JPS5925360B2 - X-ray tube device for stereoscopic imaging - Google Patents

X-ray tube device for stereoscopic imaging

Info

Publication number
JPS5925360B2
JPS5925360B2 JP55024353A JP2435380A JPS5925360B2 JP S5925360 B2 JPS5925360 B2 JP S5925360B2 JP 55024353 A JP55024353 A JP 55024353A JP 2435380 A JP2435380 A JP 2435380A JP S5925360 B2 JPS5925360 B2 JP S5925360B2
Authority
JP
Japan
Prior art keywords
ray tube
grid
voltage
bias
stereoscopic imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55024353A
Other languages
Japanese (ja)
Other versions
JPS56120100A (en
Inventor
猛 中西
五朗 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP55024353A priority Critical patent/JPS5925360B2/en
Publication of JPS56120100A publication Critical patent/JPS56120100A/en
Publication of JPS5925360B2 publication Critical patent/JPS5925360B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/52Target size or shape; Direction of electron beam, e.g. in tubes with one anode and more than one cathode

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】 この発明はX線画像に立体感をもたせ、病巣の立体的位
置関係を観察するための立体撮影用X線管装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray tube device for stereoscopic imaging for giving a three-dimensional effect to an X-ray image and for observing the three-dimensional positional relationship of a lesion.

X線管球を被検体に対してたとえば人の右左瞳孔間距離
だけ機械的に水平移動させ2回撮影して行う立体撮影法
に比し、X線焦点位置を電気的に移動させる立体撮影用
X線管装置はステレオX線管装置とも呼ばれ、1個の管
容器内に2個の3極X線管を収容し、その格子制御によ
って交互にX線を曝射するものとか、1個のX線管内に
2個1対の陰極と格子とを設け、同じく格子制御によっ
て陽極上に一定間隔の2つの焦点を交互に発生させるも
のとかであり、ともに焦点が高速に移動でき、上記のよ
うな部位の診断能が高いものである。
Compared to the stereoscopic imaging method in which the X-ray tube is mechanically moved horizontally relative to the subject by the distance between the right and left pupils of a person and the images are taken twice, this method is for stereoscopic imaging in which the X-ray focus position is electrically moved. An X-ray tube device is also called a stereo X-ray tube device, and is a device that houses two triode X-ray tubes in one tube container and alternately irradiates X-rays by controlling the lattice of the tubes. A pair of cathodes and a grating are installed in the X-ray tube, and two focal points at a constant interval are alternately generated on the anode by controlling the grating. It has high diagnostic ability for such areas.

しかしながらこれら従来のステレオX線管装置は上記の
ように構造が複雑であるでなく、マイナス2000V位
の外部バイアス電源とこれの高速切換装置が必要であり
、さらにグリッドにバイアス電圧を印加する高圧ケーブ
ル2芯が1対のフィラメント回線の4芯または3芯の高
圧ケーブルに追加され、管球陰極側ケーブルソケットが
5芯〜6芯のものを要することなど全体として構成部品
が多くそれだけ故障しやすい問題点があった。
However, these conventional stereo X-ray tube devices not only have a complicated structure as described above, but also require an external bias power supply of about -2000V and a high-speed switching device for this, and a high-voltage cable to apply the bias voltage to the grid. Two cores are added to a 4-core or 3-core high-voltage cable with a pair of filament lines, and the cable socket on the tube cathode side requires a 5- to 6-core cable socket.There are a large number of component parts overall, and the problem is that they are more likely to fail. There was a point.

この発明は上記の現況に鑑みてなされたもので従来のス
テレオX線管装置の問題点を解消し、共通のグリッド電
極と2つの陰極フィラメント回路とを少数の電子部品と
、高圧ケーブル芯線間の浮遊容量との活用によって構成
したX線曝射の過渡現象によるセルフバイアス回路にて
制御することによって、外部バイアス電源とその切換装
置を不要とし、製作費低床にして信頼性が高いという大
きい効果だけでなく陰極側高圧ケーブルの芯線数を減す
ることができ、ケーブルソケットならびに管容器の構造
の簡単堅牢な装置の提供を図るものである。
This invention was made in view of the above-mentioned current situation, and solves the problems of conventional stereo X-ray tube devices. By controlling the self-bias circuit based on the transient phenomenon of X-ray exposure configured by utilizing stray capacitance, there is no need for an external bias power supply and its switching device, which has the great effect of reducing manufacturing costs and increasing reliability. In addition, the number of core wires in the cathode side high voltage cable can be reduced, and the present invention aims to provide a device with a simple and robust cable socket and tube container structure.

