JPS5925258A - Semiconductor integrated circuit device and its manufacture - Google Patents

Semiconductor integrated circuit device and its manufacture

Info

Publication number
JPS5925258A
JPS5925258A JP13415882A JP13415882A JPS5925258A JP S5925258 A JPS5925258 A JP S5925258A JP 13415882 A JP13415882 A JP 13415882A JP 13415882 A JP13415882 A JP 13415882A JP S5925258 A JPS5925258 A JP S5925258A
Authority
JP
Japan
Prior art keywords
circuit
gates
input
output
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13415882A
Other languages
Japanese (ja)
Other versions
JPH0576184B2 (en
Inventor
Toshitaka Fukushima
福島 敏高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13415882A priority Critical patent/JPS5925258A/en
Publication of JPS5925258A publication Critical patent/JPS5925258A/en
Publication of JPH0576184B2 publication Critical patent/JPH0576184B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/1778Structural details for adapting physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17704Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form the logic functions being realised by the interconnection of rows and columns
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/1778Structural details for adapting physical parameters
    • H03K19/17796Structural details for adapting physical parameters for physical disposition of blocks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54433Marks applied to semiconductor devices or parts containing identification or tracking information
    • H01L2223/5444Marks applied to semiconductor devices or parts containing identification or tracking information for electrical read out

Abstract

PURPOSE:To select ICs of different kinds formed onto the same one semiconductor wafer by setting up a first circuit and a second circuit having a function different from one of said circuit to the same substrate. CONSTITUTION:Input signals are inputted to input gates G1, G2, G3, and the information contents of the circuit S constituted by a gate array or an ROM or the like are outputted through amplifying gates A1, A2, A3. Zener diodes ZD, gates G4, G5, memories M and amplifying circuits A3, A4, A5 are added and formed to the dead regions in each IC chip. When voltage is the input signal voltage or more of normal operation, the diode ZD is turned ON from OFF, the gates G4, G5 are operated, and the informations of the memory M are outputted from normal output terminals O1, O2, O3 through the amplifying gates A3, A4, A5. Operation by the normal input signals of the amplifying gates A1, A2, A3 is not conducted by an output from the gate G4 at that time.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明は半導体集積回路装置とその製造方法に関し、特
に同一半導体ウエハー(以下、ウエハーと称す)上に多
数の異種類の半導体集積回路装置を設けて、製造するた
めの半導体集積回路装置(以下、ICと称す)とその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor integrated circuit device and a method for manufacturing the same, and particularly relates to a method for manufacturing a large number of different types of semiconductor integrated circuit devices on the same semiconductor wafer (hereinafter referred to as wafer). The present invention relates to a semiconductor integrated circuit device (hereinafter referred to as an IC) to be provided and manufactured, and a manufacturing method thereof.

(b)従来技術と問題点 従来、トランジスタやICを製造するには、ウエハー上
に多数個のトランジスタ又はICを形成し、これを分割
して方形のチツプとした後、それぞれのチツプを半導体
容器に封入してトランジスタ又はICに形成せしめてい
る。
(b) Prior art and problems Conventionally, in order to manufacture transistors or ICs, a large number of transistors or ICs are formed on a wafer, divided into square chips, and each chip is then packaged in a semiconductor container. The transistor or IC is formed by encapsulating the material into a transistor or an IC.

且つ、1個のウエハー上に形成する多数個のチツプはず
べて同一種類(以下品種と呼ぶ)で構成されており、多
量生産方式によつて自動化して低価格化をはかつてきた
。しかしながら、IC技術の進歩と共にLSI,VLS
Iと極めて高集積化され、電子部品としてよりも、むし
ろ電子回路としての性格が強くあらわれてきた。そのた
めに、生産数量が減少する一方、品種は増加し、多品種
少量生産に移行しつつある。
In addition, a large number of chips formed on one wafer are all of the same type (hereinafter referred to as a type), and the cost has been reduced by automation through mass production. However, with the advancement of IC technology, LSI and VLS
It has become extremely highly integrated, and its character as an electronic circuit rather than as an electronic component has been strongly expressed. For this reason, while the production quantity is decreasing, the variety is increasing, and a shift is being made to high-mix, low-volume production.

