JPS5924955B2 - flat bottom cylindrical tank - Google Patents
flat bottom cylindrical tankInfo
- Publication number
- JPS5924955B2 JPS5924955B2 JP51069707A JP6970776A JPS5924955B2 JP S5924955 B2 JPS5924955 B2 JP S5924955B2 JP 51069707 A JP51069707 A JP 51069707A JP 6970776 A JP6970776 A JP 6970776A JP S5924955 B2 JPS5924955 B2 JP S5924955B2
- Authority
- JP
- Japan
- Prior art keywords
- force
- tank
- plate
- earthquake
- annular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Description
【発明の詳細な説明】
<要旨の解説>
この発明はタンクの側板下端に一体のアニユラープレー
トに補強を施して該平底円筒タンクの耐震性を高めるよ
うにした平底円筒タンクに関する発明であり、特に、該
アニユラープレート補強としてその上面に環状桁を固設
することにより該アニユラープレートの周方向断面二次
モーメントの増加を図るようにした平底円筒タンクに係
る発明である。[Detailed Description of the Invention] <Explanation of the Summary> The present invention relates to a flat-bottomed cylindrical tank in which the earthquake resistance of the flat-bottomed cylindrical tank is increased by reinforcing an integral annular plate at the lower end of the side plate of the tank. In particular, the invention relates to a flat-bottomed cylindrical tank in which an annular girder is fixed to the upper surface of the annular plate to reinforce the annular plate, thereby increasing the second moment of area in the circumferential direction of the annular plate.
<発明の理論的背景>
ここでこの発明に係る理論的背景を開示すれば以下の通
りである。<Theoretical Background of the Invention> The theoretical background of the invention will be disclosed as follows.
周知の如く第1図に示す様な液体貯蔵タンク1に於ては
通常、側板2は一般に液圧による水平方向の静荷重sを
受ける。As is well known, in a liquid storage tank 1 as shown in FIG. 1, the side plate 2 is generally subjected to a static load s in the horizontal direction due to hydraulic pressure.
これに対して地震等による横振動を受けた際には第2図
に示す様に上記側板2は地震力Eに対するタンク1の自
重、附帯設備等の慣性水平力、横振動に対する貯蔵液の
反慣性運動を介しての偏倚による動的な液圧力、又、そ
の他二重殻低温タンク等の場合はその断熱材等による慣
性水平力等が総乗されて動的な水平力Hがタンク1に働
き、その荷重分布は該第2図に示される様になる。On the other hand, when subjected to lateral vibration due to an earthquake, etc., the side plate 2 is affected by the weight of the tank 1 against the seismic force E, the inertial horizontal force of incidental equipment, etc., and the reaction of the stored liquid against the lateral vibration, as shown in Figure 2. The dynamic horizontal force H is applied to tank 1 by the total multiplication of dynamic liquid pressure due to deflection through inertial motion, and in the case of double-shell low-temperature tanks, inertial horizontal force due to insulation materials, etc. The load distribution is as shown in FIG.
そして、それらの総合力は第3図に示す様ナょ水平力H
と、タンクに対する転倒慣性モーメントMとして働く。
ここで、前記静荷重sに就いては、第4図に示す様にタ
ンク側板2下部と底部3との接合部、及び、その近傍で
は円筒と平板の異なる形状の取合に伴なう変形が生じ、
その荷重分布は第5、6図に示す様に、例えば、側板2
の底部接合部近傍では鉛直方向膜力Ns、前記静荷重s
に対する側板2の底板3による拘束剪断力Qoによつて
生ずる半径方向剪断力Qs、及び、側板2の底板3によ
る拘束曲げモーメントMoに対応する曲げモーメントM
sを受ける。The total force is as shown in Figure 3, which is the horizontal force H
This acts as the overturning moment of inertia M for the tank.
Here, regarding the static load s, as shown in Fig. 4, deformation occurs at the joint between the lower part of the tank side plate 2 and the bottom 3, and in the vicinity thereof due to the combination of the different shapes of the cylinder and the flat plate. occurs,
The load distribution is as shown in Figures 5 and 6, for example, the side plate 2
In the vicinity of the bottom joint, the vertical film force Ns and the static load s
A radial shearing force Qs generated by a restraining shearing force Qo by the bottom plate 3 of the side plate 2 and a bending moment M corresponding to the restraining bending moment Mo by the bottom plate 3 of the side plate 2
receive s.
又、側板2と接合する底板3には上記Moに対する反力
Mo’及びQoに対する反力Qo’が負荷される。Further, the bottom plate 3 connected to the side plate 2 is loaded with a reaction force Mo' to the above-mentioned Mo and a reaction force Qo' to the Qo.