すなわち管球内に1個の陽極に対向する2個1対の陰極
とグリッドとを備えた格子面脚形X線管装置において、
前記1対の陰極フィラメントのそれぞれ個別の加熱電源
に接続された回線の一方をスイッチ機構を介して交互に
高圧電源に接続させるとともに、このスイッチ機構を接
続した側のフィラメント回線をそれぞれセルフバイアス
導通素子を介して前記1対のグリッドを結ぶ共通線に接
続し、管電流が前記フィラメント回線のそれぞれ同じく
流れ始める過渡期において発生するグリッドバイアス電
圧を印加し、高圧電源に接続されない側のフィラメント
回線の管電流だけを遮断し、この状態を保持するように
したことを特徴とする立体撮影用X線管装置にかかるも
のである。
That is, in a lattice-plane leg-shaped X-ray tube device that includes a grid and a pair of cathodes facing one anode in the tube,
One of the lines connected to the individual heating power sources of the pair of cathode filaments is alternately connected to a high voltage power source via a switch mechanism, and the filament lines connected to this switch mechanism are each connected to a self-bias conduction element. is connected to a common line connecting the pair of grids through a grid, and a grid bias voltage generated during a transition period when tube current begins to flow in the same way in each of the filament lines is applied to the tube of the filament line on the side not connected to the high voltage power supply. The present invention relates to an X-ray tube device for stereoscopic imaging characterized in that only the current is cut off and this state is maintained.

以下図面によってこの発明の実施例装置を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained below with reference to the drawings.

第1図はその第一の実施例装置の構成を示すブロック図
で、1はX線管容器、2は2個1対の陰極とグリッドと
を有する格子制御形X線管で、3はその管球内の陽極、
4,5は1対の陰極フィラメント、6,7はその陰極に
対応するグリッドで図は原理的にフィラメントの前に網
目状に示している力\現在の多くの管球では陰極構体の
電子集束壁がグリッドで、すぐれたエミッション特性を
有している。
FIG. 1 is a block diagram showing the configuration of the first embodiment of the apparatus, in which 1 is an X-ray tube container, 2 is a grid-controlled X-ray tube having two cathodes and a grid, and 3 is the X-ray tube. anode inside the tube,
4 and 5 are a pair of cathode filaments, and 6 and 7 are grids corresponding to the cathodes. In principle, the figure shows a net-like force in front of the filaments. In many current tubes, electron focusing in the cathode structure The walls are grid and have excellent emission characteristics.

8は上記一対のグリッドを互いに接続し、同電位のバイ
アス電圧を印加する共通のグリッド制御線である。
Reference numeral 8 denotes a common grid control line that connects the pair of grids to each other and applies a bias voltage of the same potential.

9は線条加熱装置で加熱変圧器2個とフィラメント電流
安定回路を内蔵し、2個のフィラメント4,5の加熱電
流If4 。
9 is a filament heating device which has two heating transformers and a filament current stabilizing circuit, and has a heating current If4 of two filaments 4 and 5.

If、を所定値にて制御している。If, is controlled at a predetermined value.

Sa、Sbはたとえば耐圧5000Vのリードスイッチ
の可動接点−C−グリッド制御回路12によって後述す
るタイミングで交互に直流低電圧(数V〜数十V)で通
電されるリードスイッチ外周コイルCa、Cbの作動(
点線a、b)で1m5ec以内の高速でON、OFFす
る。
Sa and Sb are, for example, the movable contacts of a reed switch with a withstand voltage of 5000V - C - The reed switch outer circumferential coils Ca and Cb are alternately energized with low DC voltage (several volts to several tens of volts) by the grid control circuit 12 at timings described later. Operation (
Turn on and off at high speed within 1m5ec using dotted lines a and b).

図はSaがON、SbがOFFの状態を示している。The figure shows a state where Sa is ON and Sb is OFF.

