JPS592507A - Controller for electric motor vehicle - Google Patents

Controller for electric motor vehicle

Info

Publication number
JPS592507A
JPS592507A JP57110105A JP11010582A JPS592507A JP S592507 A JPS592507 A JP S592507A JP 57110105 A JP57110105 A JP 57110105A JP 11010582 A JP11010582 A JP 11010582A JP S592507 A JPS592507 A JP S592507A
Authority
JP
Japan
Prior art keywords
brake force
circuit
command
brake
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57110105A
Other languages
Japanese (ja)
Inventor
Miyoshi Maki
牧 美好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57110105A priority Critical patent/JPS592507A/en
Publication of JPS592507A publication Critical patent/JPS592507A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To always allow the brake force characteristic of a chopper vehicle to be coincident to that of a cam vehicle by providing a time limiter at the previous stage of a brake force step high priority circuit. CONSTITUTION:A brake force step high priority circuit 7 outputs a pattern command signal on the basis of the speed signal at that time when the brake force command decreases and the previous brake force command before it decreases. On the other hand, when the brake force command increases, the step high priority circuit 7 outputs sequential command signals coincident to the cam advancing time in a cam vehicle. A brake force step pattern generator 5 outputs a brake force pattern in response to a pattern command signal. A brake force high priority circuit 8 applies a signal of high level of the brake force pattern and the brake force command to a controller 6.

Description

【発明の詳細な説明】 この発明は、電機子チョッパ車や界磁チョッパ車等、電
動機のブレーキ制御が連続可能である電気車(以下、チ
ョッパ車という)における電気車制御装置に関し、特に
、該チョッパ車の抑速プ1/−キ制御特性を変更するこ
とにより、いわゆる抵抗カム式制御車(以下、カム車と
いう)との混成運転を良好に行わせることができるよう
にした電気車制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electric vehicle control device for an electric vehicle such as an armature chopper vehicle or a field chopper vehicle (hereinafter referred to as a chopper vehicle) in which brake control of an electric motor can be performed continuously. An electric vehicle control device that enables good hybrid operation with a so-called resistance cam type control vehicle (hereinafter referred to as a cam vehicle) by changing the throttle control characteristics of the chopper vehicle. It is related to.

電動機のブレーキ制御が連続可能なチョッパ車では、電
気車の速度とブレーキ力との関係を表わす複数個の所定
のパターンを設定し1、ブレーキ力指令が下げられた時
は、これらパターンのいずれかに沿って電気車を減速さ
せるようにすることにある。これにより、いわゆる抵抗
カム式制御車との混成運転を可能にしている。しかしな
がら、ある特殊の運転条件下では、これら2種の混成運
転中のブレーキ制御に不都合が生じる場合がある。
For chopper vehicles that can continuously control the electric motor's brakes, multiple predetermined patterns are set that represent the relationship between the speed of the electric vehicle and the braking force1.When the brake force command is lowered, one of these patterns is set. The goal is to slow down the electric vehicle along the lines. This enables mixed operation with a so-called resistance cam type control vehicle. However, under certain special operating conditions, problems may occur in brake control during hybrid operation of these two types.

以下、抵抗カム式制御車(カム車)およびチョッパ車の
混成運転中のブレーキ制御における不都合を説明するた
めに、これらコ種の電気車を図面に基づいて個々に説明
す゛る。
Hereinafter, in order to explain the inconveniences in brake control during hybrid operation of resistance cam control vehicles (cam vehicles) and chopper vehicles, these types of electric vehicles will be individually explained based on the drawings.

まず、第1図はカム軸抵抗制御車すなわちカム車の抑速
ブレーキ制御動作を説明するためのもので、カム車のブ
レーキ・ノツチ曲線を表わしている。図において、縦軸
には速度v1横軸にはブレーキ力BEが示されており、
/8〜7Sはブレーキカステップ、lは抑速バランス特
性である。
First, FIG. 1 is for explaining the brake control operation of a camshaft resistance controlled vehicle, that is, a cam vehicle, and shows a brake notch curve of the cam vehicle. In the figure, the vertical axis shows the speed v, and the horizontal axis shows the braking force BE.
/8 to 7S is the brake step, and l is the speed control balance characteristic.