他方、前記地震時の動的な液圧力れ’による場合は、第
7、8図に示す様な荷重分布を生ずる。On the other hand, in the case of the dynamic hydraulic pressure drop during the earthquake, a load distribution as shown in FIGS. 7 and 8 occurs.
即ち、側板2に於ける任意の一点を取りその点を通る半
径と地震荷重方向との成す角度をθとすれば、前記鉛直
方向膜力Nsと地震時転倒モーメント増加分ΔNsco
sθ、前記半径方向剪断力Qsを主として動液圧による
増加分ΔQscOsθ及び、前記縦方向曲げモーメント
Msと地震時転倒モーメントによる増加分ΔM8COS
θが働く。更に、実際には地震時水平力Hが加わつてい
るが、水平力Hにより新たな内力として周方向剪断力N
sθが発生する。該周方向剪断力Nsθは従来のタンク
設計においてはほとんど顧みられなかつた内力であるが
、タンクの大型化、地震条件の苛酷化に伴なつて無視し
得ない要素となりつつあり、この発明の主要因子を形成
させる主眼目とすることろであり、その分布は第8図に
示す様にSin分布をしており、ほぼ900方向で最大
値となることが想定される。That is, if an arbitrary point on the side plate 2 is taken and the angle formed by the radius passing through that point and the earthquake load direction is θ, then the vertical membrane force Ns and the increase in the overturning moment during the earthquake ΔNsco
sθ, an increase in the radial shearing force Qs mainly due to dynamic hydraulic pressure ΔQscOsθ, and an increase in the longitudinal bending moment Ms and the overturning moment during an earthquake ΔM8COS
θ works. Furthermore, although horizontal force H is actually applied during the earthquake, circumferential shear force N is generated as a new internal force due to horizontal force H.
sθ occurs. The circumferential shearing force Nsθ is an internal force that has hardly been considered in conventional tank designs, but as tanks become larger and seismic conditions become more severe, it is becoming a factor that cannot be ignored. This is the main focus for forming factors, and its distribution is a Sin distribution as shown in FIG. 8, and is assumed to have a maximum value in approximately 900 directions.
そして、タンク半径をRとして、第3図に示す様にトー
タルな荷重H.Mと上記諸負荷(Ns、Ms.Qs.N
sθ)分布との関係はとなり、一般には右辺第1項が第
2項に比べてはるかに大きいため、主として地震時の転
倒モーメントMは側板の鉛直方向膜力を発生させるもの
であると考えられる。Then, assuming that the tank radius is R, the total load H. as shown in FIG. M and the above loads (Ns, Ms.Qs.N
sθ) distribution, and since the first term on the right side is generally much larger than the second term, it is thought that the overturning moment M during an earthquake mainly generates the vertical membrane force of the side plate. .
したがつて、現実にはタンクの転倒防止策としては、鉛
直方向力Ns+ΔNsに対応するアンカーボルト4を設
置して上記転倒モーメントMにバランスさせていた。Therefore, in reality, as a measure to prevent the tank from overturning, an anchor bolt 4 corresponding to the vertical force Ns+ΔNs is installed to balance the overturning moment M.
而るに、地震時水平力Hについては
であり、右辺第2項(周方向剪断力増分の総和)が第1
項(半径方向剪断力増分の総相)に比べてはるかに大き
いにもかかわらず、従来タンク設計に当つては充分な考
慮がはられれていなかつた。Therefore, for the horizontal force H during an earthquake, the second term on the right side (sum of circumferential shear force increments) is the first
(total phase of radial shear force increments), but sufficient consideration has not been taken into consideration in conventional tank design.
而して、上記周方向剪断力Nsθは水平力Hが負荷され
る限り、側板に剪断変形を伴ないながら、測板上部から
下部へ伝達されるものであり、地震水平力Eがタンクに
負荷される限り、タンクの水平移動を如何に拘束しよう
が、側板に発生するもので、該側板に生じた上記周方向
剪断力Nsθは側板、アニユラープレートの取合部を経
て底板にも伝わる。その際の、アニユラープレートの側
板取合部に於ける周方向剪断力の分布は第9図に示す様
に第8図の側板に於ける周方向剪断力と同様の傾向を示
し、′よぼ900方向で最大となる。Therefore, as long as the horizontal force H is applied, the circumferential shear force Nsθ is transmitted from the upper part of the measuring plate to the lower part with shearing deformation on the side plate, and the seismic horizontal force E is applied to the tank. As long as the horizontal movement of the tank is restrained, no matter how the horizontal movement of the tank is restrained, the circumferential shearing force Nsθ generated on the side plate will be transmitted to the bottom plate via the joint between the side plate and the annular plate. At that time, the distribution of the circumferential shearing force at the side plate joining part of the annular plate shows the same tendency as the circumferential shearing force at the side plate in Fig. 8, as shown in Fig. It is maximum in the 900 direction.