このように多品種少量生産となれば、同一ウエバー上に
多数の同一品種のICを形成し、自動化して組立や試験
を行なつても、生産量が少ないため生産歩留が低下して
、かえつてコスト高になる。
In this way, when it comes to high-mix low-volume production, even if a large number of ICs of the same type are formed on the same web and assembly and testing are performed automatically, the production yield will decrease due to the small production volume. On the contrary, the cost will increase.

この歩留低下は作業の安定度に関係が深く、作業者の慣
れ不足や生産機械の条件変動が原因で、第1図にこれを
具体的に示す生産歩留と生産数量との関係図を示す。即
ち、図において帯状をなしえいるのは歩留バラツキの巾
を示しており、生産数量が少ないと、歩留も低くて、そ
のバラツキ巾も広いが、生産数量が大きくなると歩留も
良くなる上に、バラツキ巾も小さくなることを図示して
いるものである。
This decrease in yield is closely related to the stability of work, and is caused by the lack of familiarity of workers and fluctuations in the conditions of production machines. show. In other words, the band-like shape in the figure shows the width of the yield variation; when the production quantity is small, the yield is low and the variation width is wide, but as the production quantity increases, the yield improves. The figure above shows that the variation width is also reduced.

特に最近、電子計算機等に用いられた論理回路、メモリ
回路では応答速度を高速にする必要から、著しく高集積
化されて、小型化されてきており、従来は多くのSSI
(小型IC)、MSI(中型IC)を回路基板に搭載し
、更にそれを多数枚積み重ねて電子回路としていたが、
現在ではその回路基板の数枚分を1つのLSI(大型I
C)あるいはVLSI(超LSI)として、使用者の要
求に従つた各種パツケージ(容器)に収め、そのため計
算機の中央処理装置や端末機のような電子機器は極度に
小さくなつて、高性能化されてきている。
In particular, recently, logic circuits and memory circuits used in electronic computers, etc., have become extremely highly integrated and miniaturized due to the need to increase response speed.
(small IC) and MSI (medium-sized IC) were mounted on a circuit board, and many of them were stacked to form an electronic circuit.
Currently, several circuit boards are combined into one LSI (large integrated circuit).
C) Or as a VLSI (Very LSI), it is housed in various packages (containers) according to user requirements, and as a result, electronic devices such as computer central processing units and terminals have become extremely small and high-performance. It's coming.

このようなLSI,VLSIを、上記のように多品種少
量で生産すると、生産歩留低下によるコスト高に加えて
、歩留変動のため不足するLSIを再度生産し、益々コ
スト上昇に拍車をかける。
If such LSIs and VLSIs are produced in a wide variety of small quantities as described above, in addition to high costs due to lower production yields, LSIs that are in short supply will be reproduced due to yield fluctuations, further accelerating cost increases. .

例えば、電子機器を構成するLSIがA,B,C,D,
Eの5品種で、それぞれ1個づつが必要であるとする。
For example, the LSIs that make up an electronic device are A, B, C, D,
Assume that one of each of the five varieties of E is required.

今、100台の電子機器用のLSIを生産するため、第
2図に示すようにそれぞれの品種で10枚のウエハー1
を処理して、A品種は80個、B品種は280個、C品
種は100個、D品種は80個、E品種は20個のチツ
プ2がえられると、B品種は180個も余剰が生じ、E
品種は80個不足する。しだがつて、E品種は再度ウエ
ハー処理を行なつて、不足数量を補充しなければならず
、E品種のLSIのコストは倍加する。また、B品種の
LSIは余剰数量が生じたが、電子機器は、100台以
上は不要であるから、廃却しなければならず、それだけ
材料と処理工数の損失を招く。第2図はこれを解り易く
した図式で、チツプ2は実際のICチツプ20個に相当
する図形で示している。
Currently, in order to produce LSIs for 100 electronic devices, 10 wafers are required for each type, as shown in Figure 2.
By processing 80 chips for A variety, 280 chips for B variety, 100 chips for C variety, 80 chips for D variety, and 20 chips for E variety, the B variety has a surplus of 180 chips. arise, E
There is a shortage of 80 varieties. However, for the E type, wafer processing must be performed again to replenish the missing quantity, and the cost of the E type LSI doubles. Furthermore, although there was a surplus of B-type LSIs, more than 100 of the electronic devices were unnecessary and had to be disposed of, resulting in a corresponding loss of materials and processing man-hours. FIG. 2 is a diagram that makes this easier to understand, and chip 2 is shown in a diagram corresponding to 20 actual IC chips.