今、vOの速度からブレーキ指令が出され、その指令値
がA点でありこの指令値が保持されると、限流点−でス
テップを刻みながら電気車は減速を始める。車速が下が
って、B点においてブレーキ力指令値が抑速バランス特
性より小さい0点に下げられると、限流点が3に移動す
るのでブレーキ力は6Sステツプ特性に清いF点に向っ
て下がり始めるが、途中抑速パラ/ス特性lとの交点E
にて車速はバランスし等の速度で電気車は抑速運転する
。このようにカム車はブレーキ力指令を大きい指令値か
ら抑速バランス点より小さいブレーキ力指令に変化させ
ることで不特定任意のステップ、すなわち速度で抑速運
転を行うことが可能である。
Now, a brake command is issued from the speed of vO, and the command value is at point A, and if this command value is held, the electric vehicle starts to decelerate while taking steps at the current limit point -. When the vehicle speed decreases and the brake force command value is lowered to 0 point at point B, which is smaller than the speed control balance characteristic, the current limiting point moves to 3, so the brake force begins to decrease toward point F, which is more consistent with the 6S step characteristic. is the intersection point E with the intermediate speed control parameter/parameter characteristic l.
The vehicle speed is balanced and the electric vehicle operates at a constant speed. In this way, the cam vehicle can perform holding speed operation at an unspecified arbitrary step, that is, at a speed, by changing the brake force command from a large command value to a brake force command smaller than the holding balance point.

次に、第一図および第3図でチョッパ車の抑速ブレーキ
制御を説明する。これらのチョッパ車はブレーキ特性が
連続可変であり、そのままでは第1図に示したノツチ曲
線KGつて抑速運転は不可能である。従ってノツチ曲線
と同等のステップパターンを記憶させるよ5にしている
Next, the restraint brake control of the chopper vehicle will be explained with reference to FIGS. 1 and 3. These chopper vehicles have continuously variable braking characteristics, and as they are, it is impossible to operate at a reduced speed as shown in the notch curve KG shown in FIG. Therefore, the number 5 is set so that a step pattern equivalent to the notch curve is stored.

第2図はプaツク図、第3図は速度ブレーキ力特性図で
ある。第3図において、速度V、からブレーキ力指令が
Aの大きさで出されると、ブレーキ力特性−に沿って車
速は下がる。B点まで車速が下がった時にブレーキ力指
令な抑速バランス特性/より小さい0点に下げたとする
と、この時ブレーキ力指令が下がったことを、第2図に
示すブレーキカステップ高位記憶回路7が検知し、ブレ
ーキ力が下がった点Bの直前の高位のブレーキカステッ
プ6Sを記憶し、6Sステツプであることを、第2図に
示すブレーキカステップパターン発生回路3へ指令する
。一方、ブレーキカステップパターン発生回路jは速度
検知回路lからの実測された速度入力を受けて、68ス
テツプのブレーキ力特性を第3図に示す如く発生させ、
これを指令として次のブレーキ力高位優先回路tへ与え
る。
FIG. 2 is a block diagram, and FIG. 3 is a speed braking force characteristic diagram. In FIG. 3, when a brake force command with a magnitude of A is issued from a speed V, the vehicle speed decreases in accordance with the brake force characteristic. When the vehicle speed decreases to point B, if the brake force command is lowered to a smaller 0 point than the braking force command, the brake step high-level memory circuit 7 shown in FIG. The high-level brake step 6S immediately before the point B where the braking force decreased is stored, and a command is sent to the brake step pattern generating circuit 3 shown in FIG. 2 that it is the 6S step. On the other hand, the brake step pattern generation circuit j receives the actually measured speed input from the speed detection circuit l and generates a brake force characteristic of 68 steps as shown in FIG.
This is given as a command to the next brake force high priority circuit t.

ブレーキ力高位優先回路Sではこの指令とブレーキ力指
令とのいずれがブレーキ指令位かを判別し、高位である
方のブレーキ力指令を次の制御器6へ与える。制御器6
はこの高位であるブレーキ力を発生するように制御を行
う。すなわち、第3図B点から0点にブレーキ力指令が
下げられたとき、ブレーキカステップ高位記憶回路7に
よってステップ6Sが記憶され、下げられたブレーキ力
特性Jより高位であるブレーキ力特性6Sによって電気
車は制御される。従ってブレーキステップ6Sの特性に
より電気車の速度はFに向って減速しようとするが途中
の抑速バランス特性lどの交点Eにて速度がバランスし
速度v7にて電気車は抑速運転することができる。
The brake force high priority circuit S determines which of this command and the brake force command is the brake command level, and gives the higher brake force command to the next controller 6. Controller 6
controls to generate this high level of braking force. That is, when the brake force command is lowered from point B to point 0 in FIG. Electric cars are controlled. Therefore, due to the characteristics of the brake step 6S, the speed of the electric vehicle attempts to decelerate toward F, but the speed is balanced at which intersection E due to the restraint balance characteristic l, and the electric vehicle is able to perform restraint operation at speed v7. can.