又、付随的に該剪断力の増減に伴なつて第10図に示す
様に周方向膜力(以下アニユラ一部のフープカと仮称す
る)の発生を見る。Additionally, as the shearing force increases and decreases, the generation of a circumferential membrane force (hereinafter tentatively referred to as a hoop in a part of the annulus) is observed, as shown in FIG.
この時、アニユラ一部のフープカは00方向で引張力、
180ラ方向で圧縮力である。At this time, some hoops of Anyura have a tensile force in the 00 direction,
It is a compressive force in the 180 la direction.
このような側板2からの剪断負荷伝達によつて上記アニ
ユラープレートにも第11図に示す様に所謂「おむすび
形」の剪断変形が生じることは当然であり、底板も同様
に剪断変形をすることになる。As a result of such shear load transmission from the side plate 2, it is natural that the above-mentioned annular plate undergoes a so-called "rice ball-shaped" shear deformation as shown in FIG. 11, and the bottom plate also undergoes shear deformation in the same way. It turns out.
而も、上記アニユラ一部のフープカは側板に逆に伝達さ
れ、該側板のフープカを増加させる結果となり、側板々
厚を増加しなければ安全性が低下する相乗作用がある。However, some of the hoops in the above-mentioned annulus are transmitted inversely to the side plates, resulting in an increase in the hoops on the side plates, and unless the thickness of the side plates is increased, there is a synergistic effect that reduces safety.
即ち、側板、アニユラープレートに於ける剪断応力の発
生に関しては、例えば、[コンビナート保安防災技術指
針」に述べられている如く最大剪断応力説による安全性
評価を行なうならば、許容剪断応力τa、降伏応力σy
の関係はとなり、曲げの許容応力σaは
であることを考慮すれば、従来の設計による側板、アニ
ユラープレート、底板の構造では曲げ設計を主体として
おり、より厳しい剪断設計を主体に考えた時充分な安全
性を有した設計配慮が取られていると認め難い。That is, regarding the occurrence of shear stress in the side plates and annular plate, for example, if safety evaluation is performed based on the maximum shear stress theory as stated in the [Technical Guidelines for Industrial Safety and Disaster Prevention], the allowable shear stress τa, Yield stress σy
Considering that the allowable stress σa for bending is It is difficult to confirm that sufficient safety design considerations have been taken.
そこで、上記平底円筒タンクに作用する地震時の負荷々
重の作用理論を元に従来技術に基づく平底円筒タンクを
勘案すると、タンク設計に当つて底板、就中、アニユラ
ープレート、側板に地震時に発生し、しかも、大きな荷
垂負荷となつている地震時水平力Hにより生ずる周方向
剪断力は考慮されていない構造上の欠点があり、該周方
向剪断力が著しく大きな場合にはタンクに既損を生ずる
危険のあることは勿論のこと、小さな場合でも繰り返し
荷重を受けることにより損傷を生じてタンク機能をマヒ
させる難点があつた。Therefore, when considering the theory of the load acting on the flat-bottomed cylindrical tank mentioned above during an earthquake and taking into account the flat-bottomed cylindrical tank based on the conventional technology, it is found that when designing the tank, the bottom plate, especially the annular plate, and the side plate should be However, there is a structural drawback in that the circumferential shear force generated by the horizontal force H during an earthquake, which is a large load, is not taken into account. Not only is there a risk of damage, but even if it is small, repeated loads can cause damage and paralyze tank function.
く発明の目的〉
この発明の目的は上述従来技術に基づく平底円筒タンク
の耐震構造の問題点を解決すべき技術的課題とし、側板
に対する補強をすることなく、アニユラープレートに発
生する対フープカ増強の補強を施し、合理的な且つ理論
的設計により耐震性のある構造としてエネルギー産業に
おけるタンク利用分野における優れた平底円筒タンクを
提供せんとするものである。OBJECT OF THE INVENTION The purpose of the present invention is to solve the problems of the earthquake-resistant structure of flat-bottomed cylindrical tanks based on the above-mentioned prior art, and to improve the anti-hoop resistance that occurs in the annular plate without reinforcing the side plates. The purpose of the present invention is to provide an excellent flat-bottom cylindrical tank for use in the energy industry as an earthquake-resistant structure with reinforcement and a rational and theoretical design.