(c)発明の目的 本発明はこのような1種類の生産数量を減少並びに生産
歩留の変動によるコスト高を解消するためのICとその
製造方法を提案するものである。
(c) Purpose of the Invention The present invention proposes an IC and its manufacturing method for reducing the production quantity of one type and eliminating high costs due to fluctuations in production yield.

(d)発明の構成 その目的は、信号入力端子と出力端子を有し、、第1の
入力信号の状態に応じて所定の出力を該出力端子に得る
第1の回路と、該信号入力端子と出力端子間に接続され
、該信号入力端子に第2の入力信号が印加された時に該
第1の回路動作を禁止すると共に該第1の回路の種別を
示す種別信号を該出力端子に出力する第2の回路を有す
るICとその製造方法によつて達成することができる。
(d) Structure of the Invention The object of the invention is to provide a first circuit having a signal input terminal and an output terminal, which outputs a predetermined output to the output terminal according to the state of the first input signal; and an output terminal, and inhibits the operation of the first circuit when a second input signal is applied to the signal input terminal, and outputs a type signal indicating the type of the first circuit to the output terminal. This can be achieved by an IC having a second circuit and a manufacturing method thereof.

(e)発明の実施例 以下、図面を参照して実施例により詳細に説明する。第
3図は機能回路のうち、論理回路例を示したもので、多
数の入出力信号のAND回路であるが、この例のように
ICは同じ回路パターンの繰り返し構成で、ゲートが数
100ないし数1000個集合したLSI(大規模集積
回路)でも製造工程は同様で、更に同系統のIC例えば
バイポーラトランジスタならばバイポーラトランジスタ
のみの能動素子で構成される論理回路となると、使用す
るマスクパターンが異なるだけでウエハープロセスの製
造工程はたとえ品種が異つても殆んど変りがない。
(e) Embodiments of the invention Hereinafter, embodiments will be described in detail with reference to the drawings. Figure 3 shows an example of a logic circuit among functional circuits, which is an AND circuit for a large number of input and output signals.As in this example, an IC has a repeating configuration of the same circuit pattern, and has several hundred or more gates. The manufacturing process is the same even for LSIs (Large Scale Integrated Circuits) that are assembled in several thousand pieces, but the mask pattern used is different when it comes to ICs of the same type, such as bipolar transistors, and when it comes to logic circuits consisting of only active elements of bipolar transistors. However, the manufacturing process of wafer process is almost the same even if the product types are different.

本発明はこの点に着目して1機種の電子機器を構成する
すべてのあるいは複数個のLSI(IC)を1枚のウエ
ハーに形成させる。そうすれば、各品種毎に少し相異な
るサイズやウエハープロセスの処理温度などは、設計上
同一になるように若干変更することもおこるが、統一し
た分だけ多量生産的となり、歩留の向上と安定がはから
れる。
The present invention focuses on this point and forms all or a plurality of LSIs (ICs) constituting one type of electronic device on one wafer. In this way, although the slightly different sizes and wafer process temperatures for each product may need to be slightly changed to make them the same in design, the unification will result in higher volume production and improved yields. Stability is measured.

更にこのようなウエハー構成にすれば工程変動に伴なう
生産歩留のバラツキが電子機器の全品種共通となり、余
剰量が生じて、それを廃却する従来の損失を少なくする
ことができる。
Furthermore, with such a wafer configuration, variations in production yield due to process variations will be common to all types of electronic equipment, and surplus quantities will be generated, making it possible to reduce the conventional loss of disposal.

しかし、問題は選別方法であり、ウエハープロセスを終
えてICに完成した後、ウエハープローブ試験あるいは
組立後の最終試験で選別しなければならない。ウエハー
プローブ試験では、同上ウエハー上において、各品種別
に分けられた試験を行わなければならないから、試験の
際の品種識別が必要になる。
However, the problem lies in the selection method; after the wafer process is completed and the ICs are completed, they must be selected in a wafer probe test or a final test after assembly. In the wafer probe test, it is necessary to perform tests for each type of wafer on the same wafer, so it is necessary to identify the type during the test.