そのsa、Sbの共通コモンScは高圧整流装置13の
一側に接続されている。
The common common Sc of sa and Sb is connected to one side of the high voltage rectifier 13.

上記Sa、Sbの接点A、Bが接続されている側のケー
ブル芯線4L、”5L間には保護用高耐圧定電圧素子1
4と、ダイオード15゜16が逆直列に接続され、その
中点11は上記共通グリッド制御線Bvc結線されてい
る。
A protective high voltage constant voltage element 1 is installed between the cable core wires 4L and 5L on the side where the contacts A and B of Sa and Sb are connected.
4 and diodes 15 and 16 are connected in anti-series, and their midpoint 11 is connected to the common grid control line Bvc.

1点鎖線の18は管容器1(7)Is極側ケーブルソケ
ットで、ソケット部は4芯である。
The one-dot chain line 18 is a cable socket on the pole side of the tube container 1 (7) Is, and the socket part has four cores.

Cfは上記ケーブル芯線4Lと5L間に存在する浮遊静
電容量でこの装置のばあい約0.001μF位のもので
ある。
Cf is a stray capacitance existing between the cable core wires 4L and 5L, and is about 0.001 μF in this device.

っぎに高圧電源13側においてH−Tは高圧変圧i、M
−8はX線曝射スイッチ、21は交流電源、その他22
.23は一般のX線高電圧発生装置におけるものと同一
であるが、この発明の装置においてはとくにタイマ23
の作動を第2図のタイムチャートで説明するタイミング
にする手動切換スイッチ24を設けている。
On the high voltage power supply 13 side, H-T is high voltage transformer i, M
-8 is the X-ray exposure switch, 21 is the AC power supply, and other 22
.. 23 is the same as that in a general X-ray high voltage generator, but in the device of this invention, the timer 23 is
A manual changeover switch 24 is provided to set the operation to the timing explained in the time chart of FIG.

Srはグリッド制御回路12からのタイマ23への指令
信号である。
Sr is a command signal sent from the grid control circuit 12 to the timer 23.

以上の構成でリードスイッチSaがONの状態で、X線
曝射が行われると、陽極3から管電流I4.I、がフィ
ラメント4,5に点線のように流れ出し、フィラメント
5からの管電流■、は矢印Cの方向にSaに向けて流れ
、浮遊容量Cfを充電し、芯線4Lを−、5Lを十電位
に上昇させる。
When X-ray exposure is performed with the reed switch Sa in the ON state in the above configuration, the tube current I4. I flows into the filaments 4 and 5 as shown by dotted lines, and the tube current ■ from the filament 5 flows toward Sa in the direction of arrow C, charging the stray capacitance Cf, and bringing the core wires 4L to - and 5L to 10 potentials. to rise to.

芯線4Lすなわちフィラメント4の電位が時間と共に低
下すると、ダイオード15を経由してグリッド6.7の
電位がフィラメント6からグリッド7への電子流をカッ
トオフするたとえば−2000VDCまで低下し、その
瞬間にI、はOFFされ、一方のフィラメント4は同電
位であるので引続き実線の矢印の方向に流れる。
As the potential of the core wire 4L, that is, the filament 4, decreases with time, the potential of the grid 6.7 decreases via the diode 15 to, for example, -2000 VDC, which cuts off the electron flow from the filament 6 to the grid 7, and at that moment, I , are turned off, and since one of the filaments 4 has the same potential, it continues to flow in the direction of the solid arrow.

これがこの発明の要部であるセルフバイアス印加作用で
あり、上記15,16のダイオードがセルフバイアス導
通素子となるわけである。
This is the self-bias application function which is the essential part of the present invention, and the diodes 15 and 16 described above become self-bias conducting elements.

このダイオードは上記の目的のために設けたものではあ
るが、それ以外に陽極3からグリッド6.7に流れるグ
ロー放電電流を共通線8を介してケーブル芯線4Lまた
は5Lにバイアスする機能も有している。
Although this diode is provided for the above purpose, it also has the function of biasing the glow discharge current flowing from the anode 3 to the grid 6.7 to the cable core wire 4L or 5L via the common line 8. ing.

管電流I、が所定の曝射時間流れると陽極3のターゲッ
ト上に焦点F4 を発生させ、一方向からの撮影が行わ
れる。
When the tube current I flows for a predetermined exposure time, a focal point F4 is generated on the target of the anode 3, and imaging is performed from one direction.

