用など広範な生物活性を有するある
種の蛋白質であり、その作用は種特異性を有することが
知られている。
Interferon (IFN) is a virus or double-stranded RNA
It is a certain type of protein that has a wide range of biological activities, such as suppressing the proliferation of viruses produced by animal cells and anticancer effects when stimulated by animals, and its effects are known to be species-specific.

ヒトインターフェロンは現在乙種類の存在が知られてい
る。即ち白血球細胞等が産生ずるα型、せんい芽細胞等
が産生ずるβ型およびリンパ球等が産生ずるγ型があり
、化学構造および生物活性に差異があることが証明され
ている。
Currently, two types of human interferon are known to exist. That is, there are the α type produced by white blood cells, the β type produced by fibroblasts, and the γ type produced by lymphocytes, and it has been proven that they differ in chemical structure and biological activity.

ヒトに対して有効なインターフェロンはヒト細胞によっ
てのみ生産されるため、大量のインターフェロンを得る
には大きな困難が伴って来た。最近組換えDNA技術の
発達によりIFN−1、IFN−β、IFN−γは大腸
菌、イーストなど微生物を用いて生産することが可能と
なり、大量のインターフェロンを生産する見通しが得ら
れるにいたっているヨ(Goeddol + D、■。
Since interferon, which is effective for humans, is produced only by human cells, it has been very difficult to obtain large amounts of interferon. Recent advances in recombinant DNA technology have made it possible to produce IFN-1, IFN-β, and IFN-γ using microorganisms such as Escherichia coli and yeast, and the prospect of producing large amounts of interferon has become possible. (Goeddol + D, ■.

et  aL Nucleic Ac1d Re5ea
rch、IL  4057(198D )、Natur
e、287,411 (1980)、Nature 2
95 +’ 503 (19B2) )  ヒトせんい
芽細胞が生産するインターフェロンβ(以下F−IFN
−βと略す)は分子量約23000±2000の糖タン
パク質であり、タンパク質部分の分子量は約20000
、これに分子量6000前後の糖が結合した物質である
et aL Nucleic Ac1d Re5ea
rch, IL 4057 (198D), Natur
e, 287, 411 (1980), Nature 2
95 +' 503 (19B2)) Interferon β (hereinafter referred to as F-IFN) produced by human fibroblasts
-β) is a glycoprotein with a molecular weight of approximately 23,000±2,000, and the molecular weight of the protein portion is approximately 20,000.
, is a substance in which sugar with a molecular weight of around 6000 is bound.

一方、インターフェロン−β遺伝子で組換えた大腸菌な
どの微生物が産生ずるインターフェロンβ(以下G−I
FN−βと略す)は糖を結合していない分子量約200
00の単純タンパク質であり、この点で天然のIFN−
βと異った物質であり、従って化学的性質、生物学的性
質において両者の間には若干の相異が認められる。
On the other hand, interferon-β (hereinafter referred to as G-I
FN-β) has a molecular weight of approximately 200 without binding sugars.
00 simple protein, and in this respect the natural IFN-
It is a different substance from β, and therefore there are some differences between the two in terms of chemical and biological properties.

インターフェロンβはそれ自体相当に不安定な物質であ
るが、G−IFN−βもある面においては一層不安定な
物質で容易に失活する物質であることが明らかとなって
きた。即ち、安定性の代表的指標である熱安定性を比較
すると、第1図に示したようにG−IFN−βはF−I
FN−βより約15°低い温度で失活する。()−IF
N−βの不安定性はこれを医薬品として臨床的に使用す
る際に大きな欠点になると考えられる。
Although interferon β itself is a fairly unstable substance, it has become clear that G-IFN-β is also, in some respects, an even more unstable substance and easily deactivated. That is, when comparing the thermal stability, which is a typical index of stability, as shown in Figure 1, G-IFN-β is higher than F-I.
It is inactivated at about 15° lower temperature than FN-β. ()-IF
The instability of N-β is considered to be a major drawback when it is used clinically as a drug.

本発明者らはG−IFN−βの不安定性を改善すべく鋭
意検討を続けた結果本発明に到達した。
The present inventors continued intensive studies to improve the instability of G-IFN-β, and as a result, they arrived at the present invention.

即ち本発明は、糖鎖を持たないインターフェロン−βに
ポリオールを添加することを特徴とするインターフェロ
ンβの安定化方法を提供するものである。
That is, the present invention provides a method for stabilizing interferon β, which is characterized by adding a polyol to interferon β, which does not have a sugar chain.

本発明の糖鎖を持たないインターフェロンβとは、IF
N−β遺伝子で組換えた大腸菌等の微生物が産生するI
FN−β(G−IFN−β)であり、分子量約20,0
00の単純タンパク質である。
The interferon β without sugar chains of the present invention is IF
I produced by microorganisms such as E. coli that have been recombined with the N-β gene.
FN-β (G-IFN-β), with a molecular weight of approximately 20.0
00 simple protein.