それには、例えば5品種A〜Eを1個のウエハー上に設
けるとすると、ウエハー上の個々のICの空き領域又は
IC間のダイシングライン域に抵抗値の異なる抵抗素子
を設け、その両端んいブローブ試験時にプローブ(触針
)と接触する2つの余分パツドを設けておく。更にその
抵抗値は抵抗体の幅を変化させて、例えばA,B,C,
D,Eの品種をそれぞれ10KΩ、20KΩ、30kΩ
、40KΩ、50KΩに区別して形成する。このように
して選別して、プローブ試験した後、抵抗がタイミング
帯域に形成された場合にはダイシングにより破壊され、
それは消滅する。またIC内の空き領域に形成された場
合は、破壊されないが最終試験で選別に利用しないなら
ば、ボンデングをしなければよい。
For example, if five types A to E are placed on one wafer, resistive elements with different resistance values are installed in the free space of each IC on the wafer or in the dicing line area between the ICs, and Two extra pads are provided to contact the probe during the probe test. Furthermore, the resistance value can be changed by changing the width of the resistor, for example, A, B, C,
Types D and E are 10KΩ, 20KΩ, and 30KΩ, respectively.
, 40KΩ, and 50KΩ. After sorting and probe testing in this way, if resistance is formed in the timing band, it is destroyed by dicing.
It disappears. In addition, if it is formed in an empty area within the IC, it is not destroyed but will not be used for selection in the final test, so no bonding is necessary.

このようにして品種を選別した後、その品種情報を試験
用電子計測機に伝え、計測機からの入力によりその品種
独自のプローブ試験を行ない、ICの良否判定が行われ
る。ICの良否判定と同時に、品種別にチツプ状で選別
する場合は、第4図のような図示した生産方式となる。
After selecting the type in this way, the type information is transmitted to a test electronic measuring machine, and a probe test unique to the type is performed based on input from the measuring machine to determine the quality of the IC. When ICs are judged to be good or bad and at the same time they are sorted into chips according to type, the production method shown in FIG. 4 is used.

即ち、第4図は従来の生産方式の第2図に対照させた図
で、多数のウエハー1上に設けたA,B,C,D,Eの
各品種をプローブ試験後直ちに各チツプ2に分類するこ
とを意味したものである。このようにすれば、余剰品の
発生や工数の損失を最小限に少なくすることかできる。
That is, FIG. 4 is a diagram in contrast to FIG. 2 of the conventional production method, in which each type of A, B, C, D, and E provided on a large number of wafers 1 is immediately placed on each chip 2 after the probe test. It is meant to be classified. In this way, the generation of surplus products and the loss of man-hours can be minimized.

また、上記のようにしてウエハープローブ試験でICの
良否を判定し、不良品を除去した後、品種別に選別する
ことなく、混合したまま半導体容器にボンデングして封
入する方法も採られる。第6図はこのようなLSI3と
して完成させた後の選別生産方式を示したものである。
Another method is to use a wafer probe test to determine the quality of the ICs as described above, remove defective products, and then bond and seal the ICs in a semiconductor container as they are mixed without sorting by type. FIG. 6 shows the selective production method after completing such an LSI3.

この場合は、最終試験におりる各品種の選別方法が重要
で、若し半導体容器の外部端子に余分の空端子があれば
、上記説明した選別用抵抗素子の両端のパツドと、その
外部端子をボンデイングして選別することができる。
In this case, the selection method for each product in the final test is important, and if there is an extra empty terminal on the external terminal of the semiconductor container, the pads at both ends of the selection resistor element explained above and the external terminal can be bonded and sorted.

しかし、空端子がない場合、あるいは選別用抵抗素子と
空端子との接続が好ましくない場合には、既存の使用す
る端子から情報をえて識別しなければならない。第6図
はこのような使用端子を兼用しえ選別情報が出力される
特定の回路を設けた一実施例を示すものである。
However, if there are no empty terminals, or if the connection between the selection resistance element and the empty terminals is undesirable, information must be obtained from the existing terminals to be used for identification. FIG. 6 shows an embodiment in which such a used terminal is shared and a specific circuit from which selection information is output is provided.