つぎに第2図のタイムチャートを併用して立体撮影の作
用を説明する。
Next, the effect of stereoscopic imaging will be explained using the time chart of FIG. 2.

図■は上記リードスイッチSaのON・OFF’、図■
はsbの0N−OFF、図0はX線曝射の各タイミング
を示すものである。
Figure ■ is ON/OFF' of the above reed switch Sa, Figure ■
sb is ON-OFF, and FIG. 0 shows each timing of X-ray exposure.

図■のtl 時がタイマ23と連動しX線曝射時t3
より(△T1)だけ早くSaをONする時点、このとき
sbもONしているがt2 に到り、sbがOFFし
て、第1図の状態となる。
The tl time in figure ■ is linked with the timer 23, and the X-ray exposure time is t3.
At the time when Sa is turned on earlier (ΔT1), sb is also turned on, but at t2, sb is turned off, resulting in the state shown in FIG.

t3のX線曝射時の作動は上記したとおりであるが、t
3から管電流I、をカットオフする13/までの実時間
(Δt)はきわめて瞬間的で、今たとえばI、を50
m AのばあいCfに一2000v(EB とする)充
電される(△t)は次式で求まる。
The operation during X-ray exposure at t3 is as described above.
The actual time (Δt) from 3 to 13/ to cut off the tube current I, is extremely instantaneous, and now, for example, when I is 50
In the case of mA, Cf is charged by -2000V (EB) (△t) is determined by the following equation.

すなわち0.04 m secであり、写真黒化度に全
く影響のない短時間であるから2ケの焦点が同時発生し
ても問題はないわけである。
That is, it is 0.04 m sec, which is a short time that has no effect on the photographic darkening degree, so there is no problem even if two focal points occur simultaneously.

つぎに(t3′→1. )のたとえば0.1 sec
のTa間X線曝射が■4の管電流で焦点F4で行われた
のちタイマ23の作動でM−8がOFFしたのち(△T
3 )の余裕をおいてt3時点でまずsb fJooN
する。
Next, for example, 0.1 sec of (t3'→1.)
After X-ray exposure between Ta was performed at focal point F4 with a tube current of ■4, M-8 was turned off by the operation of timer 23, and then (△T
3) At time t3, with a margin of sb fJooN
do.

このt、からt6の間、Sa、SbともにONするので
、上記Cfの充電電圧(バイアス電圧)EB が完全に
放電する(△T4)後のt6の時点では第1図のリード
スイッチSa、Sbが全く逆の状態となって今度はフィ
ラメント4からの電子流をカットオフし、I5が管電流
となり、陽極3のターゲット上にTbO間F、の焦点を
形成する。
Since both Sa and Sb are ON from t to t6, at t6 after the charging voltage (bias voltage) EB of Cf is completely discharged (ΔT4), the reed switches Sa and Sb in FIG. is completely reversed, and this time the electron flow from the filament 4 is cut off, I5 becomes a tube current, and a focus of F between TbO and F is formed on the target of the anode 3.

このF、と前述のF4 との間隔が所定の寸法になるよ
うに構成されているためたとえば上記0.1seeごと
の2方向X線撮影が毎秒6回行えるのである。
Since the distance between this F and the above-mentioned F4 is configured to be a predetermined distance, two-directional X-ray imaging can be performed six times per second at an interval of, for example, 0.1see.

第2図0のt7以降t、までの各部の作動は上記t3か
らt6までと全く同一であるので説明を省く。
The operations of the various parts from t7 to t in FIG. 2 are exactly the same as those from t3 to t6 described above, so a description thereof will be omitted.

以上第2図で説明した3a tSbの開閉動作は図で判
るようにX線曝射Ta、Tb・・・以外の時点で行って
いるため高い管電圧に無関係に0N−OFFするもので
1.このSa tSbに印加される電圧はたとえば第1
図の状態でsbの接点BとコモンSc間にはバイアス電
圧2000Vが最高である。
As can be seen from the figure, the opening/closing operation of 3a tSb explained in FIG. The voltage applied to this SatSb is, for example, the first
In the state shown in the figure, the maximum bias voltage is 2000V between contact B of sb and common Sc.