本発明の()−IFN−βはたとえば、呑口らの方法(
Proc、 Natl、Acad、 5ci−、77、
5230(1980))によシ次の様にして製造するこ
とができる。
The ()-IFN-β of the present invention can be obtained, for example, by the method of Noguguchi et al.
Proc, Natl, Acad, 5ci-, 77,
5230 (1980)), it can be manufactured as follows.

インターフェロン−βを産生ずるヒト線維芽細胞からm
 −RN A混合物を単離し、これに対応するe−DN
Aを作製して、大腸菌のプラスミドpBR322と結合
させ、インターフェロン−βの構造遺伝子を持つ大腸菌
を得る。この時インターフェロンの構造遺伝子が大腸菌
中で発現してインターフェロンタンノくり質を生産する
ためには、構造遺伝子の上流にDNAをm−RNAに転
写するプロモーター配列を結合させ、かつ生じたm −
RN Aがリポソームと結合して、タンパク質に翻訳さ
れるSD配列などを持つ必要がある。そのために、大腸
菌のラクトースオペロンのプロモーター、SD配列の下
流にインターフェロンβの構造遺伝子を結合させる。
m from human fibroblasts that produce interferon-β
- Isolate the RNA mixture and the corresponding e-DN
A is prepared and ligated to E. coli plasmid pBR322 to obtain E. coli having the structural gene of interferon-β. At this time, in order to express the interferon structural gene in E. coli and produce interferon protein, a promoter sequence for transcribing DNA into m-RNA is linked upstream of the structural gene, and the resulting m-
RNA needs to have an SD sequence that allows it to bind to liposomes and be translated into protein. To this end, the interferon β structural gene is linked to the E. coli lactose operon promoter and downstream of the SD sequence.

ここで得たプロモーター領域とIFN−βの構造遺伝子
とを持つプラスミド(+)L0117R)で大腸菌HB
101を組みかえる。
Using the plasmid (+) L0117R) containing the promoter region and the structural gene of IFN-β obtained here, E. coli HB
Rearrange 101.

このようにした得られた組換え体をL 、B培地中で前
培養し、これを新しいLB培地中に約2チに植菌し、6
0°で数時間培養した後集菌し、洗浄後リゾチーム処理
して細胞壁を溶解後凍結融解し、遠心分離すると、大腸
菌の菌体内に生産蓄積していだG−IFN−βが可溶化
され、インターフェロン活性を示す抽出液が得られる。
The thus obtained recombinant was precultured in L and B medium, and then inoculated into new LB medium in approximately 2 cm.
After culturing at 0° for several hours, the bacteria are collected, washed, treated with lysozyme to dissolve the cell wall, frozen and thawed, and centrifuged. G-IFN-β produced and accumulated within the E. coli cells is solubilized. An extract exhibiting interferon activity is obtained.

本発明の無機塩としては、たとえば食塩、塩化カリ、硫
安等が挙げられるがこれらに限定されない。無機塩とし
ては、特に食塩が好捷しい。
Examples of the inorganic salt of the present invention include, but are not limited to, common salt, potassium chloride, ammonium sulfate, and the like. As the inorganic salt, common salt is particularly preferable.

無機塩の濃度は0.3M以上、特に0.5〜1.0Mが
好ましい。
The concentration of the inorganic salt is preferably 0.3M or more, particularly 0.5 to 1.0M.

以下実施例を挙げて本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

参考例 ヒ)IFN−βの遺伝子を含むプラスミドpL0117
 Rを保持する大腸菌HBI DI (T。
Reference example H) Plasmid pL0117 containing the IFN-β gene
E. coli HBI DI (T.

Taniguch et、 al、+ Proc、 N
atl、 Acad、Sci 、+ 775230 (
1980))をLB培地中で前培養し、これを1tのL
B培地に約2%植菌した。
Taniguch et al. + Proc. N
atl, Acad, Sci, +775230 (
(1980)) was precultured in LB medium, and then 1 t of L
Approximately 2% of the cells were inoculated into B medium.

30°で振盪培養し菌数OD  が0.6に達した60 点で集菌し、25%蔗糖を含む50 mM Tris緩
衝液pH8,0で菌を洗浄し、遠心で集菌した。
The cells were cultured with shaking at 30° and collected at 60 points when the bacterial count OD reached 0.6, washed with 50 mM Tris buffer pH 8.0 containing 25% sucrose, and collected by centrifugation.