第6図は論理回路図の一実施例を示し、従来は入力ゲー
トG1,G2,G3に入力信号が入力して、ゲートアレ
イあるいはROM(読み出し専用メモリ)などで構成さ
れる回路Sの情報内容が増巾ゲートA1,A2,A3を
経て出力する一般的なゲート回路で、スレーショルド圧
力(Vrn)=1.4V,電源圧力(Vcc)=5Vで
動作するとする。
FIG. 6 shows an example of a logic circuit diagram. Conventionally, input signals are input to input gates G1, G2, and G3, and the information content of a circuit S consisting of a gate array or ROM (read-only memory), etc. It is assumed that this is a general gate circuit that outputs through amplifying gates A1, A2, and A3, and operates at a threshold pressure (Vrn) of 1.4V and a power supply pressure (Vcc) of 5V.

本発明ではこのようなゲート回路E図の点線で囲んだ回
路を付加する。即ち、ツエナーダイオードZD,ゲート
G4とG5、メモリは、増巾回路A3,A4,A5をそ
れぞれのICチツプ内の空き領域に付加形成し、ツエナ
ーダイオードZDの動作電圧を7V以上とする。
In the present invention, such a circuit surrounded by a dotted line in the gate circuit diagram E is added. That is, for the Zener diode ZD, gates G4 and G5, and the memory, amplifying circuits A3, A4, and A5 are additionally formed in empty areas in each IC chip, and the operating voltage of the Zener diode ZD is set to 7V or higher.

このようにして、通常動作のための入力信号電圧3V以
下とは異なる入力信号電圧例えば10Vを、従来と共通
の入力端I1より入力すると、ZDが“OFF”から“
ON”となりゲートG4、G5が動作し、メモリMの情
報が増巾くゲートA3,A4,A5を通つて、通常の出
力端子O1,O2,O3から出力する。この際、ゲート
O4の出力によつて、増巾ゲートA1,A2,A3の通
常の入力信号による動作がなされないような回路構成と
なつており、したがつて高入力信号電圧10Vが印加さ
れると、通常のゲート動作はおこなわれない。一方、通
常の入力信号5V以下では、本発明にかかる付加回路は
ツエナーダイオードZDが働かずに遮断されることにな
り、メモリMの情報は出力端O1,O2,O3から出力
されない。
In this way, when an input signal voltage of 10 V, for example, which is different from the input signal voltage of 3 V or less for normal operation, is input from the conventional input terminal I1, ZD changes from "OFF" to "
ON", gates G4 and G5 operate, and the information in memory M passes through amplified gates A3, A4, A5 and is output from normal output terminals O1, O2, O3. At this time, the output of gate O4 Therefore, the circuit configuration is such that the amplifying gates A1, A2, and A3 do not operate according to normal input signals, and therefore, when a high input signal voltage of 10 V is applied, normal gate operations are not performed. On the other hand, when the input signal is below 5V, the Zener diode ZD does not work in the additional circuit according to the present invention, and the information in the memory M is not outputted from the output terminals O1, O2, and O3.

上記第6図に示す実施例では3個の出力端子から品種の
選別情報がえられるために、その組合わせによつて23
=8品種の選別ができる。
In the embodiment shown in FIG. 6 above, since type selection information can be obtained from three output terminals, 23
= 8 varieties can be selected.

換言すれば、同一の半導体ウエハーに8品種以下を設け
る場合には、たとえ多数の通常の入力端子と出力端子が
設けられていても、1個の入力端子と3個の出力端子を
共通するたけでよい。また、4品種を選別するだけであ
れば2個の出力端子を共通するだけで充分である。
In other words, if eight or fewer types are provided on the same semiconductor wafer, even if a large number of normal input terminals and output terminals are provided, only one input terminal and three output terminals can be used in common. That's fine. Moreover, if only four types are to be selected, it is sufficient to share two output terminals.