これが前述の耐圧5000V級のリードスイッチが使用
でき、低圧でしかも高速駆動が容易に行えるものとなっ
ている。
This allows the use of the aforementioned reed switch with a withstand voltage of 5000 V class, making it easy to drive at low voltage and at high speed.

つぎに第3、第4図によってこの発明の第2、第3の実
施例装置を説明する。
Next, second and third embodiments of the present invention will be explained with reference to FIGS. 3 and 4.

第3、第4図とも第1図と異なる構成の部分だけを示す
図で、右側は管球20半分、左側はフィラメント4,5
の加熱回線の室中までであり第1図と同記号のものは説
明を省く。
Both Figures 3 and 4 show only the parts of the configuration that are different from Figure 1, with the right side showing 20 halves of the tube, and the left side showing filaments 4 and 5.
The heating line extends to the inside of the room, and those with the same symbols as in Fig. 1 will not be explained.

第3図はセルフバイアス導通素子として、第1図で説明
した15,16のダイオードと並列に高抵抗素子31.
32を接続したものである。
FIG. 3 shows high resistance elements 31.1 as self-bias conducting elements in parallel with the diodes 15 and 16 described in FIG.
32 are connected.

このばあい図示しないリードスイッチSaすなわちケー
ブル4L側をONすると、管電流■、は矢印d方向に点
線のように抵抗32・ダイオード15を経て流へ上記抵
抗32の両端に電圧降下すなわち5Lとの交点に十電位
、グリッド制御線8との交点17′に一電位を発生させ
グリッド6.7をセルフバイアスするのである。
In this case, when the reed switch Sa (not shown), that is, the cable 4L side, is turned ON, the tube current 2 flows in the direction of arrow d through the resistor 32 and the diode 15 as shown by the dotted line.There is a voltage drop across the resistor 32, that is, 5L. Ten potentials are generated at the intersection and one potential is generated at the intersection 17' with the grid control line 8, thereby self-biasing the grid 6.7.

この際同時にCf にも充電電流が矢印Cの点線のよう
に流れバイアス電圧をX線曝射中保持され、第2図[F
]で示したt。
At this time, a charging current also flows to Cf as shown by the dotted line of arrow C, and the bias voltage is maintained during X-ray irradiation, as shown in Fig. 2 [F
] t.

からt6 の(△T4 )の間に5atSbがともに
ONしてこの充電電圧を放電することは前述のとおりで
ある。
As described above, both 5atSb are turned ON between t6 and t6 (ΔT4) to discharge this charging voltage.

この実施例は第1のものに比してバイアス電圧が印加さ
れる時間が充電時間(たとえば0.04 secなど)
より速いものとなる力\前述したように問題にするほど
の時間ではない。
In this embodiment, the time during which the bias voltage is applied is longer than the charging time (for example, 0.04 sec, etc.) compared to the first embodiment.
The power to become faster \ As mentioned above, it is not enough time to be a problem.

つぎに第4図で第3の実施例を説明する。Next, a third embodiment will be explained with reference to FIG.

これは図−咋」るように第3図のものからダイオード1
5.16を外したもので、各部の記号は省略している。
This is the diode 1 from the one in Figure 3 as shown in Figure 1.
5.16 has been removed, and the symbols for each part have been omitted.

作用は前述とはソ同じで抵抗320両端に生ずる電圧降
下とCfの充電とによってセルフバイアス電圧がグリッ
ドに印加されるものであり、このばあい、図示しない陽
極3からグリッド6゜7へのグロー放電電流をバイパス
するダイオード15.16がないため、上記の影響が若
干残るという欠点をもったものとなる。
The effect is the same as described above, and a self-bias voltage is applied to the grid due to the voltage drop occurring across the resistor 320 and the charging of Cf. In this case, a glow from the anode 3 (not shown) to the grid 6. Since there are no diodes 15 and 16 for bypassing the discharge current, the above-mentioned influence remains to some extent.

以上がこの発明の3つの実施例装置の構成と作用である
が、この発明は図示や説明に限定されるものでなく、た
とえば高速立体撮影でない装置も含むし、またさらに超
高速のものにも適用できるものである。
The above are the configurations and functions of the three embodiments of the present invention, but the present invention is not limited to the illustrations and explanations, and includes devices other than high-speed stereoscopic imaging, and also includes devices that are not high-speed stereoscopic. It is applicable.