菌体を20−の20 mM EDTA−50mM Tr
 is緩衝液pH8,0に懸濁し、2.0■/−のりゾ
チ−ムを加え、Do、 30分静置後、2回凍結融解を
くり返して溶菌した。溶菌液を15,000回転60分
の遠心を行ない上清液をG−IFN−βの原液として、
安定性実験の材料とした。F−IFN−βは人線繊芽細
胞が産生じた原液を部分精製した物を使用した。(S、
 Kobayashi et。
The bacterial cells were mixed with 20-mM EDTA-50mM Tr.
The suspension was suspended in IS buffer pH 8.0, 2.0 µ/-gluzozyme was added, and after standing for 30 minutes, the cells were lysed by repeating freezing and thawing twice. The lysate was centrifuged at 15,000 rpm for 60 minutes, and the supernatant was used as the stock solution of G-IFN-β.
It was used as a material for stability experiments. F-IFN-β was partially purified from a stock solution produced by human fibroblasts. (S,
Kobayashi et.

al、、The Cl1nical Potentia
l of Interferois”Japan Me
dical Re5earch Foundation
 Pukli −cation N1115+  p6
0  (1980)Universityof Tok
yo Press )。()−IFN−β原液は110
0U/mg、F−IFN−β原液は35 CI U /
 mlの活性がCPE−50法(FL−細胞−VSV系
)で認められた。
al,,The Cl1nical Potentia
l of Interferois”Japan Me
dical Research Foundation
Pukli-cation N1115+ p6
0 (1980) University of Tok
yo Press). ()-IFN-β stock solution is 110
0U/mg, F-IFN-β stock solution is 35 CI U/
The activity of ml was confirmed by CPE-50 method (FL-cell-VSV system).

第1図に両原液を各種温度5分間湯浴中で加熱した際の
失活曲線を示しだ。C+−I FM−βはF−IFN−
βよりも熱失活を起しやすく、50%失活を起す温度は
それぞれ41℃および55℃であり約14°の差異が認
められた。
Figure 1 shows the inactivation curves when both stock solutions were heated in a water bath at various temperatures for 5 minutes. C+-I FM-β is F-IFN-
It was more likely to undergo heat inactivation than β, and the temperatures at which 50% inactivation occurred were 41°C and 55°C, respectively, a difference of about 14°.

実施例1 参考例に示したようにG−IFN−βは熱安定性がF−
IFN−βよすも悪い。特に400〜50°Cの間でそ
の差は顕著である。そこで両原液それぞれろ容に1容の
食塩水を加えて、最終食塩濃度を0〜1.OMとし、こ
れを43℃5分間加熱失活せしめ残存活性を測定して第
2図を得た。第2図から解るようにG−IFN−βの4
6℃5分間加熱による失活(70%)は食塩の添加で防
止され、約0.4 M食塩の存在でほぼ100%活性が
残存した。食塩濃度が1Mにまで上昇すると、原液の1
.5倍程度の活性が認められる場合もあった。
Example 1 As shown in the reference example, G-IFN-β has a thermal stability of F-
IFN-β is also bad. The difference is particularly noticeable between 400 and 50°C. Therefore, 1 volume of saline solution was added to each of the filtration volumes of both stock solutions, and the final salt concentration was adjusted to 0 to 1. OM was deactivated by heating at 43° C. for 5 minutes, and the residual activity was measured to obtain Figure 2. As can be seen from Figure 2, 4 of G-IFN-β
Inactivation (70%) due to heating at 6° C. for 5 minutes was prevented by the addition of common salt, and almost 100% activity remained in the presence of about 0.4 M common salt. When the salt concentration increases to 1M, 1
.. In some cases, about 5 times the activity was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種温度で5分間加熱した時のF −IFN−
βおよびG−IFN−βの活性残存率を示し、第2図は
食塩を添加して46℃で5分間加熱した時のG−■FN
−βの活性残存率を示す。 特許出願人 東 し 株 式 会 社 訓熱温度(5分間) 第1図 0    0.2   0.4   0.6   0.
8   10  N1NaCl 9度 第2図
Figure 1 shows F -IFN- after heating at various temperatures for 5 minutes.
Figure 2 shows the residual activity of β and G-IFN-β.
- shows the residual activity rate of β. Patent applicant Toshi Co., Ltd. Training temperature (5 minutes) Figure 1 0 0.2 0.4 0.6 0.
8 10 N1NaCl 9 degrees Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)糖鎖を持たないインターフェロン−βに無機塩を
添加することを特徴とする糖鎖を持た々いインターフェ
ロン−βの安定化方法。
(1) A method for stabilizing interferon-β without sugar chains, which comprises adding an inorganic salt to interferon-β without sugar chains.
(2)糖鎖を持たないインターフェロン−βが組換えD
NA技術により微生物から生産されるインターフェロン
−βである特許請求の範囲第1項に記載の方法。
(2) Interferon-β without sugar chains is recombinant D
The method according to claim 1, which is interferon-β produced from microorganisms by NA technology.
(3)無機塩が食塩である特許請求の範囲第1項に記載
の方法。
(3) The method according to claim 1, wherein the inorganic salt is common salt.
(4)無機塩の濃度が0.3M以上である特許請求の範
囲第1項に記載の方法。
(4) The method according to claim 1, wherein the concentration of the inorganic salt is 0.3M or more.
JP57135421A 1982-08-03 1982-08-03 Stabilization of interferon-beta having no saccharic chain Pending JPS5925364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135421A JPS5925364A (en) 1982-08-03 1982-08-03 Stabilization of interferon-beta having no saccharic chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135421A JPS5925364A (en) 1982-08-03 1982-08-03 Stabilization of interferon-beta having no saccharic chain