次に第7図は本発明にかかる一実施例としての第6図の
ゲート回路図を更に詳しく示した回路群細図である。図
によつて先づ従来の入力信号動作を説明すれば、入力端
I1からVTHより低い入力信号“L”が入力されると
、ゲートU1が3個のトランシスタT1、T2、T3か
らなるTTLインバータであるから反転した信号“H”
が出力し、また逆にI1からVTHより高い入力信号“
H”が入力されると出力信号は“L”となる。一方、ゲ
ートA1は信号の増巾のみおこなうゲートでゲート回路
Sの情報として、信号“L”が入力すると出力端O1よ
り信号“L”が出力されるが、この際ゲートA1内のダ
イオードD1、D2には、信号“H”即ち高い電圧が加
えられていて、トランジスタT6、T7は通常の動作を
おこなつて、トランジスタT8よりトランジスタT4に
入力した信号“H”または“L”がそのまま出力される
Next, FIG. 7 is a detailed diagram of a circuit group showing in more detail the gate circuit diagram of FIG. 6 as an embodiment of the present invention. First, to explain the conventional input signal operation with reference to the diagram, when an input signal "L" lower than VTH is input from the input terminal I1, the gate U1 converts into a TTL inverter consisting of three transistors T1, T2, and T3. Therefore, the inverted signal “H”
outputs, and conversely, an input signal higher than VTH from I1 “
When the signal "L" is input, the output signal becomes "L". On the other hand, the gate A1 is a gate that only amplifies the signal, and as information of the gate circuit S, when the signal "L" is input, the output signal "L" is output from the output terminal O1. " is output, but at this time, the signal "H", that is, a high voltage is applied to the diodes D1 and D2 in the gate A1, and the transistors T6 and T7 operate normally, and the transistor T8 The signal "H" or "L" input to T4 is output as is.

ところが、このダイオードD1、D2に信号“L”即ち
低電力が入力すると、トランジスタT7、T8は働かす
高インピーダンス、つまり出力はスリーステイト状態と
なつて、トランジスタT4に入力した信号は出力端O1
からは出力されない。本実施例はこれを利用した回路構
成である。
However, when the signal "L", that is, low power is input to the diodes D1 and D2, the transistors T7 and T8 operate at high impedance, that is, the output becomes a three-state state, and the signal input to the transistor T4 is output to the output terminal O1.
There is no output from. This embodiment has a circuit configuration that utilizes this.

次に、品種の織別信号の出力を説明すると、通常の入力
信号(3V以下)より高い電圧の10Vが入力端I1に
加えられると、ツエナーダイオードZDが導通となり、
ゲートG1と同時のTTLゲートG4とG6とが動作す
る。ゲートG4はインバータであるから、ダイオードZ
Dが導通して高電圧即ち信号“H”が入力すれば信号“
L”を出力して、ゲートG1のダイオードD1、D2に
入り、上記したようにゲートA1の出力が高インピーダ
ンスとなつて、出力されないことになる。一方、ゲート
G4の信号“L”が次段のゲートG8に入力すると、同
じくインバータであるから、増巾ゲートA4のダイオー
ドD1,D2に信号“H”即ち高電圧を印加して、高イ
ンピーダンス出力状態から解放され、メモリM内の情報
(実施例図では“H”)を出力端O1より出力する。こ
らが識別信号であり、出力端O2からも同様にして出力
させる。尚、第7図にはゲートG3,A3を図示してい
ない。
Next, to explain the output of the type classification signal, when 10V, which is a higher voltage than the normal input signal (3V or less), is applied to the input terminal I1, the Zener diode ZD becomes conductive.
TTL gates G4 and G6 operate simultaneously with gate G1. Since gate G4 is an inverter, diode Z
If D is conductive and a high voltage, that is, a signal “H” is input, the signal “
The signal "L" from the gate G1 goes into the diodes D1 and D2 of the gate G1, and as mentioned above, the output of the gate A1 becomes high impedance and is not output.On the other hand, the signal "L" from the gate G4 goes to the next stage. Since it is also an inverter, a signal "H", that is, a high voltage, is applied to the diodes D1 and D2 of the amplifying gate A4, and the high impedance output state is released, and the information in the memory M (implemented) is input to the gate G8. In the example figure, "H") is outputted from the output terminal O1.These are identification signals, and they are similarly outputted from the output terminal O2.The gates G3 and A3 are not shown in FIG.

以上は一実施例であるが、本発明はこの回路構成に拘東
されるものではなく、要するに使用端子を共通に利用し
て各品種を選別することが可能であることを実証した回
路例である。且つ、このように余分の回路部分を付加し
ても、回路は微細パターンで形成されていてLSIにお
いては数100ないし数1000のゲートで構成される
回路のわずかに数個のゲートと小さなメモリにずぎない
から、高密度化が阻害されることはない。また、LSI
に空端子があれば、特定の識別用素子又は回路をその空
端子に接続し、上記例と同様に通常動作入力信号と異な
る入力信号によつて品種を識別することかできる。
Although the above is an example, the present invention is not limited to this circuit configuration.In short, this is an example of a circuit that proves that it is possible to select each type by commonly using terminals. be. In addition, even if an extra circuit part is added in this way, the circuit is formed with a fine pattern, and LSI circuits consist of several hundred to several thousand gates, but only a few gates and a small memory can be used. Because it is natural, high density is not hindered. Also, LSI
If there is an empty terminal, a specific identification element or circuit can be connected to the empty terminal, and the product type can be identified using an input signal different from the normal operation input signal, as in the above example.