またタイマによる第2図のタイミング制御のない装置も
範囲に入るものである。
Further, devices without the timing control of FIG. 2 using a timer also fall within the scope.

この発明は以上のように構成されているので、従来の立
体撮影用のX線管装置が外部に高圧のバイアス電源を必
要とし、これの高速切換装置ならびにこのバイアス印加
ケーブルが2芯、X管球の陰極側に加わるため、全体と
して構造複雑で部品が多く、高価でかつ故障しやすい欠
点を解消し、フィラメント加熱回路の浮遊静電容量と僅
かな電子部品のたくみな利用によって管電流の流れ始め
る過渡期に発生するセルフバイアス電圧をグリッドに印
加しこれをX線曝射の間保持するようにした構成で外部
バイアス電源とその切換装置ならびにバイアス印加ケー
ブルを必要としない構造簡単にして製作費低廉で、しか
も信頼性が高く、低・高速立体撮影の自在な便宜な装置
を提供しえたものである。
Since the present invention is configured as described above, the conventional X-ray tube device for stereoscopic imaging requires an external high-voltage bias power supply, and the high-speed switching device and this bias application cable are connected to a two-core, X-ray tube device. Since it is added to the cathode side of the bulb, the overall structure is complex, has many parts, is expensive, and easily breaks down. This eliminates the drawbacks, and the tube current flow is improved by cleverly utilizing the stray capacitance of the filament heating circuit and a small number of electronic components. The self-bias voltage that occurs during the initial transition period is applied to the grid and maintained during X-ray exposure, which eliminates the need for an external bias power supply, switching device, and bias application cable, simplifying the structure and reducing production costs. The present invention provides a convenient device that is inexpensive, highly reliable, and capable of freely performing low-speed and high-speed stereoscopic imaging.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例の立体撮影用X線管装
置の構成ブロック図、第2図は上言装置の作用を説明す
るタイムチャートで回船は2つの陰極の管電流切換スイ
ッチの開閉のタイミング図、図0はX線曝射のタイミン
グ図である。 第3図はこの発明の第2の実施例装置の構成図、第4図
は同じく第3図の実施例装置の構成図である。 2・・・1個の陽極と2個1対の陰極・グリッドを有す
る格子制御形X線管球、4,5・・・1対(ハ)屡極フ
ィラメント、4L、5L・・・上記1対のフィラメント
加熱回路の一方の回線(ケーブル芯線)Sa。 sb・・・スイッチ機構の可動接点(リードスイッチの
可動接点) 、Ca l Cb・・・スイッチ機構の作
動コイル(リードスイッチの外周コイル)、13・・・
高圧電源(高圧整流装置を含む高電圧発生装置)、15
.16・・・セルフバイアス導通素子としての半波整流
素子(ダイオード)、15,16,3L32・・・セル
フバイアス導通素子としての半波整流素子(ダイオード
)と抵抗素子の並列回路、31゜32・・・セルフバイ
アス導通素子としての抵抗素子、8・・・2個1対のグ
リッドを結ぶ共通線(グリッド制御線)。
Fig. 1 is a block diagram of the structure of an X-ray tube device for stereoscopic imaging according to the first embodiment of the present invention, and Fig. 2 is a time chart explaining the operation of the above-mentioned device. FIG. 0 is a timing diagram of opening and closing of the switch, and FIG. 0 is a timing diagram of X-ray exposure. FIG. 3 is a block diagram of a second embodiment of the apparatus of the present invention, and FIG. 4 is a block diagram of the embodiment apparatus of FIG. 2... Lattice controlled X-ray tube having one anode and two pairs of cathodes/grids, 4, 5... 1 pair (c) frequent pole filament, 4L, 5L... 1 above One line (cable core line) Sa of a pair of filament heating circuits. sb...Movable contact of the switch mechanism (movable contact of the reed switch), Cal Cb...Operating coil of the switch mechanism (outer circumferential coil of the reed switch), 13...
High voltage power supply (high voltage generator including high voltage rectifier), 15
.. 16...Half-wave rectifier (diode) as a self-bias conduction element, 15,16,3L32...Parallel circuit of a half-wave rectifier (diode) and resistance element as a self-bias conduction element, 31°32. ... Resistance element as a self-bias conduction element, 8... A common line (grid control line) connecting two pairs of grids.