第2図および第3図で説明したブレーキ制御は、第1図
にて説明した抑速バランス運転制御と全く同じであり抑
速ノツチ指令がなくても抑速運転が可能であることが理
解できる。また第3図のブレーキステップ78〜7Sの
数を第1図のブレーキステップと少なくとも同等以上に
設定しておけば抑速負荷のアンバランスがなくカム車と
の抑速連結運転が可能である。
It can be understood that the brake control explained in FIGS. 2 and 3 is exactly the same as the restraint balance operation control explained in FIG. 1, and that restraint operation is possible even without a restraint notch command. . Further, if the number of brake steps 78 to 7S in FIG. 3 is set to be at least equal to or greater than the brake steps in FIG. 1, there will be no unbalance in the restraint load, and a restraint coupled operation with the cam wheel will be possible.

しかしながら次のような運転扱いをされた場合はカム車
とのステップアンバランスが生じ、カム車とチョッパ車
に負荷アンバランスが生じる不具合が発生する。すなわ
ち、第1図、第3図において、速度■。よりブレーキ力
指令が一旦人まで出され、すぐに指令値3に戻された時
、第1図ではカム軸が78より58に向って進段しよう
としていたが、ブレーキ力指令が3に戻されたためにカ
ム軸は/8ステップで抑速運転し、バランス速度vJで
抑速運転を行う。一方第3図のチョッパ車は、一旦A点
のブレーキ力が出され、すぐにブレーキ力指令3に戻さ
れると前述の如(、t8ステップが記憶されるのでチョ
ッパ車はSSステップのバランス速度V、の速度で抑速
してしまうことになる。
However, if the following operation is performed, a step imbalance with the cam vehicle will occur, and a problem will occur in which a load imbalance will occur between the cam vehicle and the chopper vehicle. That is, in FIGS. 1 and 3, the speed ■. When the brake force command was issued to 1 person and then immediately returned to the command value 3, the camshaft was about to advance from 78 to 58 in Figure 1, but when the brake force command was returned to 3. Therefore, the camshaft is operated at a slow speed of /8 steps and at a balance speed vJ. On the other hand, in the chopper car shown in Fig. 3, once the brake force at point A is output and then immediately returned to the brake force command 3, the chopper car will move to the SS step balance speed V The speed will be reduced to .

このような特性の電気車が混成されると負荷アンバラン
スを生じ不具合である。
If electric vehicles with such characteristics are mixed, load imbalance will occur, which is a problem.

この発明は以上の点に鑑みて為されたもので、チョッパ
車におけるブレーキカステップ高位記憶回路の前段に限
時回路を設け、ブレーキカステップをカム軸進段時間と
同等の時限で順次該高位記憶回路に記憶させることによ
り、チョッパ車のブレーキ力特性を常にカム車のものに
一致させるようにした電気車制御装置を提供するもので
ある。
This invention has been made in view of the above points, and includes a time limit circuit provided in the front stage of the high-level storage circuit for the brake step in a chopper vehicle, and the brake step is sequentially stored in the high-level storage circuit at a time period equivalent to the camshaft advancement time. The present invention provides an electric vehicle control device that allows the braking force characteristics of a chopper vehicle to always match those of a cam vehicle by storing the brake force characteristics in a circuit.

以下、この発明の一実施例を第7図で説明する。An embodiment of the present invention will be described below with reference to FIG.

第7図においては、ブレーキカステップ高位記憶回路7
は、ブレーキ力指令を限時回路デを経て入力するようK
しているが、他の構成は第一図に示したものと同様なの
で説明を省略する。
In FIG. 7, the brake step high-level memory circuit 7
is to input the brake force command through the time limit circuit.
However, since the other configurations are the same as those shown in FIG. 1, their explanation will be omitted.

以上の構成において、ブレーキ力指令が第3図のA点ま
で出された場合に、ブレーキカステップ高位記憶回路7
はすぐにステップSSを記憶するのではなく、カム車に
おけるカム進段時間と一致してステップ/8から順次記
憶していくように、限時回路9はその出力値を、入力さ
れた実際のブレーキ力指令値まで時限をもって徐々に高
めていく。
In the above configuration, when the brake force command is issued up to point A in FIG.
does not immediately store step SS, but sequentially stores it from step /8 in accordance with the cam advance time in the cam vehicle. Gradually increase the force to the command value with a time limit.