(f)発明の効果 上記説明から判るように本発明は1枚の同一半導体ウエ
ハー上に異品種(異種類)のICを形成して、ウエハー
プローブ試験又は最終試験などの試験で品種をも識別で
きるICとその製造方法であり、高度に集積化して多品
種化しつつあるLSI,VLSIに好適の生産方式と言
うべく、本発明によれば生産歩留が向上して低価格化す
ることは勿論、、品質の安定にも極めて効果があり、I
Cの汎用化に大きく寄与するものである。
(f) Effects of the Invention As can be seen from the above explanation, the present invention allows ICs of different types (different types) to be formed on one and the same semiconductor wafer, and the types can also be identified in tests such as wafer probe tests or final tests. The present invention is an IC and its manufacturing method, and is a production method suitable for LSI and VLSI, which are becoming highly integrated and diversified.According to the present invention, production yields are improved and costs are reduced. ,,It is extremely effective in stabilizing quality, and I
This will greatly contribute to the generalization of C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は生産歩留と生産数量との関係図、第2図は従来
の生産方式の図式、第3図は論理回路例の図、第4図お
よび第5図は本発明にかかる生産方式の図式、第6図お
よび第7図は本発明にかかる特定の回路を含む論理回路
例の図である。 図中、1は半導体ウエハー、2はチツプ、3はLSI、
A,B,C,D,Eは種類(品種)、I1〜I3は入力
端、O1〜O3は出力端、G1〜G5、A1〜A5はゲ
ート回路、ZD,D1,D2はダイオード、T1〜T8
はトランジスタを示す。 第2(7) 第3図 第4図 第5閃 A−1c              已−ICノ C−1c              r)−ICE、
IC 第6図
Figure 1 is a diagram of the relationship between production yield and production quantity, Figure 2 is a diagram of a conventional production system, Figure 3 is a diagram of an example of a logic circuit, and Figures 4 and 5 are a production system according to the present invention. The schematic diagrams of FIGS. 6 and 7 are diagrams of example logic circuits including specific circuits according to the present invention. In the figure, 1 is a semiconductor wafer, 2 is a chip, 3 is an LSI,
A, B, C, D, E are types (product types), I1-I3 are input terminals, O1-O3 are output terminals, G1-G5, A1-A5 are gate circuits, ZD, D1, D2 are diodes, T1- T8
indicates a transistor. 2nd (7) Figure 3 Figure 4 Figure 5 Flash A-1c 已-ICノC-1cr)-ICE,
IC Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)信号入力端子と出力端子を有し、第1の入力信号
の状態に応じて所定の出力を該出力端子に得る第1の回
路と、該信号入力端子と出力端子間に接続され、該信号
入力端子に第2の入力信号が印加された時に、該第1の
回路の動作を)禁止すると共に該第1の回路の種別を示
す種別信号を該出力端子に出力する第2の回路を有する
ことを特徴とする半導体集積回路装置。
(1) a first circuit having a signal input terminal and an output terminal and outputting a predetermined output to the output terminal according to the state of the first input signal; and a first circuit connected between the signal input terminal and the output terminal; a second circuit that, when a second input signal is applied to the signal input terminal, inhibits the operation of the first circuit and outputs a type signal indicating the type of the first circuit to the output terminal; A semiconductor integrated circuit device comprising:
(2)同一基体に第1の回路と、該第1の回路とは異な
る機能を有する第2の回路と、該第1、第2の回路の種
別情報を蓄積する手段を形成し、該手段から第1又は第
2の回路の種別情報を読み出して該第1又は第2の回路
に応じた試験を該第1又は第2の回路に施すことを特徴
とする半導体集積回路装置の製造方法。
(2) A first circuit, a second circuit having a function different from that of the first circuit, and means for accumulating type information of the first and second circuits are formed on the same substrate, and the means 1. A method of manufacturing a semiconductor integrated circuit device, comprising reading type information of a first or second circuit from a semiconductor device and subjecting the first or second circuit to a test corresponding to the first or second circuit.
JP13415882A 1982-07-30 1982-07-30 Semiconductor integrated circuit device and its manufacture Granted JPS5925258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13415882A JPS5925258A (en) 1982-07-30 1982-07-30 Semiconductor integrated circuit device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13415882A JPS5925258A (en) 1982-07-30 1982-07-30 Semiconductor integrated circuit device and its manufacture