Publications (1)

Publication Number Publication Date
JPS5925364A true JPS5925364A (en) 1984-02-09

Family

ID=15151335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135421A Pending JPS5925364A (en) 1982-08-03 1982-08-03 Stabilization of interferon-beta having no saccharic chain

Country Status (1)

Country Link
JP (1) JPS5925364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026772A (en) * 1987-09-01 1991-06-25 Yamanouchi Pharmaceutical Co., Ltd. Lyophilized pharmaceutical composition of neocarzinostatin derivative
WO1997048808A1 (en) * 1996-06-19 1997-12-24 Chiron Corporation Bacterial production of interferon-beta using low levels of sodium and potassium ions
US8512691B2 (en) 1996-12-24 2013-08-20 Biogen Idec Ma Inc. Stable liquid interferon-beta formulations

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026772A (en) * 1987-09-01 1991-06-25 Yamanouchi Pharmaceutical Co., Ltd. Lyophilized pharmaceutical composition of neocarzinostatin derivative
WO1997048808A1 (en) * 1996-06-19 1997-12-24 Chiron Corporation Bacterial production of interferon-beta using low levels of sodium and potassium ions
US8512691B2 (en) 1996-12-24 2013-08-20 Biogen Idec Ma Inc. Stable liquid interferon-beta formulations
US8512692B2 (en) 1996-12-24 2013-08-20 Biogen Idec Ma Inc. Methods of treating multiple sclerosis with stable liquid interferon-beta formulations
US8932574B2 (en) 1996-12-24 2015-01-13 Biogen Idec Ma Inc. Stable liquid interferon beta formulations
US9522174B2 (en) 1996-12-24 2016-12-20 Biogen Ma Inc. Stable liquid interferon beta formulations

Similar Documents

Publication Publication Date Title
US20180344771A1 (en) Pharmaceutical composition comprising erythrocytes encapsulating a plp-dependent enzyme and its cofactor
EP0144064B1 (en) Method for producing interferons
JPH0558000B2 (en)
EP0027573B1 (en) Method of stabilizing interferon and composition containing it
EP0155189A2 (en) Expression of cell wall degrading proteins and host cells harboring dna encoding such protein
US4296025A (en) Process for preparing human interferon
CN116102640A (en) Recombinant lactoferrin derived peptides and their use in enhancing immunity
JPS5925364A (en) Stabilization of interferon-beta having no saccharic chain
Stroncek et al. Retroviral transduction and expansion of peripheral blood lymphocytes for the treatment of mucopolysaccharidosis type II, Hunter's syndrome
JPS5925333A (en) Stabilization of interferon-beta free from glycose chain
Onishi Salt response of amylase produced in media of different NaCl or KCl concentrations by a moderately halophilic Micrococcus
CN1366042A (en) Process for preparing recombinant deoxyribonuclease I
CN109438567A (en) A kind of sturgeon anti pathologic immunity albumen and its preparation method and application
JPH0480680B2 (en)
CA1273591A (en) Production of protein
CN106222178A (en) A kind of recombinant interferon λ 4 coded cDNA sequence and its preparation method and application
FELDMAN et al. Circadian rhythm changes in autotrophic Euglena induced by organic carbon sources
EP1757312B1 (en) Freeze-dried composition of inactivated virus envelope with membrane fusion activity
Syddall et al. A site-specific endonuclease from Caulobacter crescentus CB-13: restriction endonuclease CcrI
CN104211802B (en) Human blood coagulation light chain protein and its application
RU2294372C1 (en) METHOD FOR PREPARING RECOMBINANT INTERFERON ALPHA-2b AND INTERFERON-CONTAINING PREPARATION (VARIANTS)
CN1273976A (en) Process for preparing recombined morphogenetic protein (rhOP-1) of human bone
Jariwalla et al. The reactivation of human interferons by guanidine thiocyanate
Goodman Partial satisfaction of a uracil requirement by 5-fluorouracil
JPH06345798A (en) Physiologically active substance produced from cythemolytic streptococcus and its production