Claims (1)

【特許請求の範囲】 1 管球内に1個の陽極に対向する2個1対の陰極とグ
リッドとを備えた格子制御形X線管装置において、前記
1対の陰極フィラメントのそれぞれ個別の加熱電源に接
続された回線の一方をスイッチ機構を介して交互に高圧
電源と接続させるとともに、このスイッチ機構を接続し
た側のフィラメント回線をそれぞれセルフバイアス導通
素子を介して前記1対のグリッドを結ぶ共通線に接続し
、管電流が前記フィラメント回線のそれぞれに同じく流
れ始める過渡期において発生するグリッドバイアス電圧
を印加し高圧電源に接続されない側のフィラメント回線
の管電流だけを遮断し、この状態を保持するようにした
ことを特徴上する立体撮影用X線管装置。 2 セルフバイアス導通素子を半波整流素子と抵抗素子
との並列のもの、またはそれのいずれか一方の素子にし
てなる特許請求の範囲第1項記載の立体撮影用X線管装
置。
[Scope of Claims] 1. In a lattice-controlled X-ray tube device comprising two pairs of cathodes facing one anode and a grid in a tube, the individual heating of each of the pair of cathode filaments is provided. One of the lines connected to the power source is alternately connected to the high-voltage power source via a switch mechanism, and the filament line on the side connected to this switch mechanism is connected to the pair of grids through a self-bias conduction element. A grid bias voltage that occurs during the transition period when the tube current begins to flow in the same manner in each of the filament lines is applied, and only the tube current of the filament line that is not connected to the high-voltage power supply is cut off, and this state is maintained. An X-ray tube device for stereoscopic imaging, which is characterized by: 2. The X-ray tube device for stereoscopic imaging according to claim 1, wherein the self-bias conduction element is a half-wave rectifying element and a resistance element in parallel, or one of them.
JP55024353A 1980-02-26 1980-02-26 X-ray tube device for stereoscopic imaging Expired JPS5925360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55024353A JPS5925360B2 (en) 1980-02-26 1980-02-26 X-ray tube device for stereoscopic imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55024353A JPS5925360B2 (en) 1980-02-26 1980-02-26 X-ray tube device for stereoscopic imaging

Publications (2)

Publication Number Publication Date
JPS56120100A JPS56120100A (en) 1981-09-21
JPS5925360B2 true JPS5925360B2 (en) 1984-06-16

Family

ID=12135822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55024353A Expired JPS5925360B2 (en) 1980-02-26 1980-02-26 X-ray tube device for stereoscopic imaging

Country Status (1)

Country Link
JP (1) JPS5925360B2 (en)

Also Published As

Publication number Publication date
JPS56120100A (en) 1981-09-21

Similar Documents

Publication Publication Date Title
JPH0155760B2 (en)
EP0051430B1 (en) X-ray apparatus
US4315154A (en) Multiple focus X-ray generator
JPS58216397A (en) X-ray diagnostic device
US3103591A (en) Radiographic systems and method
JPS5925360B2 (en) X-ray tube device for stereoscopic imaging
US3109093A (en) Apparatus for coordinating camera shutter movement with a pulsed X-ray beam
US3491239A (en) X-ray image amplifier system with automatic exposure control
JPS6352760B2 (en)
US2130077A (en) Energizing system for discharge tubes
US3424901A (en) Stereoscopic x-ray apparatus
JP2006314772A (en) Ct scanner
US3633029A (en) Pulsed x-ray control system with improved film darkening
JP2003142295A (en) X-ray image forming x-ray system
US4266133A (en) Multiple focus X-ray generator
JP2014229373A (en) X-ray high voltage device
JP2002033064A (en) Triode x-ray tube grid control device
JPS6019640B2 (en) X-ray tube device for stereoscopic imaging
US1972159A (en) Method and apparatus for controlling x-ray intensity
US2691735A (en) X-ray tube
US3428809A (en) Scr circuit for terminating an x-ray exposure at a precise point
US3316450A (en) Adjustable flash for photography
US2146889A (en) X-ray apparatus
JPH0226160Y2 (en)
US2217483A (en) X-ray apparatus