Publications (2)

Publication Number Publication Date
JPS5925258A true JPS5925258A (en) 1984-02-09
JPH0576184B2 JPH0576184B2 (en) 1993-10-22

Family

ID=15121813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13415882A Granted JPS5925258A (en) 1982-07-30 1982-07-30 Semiconductor integrated circuit device and its manufacture

Country Status (1)

Country Link
JP (1) JPS5925258A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095930A (en) * 1983-10-31 1985-05-29 Toshiba Corp Test system for integrated circuit and integrated circuit device
JPS6183977A (en) * 1984-09-29 1986-04-28 Nec Corp Apparatus for inspecting semiconductor apparatus
JPS61287315A (en) * 1985-06-13 1986-12-17 Mitsubishi Electric Corp Semiconductor integrated circuit
JPS63148613A (en) * 1986-12-12 1988-06-21 Nec Corp Manufacture of semiconductor integrated circuit
US4798415A (en) * 1987-01-26 1989-01-17 Toyota Jidosha Kabushiki Kaisha Device for adjusting elevational position of head rest
JPH02281657A (en) * 1989-04-21 1990-11-19 Nec Corp Semiconductor integrated circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020171812A (en) * 2020-07-28 2020-10-22 株式会社ユニバーサルエンターテインメント Game machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095930A (en) * 1983-10-31 1985-05-29 Toshiba Corp Test system for integrated circuit and integrated circuit device
JPS6183977A (en) * 1984-09-29 1986-04-28 Nec Corp Apparatus for inspecting semiconductor apparatus
JPS61287315A (en) * 1985-06-13 1986-12-17 Mitsubishi Electric Corp Semiconductor integrated circuit
JPH0581056B2 (en) * 1985-06-13 1993-11-11 Mitsubishi Electric Corp
JPS63148613A (en) * 1986-12-12 1988-06-21 Nec Corp Manufacture of semiconductor integrated circuit
US4798415A (en) * 1987-01-26 1989-01-17 Toyota Jidosha Kabushiki Kaisha Device for adjusting elevational position of head rest
JPH02281657A (en) * 1989-04-21 1990-11-19 Nec Corp Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPH0576184B2 (en) 1993-10-22

Similar Documents

Publication Publication Date Title
JP3343345B2 (en) Semiconductor integrated circuit chip
US6047344A (en) Semiconductor memory device with multiplied internal clock
US6703573B2 (en) Method for sorting integrated circuit devices
US7368678B2 (en) Method for sorting integrated circuit devices
JP2950475B2 (en) Built-in self-test with memory
JP2004006857A (en) Integrated circuit chip and its fabricating method
KR100200916B1 (en) Semiconductor memory device
US6830941B1 (en) Method and apparatus for identifying individual die during failure analysis
JPS5925258A (en) Semiconductor integrated circuit device and its manufacture
US5663902A (en) System and method for disabling static current paths in fuse logic
US4180772A (en) Large-scale integrated circuit with integral bi-directional test circuit
US6653727B2 (en) Semiconductor chip package with direction-flexible mountability
US11935605B2 (en) Method for preparing semiconductor device including an electronic fuse control circuit
US20230136774A1 (en) Semiconductor device including an electronic fuse control circuit
US6222211B1 (en) Memory package method and apparatus
JPH0541429A (en) Semiconductor ic wafer and manufacture of semiconductor ic
JPS6158966B2 (en)
JPS6333301B2 (en)
US6492706B1 (en) Programmable pin flag
KR20020045641A (en) Semiconductor device
JP2545815B2 (en) How to identify good / defective semiconductor integrated circuits
JP2765467B2 (en) Semiconductor integrated circuit device
JPS6124823B2 (en)
JPH01100943A (en) Semiconductor integrated circuit device of masterslice layout
KR100426989B1 (en) Control signal providing method using package power pins and IC package structure therefore