これにより、カム車とチョッパ車のブレーキ力特性は、
ブレーキ力指令を瞬時に変化させるような特殊な取扱い
においても常に一致し、負荷アンバランスなく良好な混
成連結運転が可能となる。
As a result, the braking force characteristics of the cam car and chopper car are
Even in special handling situations where the brake force command changes instantaneously, they always match, enabling good hybrid coupled operation without load imbalance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカム車のブレーキ・ノツチ曲線を示す特性図、
第一図は従来のチョッパ車の抑速運転制御回路を示すブ
ロック図、第3図は第2図における速度−ブレーキ力特
性を示す図、第7図はこの発明の一実施例によるチョッ
パ車の抑速運転制御回路を示すブロック図である。図に
おいて、ダは速度検知回路、Sはブレーキカステップパ
ターン発生回路(第1の回路)、6は制御器、りはブレ
ーキカステップ高位記憶回路(第一の回路)、jはブレ
ーキ力高位優先回路(第3の回路)、デは限時回路であ
る。 なお、図中塵、=符号は同一または同等部分を示す・ 代理人  葛  野  信  −
Figure 1 is a characteristic diagram showing the brake notch curve of a cam vehicle.
FIG. 1 is a block diagram showing a conventional chopper vehicle control circuit, FIG. 3 is a diagram showing the speed-brake force characteristics in FIG. 2, and FIG. 7 is a block diagram of a chopper vehicle according to an embodiment of the present invention. FIG. 2 is a block diagram showing a reduced speed operation control circuit. In the figure, da is a speed detection circuit, S is a brake step pattern generation circuit (first circuit), 6 is a controller, ri is a brake step high level memory circuit (first circuit), and j is a brake force high priority priority The circuit (third circuit), D is a time-limiting circuit. In addition, the dust and = signs in the figure indicate the same or equivalent parts. Agent Shin Kuzuno -

Claims (1)

【特許請求の範囲】[Claims] 電気車の速度およびブレーキ制御の関係を表わす複数の
パターンを記憶し、パターン指令信号により前記パター
ンのいずれかを出力する第1の回路と、ブレーキ力指令
が下げられた時、その時の実際の速度信号および下げら
れる前のブレーキ力指令に基づいて前記パターン指令信
号を前記第1の回路に出力する第コの回路と、ブレーキ
力指令が下げられた時は前記第1の回路から出力された
パターンに沿って前記電気車を減速するようにした第3
の回路とを備えた電気車制御装置において、前記ブレー
キ力指令が高められた時は、この高められたブレーキ力
指令およびその時の実際の速度信号に対応した点までに
存在する前記パターンを所定の時限を持たせて前記第コ
の回路に順次記憶させていくための限時回路を前記第コ
の回路の入力側に設けZ坊たことを特徴とする電気車制
御装置。
A first circuit that stores a plurality of patterns representing the relationship between the speed and brake control of the electric vehicle and outputs one of the patterns in response to a pattern command signal, and a circuit that stores the actual speed at that time when the brake force command is lowered. a second circuit that outputs the pattern command signal to the first circuit based on the signal and the brake force command before being lowered; and a pattern output from the first circuit when the brake force command is lowered. The third motor vehicle is configured to decelerate the electric vehicle along the
In the electric vehicle control device, when the brake force command is increased, the pattern existing up to the point corresponding to the increased brake force command and the actual speed signal at that time is controlled by a predetermined circuit. An electric vehicle control device characterized in that a time limit circuit for sequentially storing data in the first circuit with a time limit is provided on the input side of the third circuit.
JP57110105A 1982-06-25 1982-06-25 Controller for electric motor vehicle Pending JPS592507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57110105A JPS592507A (en) 1982-06-25 1982-06-25 Controller for electric motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57110105A JPS592507A (en) 1982-06-25 1982-06-25 Controller for electric motor vehicle

Publications (1)

Publication Number Publication Date
JPS592507A true JPS592507A (en) 1984-01-09

Family

ID=14527161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57110105A Pending JPS592507A (en) 1982-06-25 1982-06-25 Controller for electric motor vehicle

Country Status (1)

Country Link
JP (1) JPS592507A (en)

Similar Documents

Publication Publication Date Title
US3911343A (en) Acceleration control system for electrically propelled traction vehicles
JP2515730B2 (en) Electric vehicle control device
US3918552A (en) Elevator control system
CN104417540B (en) Vehicle
CN107323309A (en) Method, device and system for controlling exit of electric vehicle cruise control operation in downhill
JPS6122671B2 (en)
US4142140A (en) Stepping motor control circuit
JPS592507A (en) Controller for electric motor vehicle
KR840007218A (en) Speed pattern generator and method
CN107253452A (en) Method and device for controlling constant-speed cruise of electric vehicle during limited charging of battery
JPS63124705A (en) Electric car controller
US4516059A (en) Motor control chopper apparatus phase angle limiting
JPS58103805A (en) Controller for electric rolling stock
JP3304464B2 (en) Elevator speed control device
JPH0452041B2 (en)
JP2678414B2 (en) Train speed check device
JPH04504017A (en) Method and apparatus for processing one or more high speed signals through a single high speed input terminal of a microcontroller
JPS6245152B2 (en)
JPS6310641B2 (en)
JP3240069B2 (en) Vehicle speed control device of electric drive vehicle
JPH0767217A (en) Automatic train operating system
CN116278812A (en) Vehicle torque control method and device, electronic equipment and vehicle
KR20210136495A (en) System for controlling vehicle power using big data
JPH06209503A (en) Speed controller for electric railcar
JPS6252521B2 (en)