〈発明の構成〉
上述目的に沿い先述特許請求の範囲を要旨とするこの発
明の構成は、平底円筒タンクが地震時に水平入力を受け
た際に側板、底板に生ずる該タンク内の貯蔵液、自重の
慣性荷重による水平力Hによつて生ずるタンク破壊危険
度に影響の大きな周方向剪断変形をアニユラープレート
の上面に設けた環状桁の部材にて吸収解消し、アニユラ
一部に於いては周方向剪断力を減少せしめ、或いは、生
じないようにして平底円筒タンクの耐震強度を高めるよ
うにした技術的手段を講じたものである。<Structure of the Invention> In accordance with the above-mentioned object, the structure of the present invention, which is summarized in the above-mentioned claims, is to reduce the amount of liquid stored in the flat-bottomed cylindrical tank and its own weight that is generated on the side plate and bottom plate when the tank receives horizontal input during an earthquake. Circumferential shear deformation, which is caused by horizontal force H due to the inertial load of Technical measures have been taken to increase the seismic strength of the flat-bottomed cylindrical tank by reducing or eliminating directional shearing forces.
く実施例一構成〉次に、この発明の実施例を第12〜1
7図の図面に基づいて説明すれば以下の通りである。Embodiment 1 Configuration> Next, embodiments of the present invention will be described in 12th to 1st embodiments.
The explanation will be as follows based on the drawing of FIG.
第12図に示す実施例に於て、平底円筒タンク5のアニ
ユラープレート6内周所定部位には耐度補強構造を成す
環状の補強桁7が所定間隔を介して垂立一体固設されて
おり、該補強桁7は第13図に示す様に、周方向適宜間
隔を介してリブ8が側板9と該補強桁7との間に、或い
は、底板13、又は、アニユラープレート6と該補強桁
7との間に固定介設されている。12は基礎であつて底
板13と平坦に接して相互に非拘束に設置されており、
14は貯液である。In the embodiment shown in FIG. 12, annular reinforcing beams 7 constituting a resistance reinforcing structure are integrally fixed vertically at predetermined positions on the inner periphery of the annular plate 6 of the flat-bottomed cylindrical tank 5 at predetermined intervals. As shown in FIG. 13, the reinforcing girder 7 has ribs 8 between the side plate 9 and the reinforcing girder 7, or between the bottom plate 13 or the annular plate 6 and the ribs 8 at appropriate intervals in the circumferential direction. It is fixedly interposed between the reinforcing girder 7 and the reinforcing girder 7. 12 is a foundation, which is installed in flat contact with the bottom plate 13 without constraining each other;
14 is a liquid storage.
〈実施例一作用〉上述構成において、平底円筒タンク5
が地震時に際し水平入力を受けるとその側板9、アニユ
ラープレート6等には、前述の如くそれぞれ鉛直膜力、
半径方向剪断力、縦方向曲げモーメント、周方向剪断力
等が相互作用を伴なつて印加される。<Embodiment 1 Effect> In the above configuration, the flat bottom cylindrical tank 5
When it receives horizontal input during an earthquake, its side plate 9, annular plate 6, etc. will experience vertical membrane forces, respectively, as described above.
Radial shear forces, longitudinal bending moments, circumferential shear forces, etc. are applied with interaction.
就中、地震時水平力Hは側板9から底板13に剪断変形
を伴なつて伝達されるが、これによつて生ずる周方向剪
断力、及び、剪断変形は地震入力方向に対してほぼ90
及方向の位置にて最大となるが、この発明においてはア
ニユラープレート6に設けた上記補強桁7によつて側板
9下部とアニユラープレート6と補強桁7で構成される
部分の水平力曲げ剛性が著しく大きくされているため、
この増大された曲げ剛性の抵抗によつて側板9から底板
13に伝達される剪断変形を拘束し、これによつて該補
強桁7より内側の底板13の形状を地震時にも実質的に
円形に保ち、結果として所謂「おむすび状変形」を防止
することによつて剪断応力を低減することが出来る。し
たがつて、底板13での周方向剪断力破壊に対する安全
度は低下せず、平底円筒タンク5は高い耐震性を持つよ
うになり、タンク全体として安全性が高まる。In particular, the horizontal force H during an earthquake is transmitted from the side plate 9 to the bottom plate 13 with shear deformation, and the resulting circumferential shear force and shear deformation are approximately 90 degrees with respect to the earthquake input direction.
However, in this invention, the reinforcing girder 7 provided on the annular plate 6 prevents the horizontal force bending of the lower part of the side plate 9, the annular plate 6, and the reinforcing girder 7. Due to the significantly increased rigidity,
The resistance of this increased bending rigidity restrains the shear deformation transmitted from the side plate 9 to the bottom plate 13, thereby keeping the shape of the bottom plate 13 inside the reinforcing girder 7 into a substantially circular shape even during an earthquake. As a result, shear stress can be reduced by preventing so-called "rice ball-shaped deformation". Therefore, the degree of safety against circumferential shear force failure at the bottom plate 13 does not decrease, and the flat-bottomed cylindrical tank 5 has high earthquake resistance, increasing the safety of the tank as a whole.
尚、上述実施例の他の設計例を示せば、第14図に示す
ものは環状の補強桁15をア三エラープレート16内周
端部に垂設し、リブ17を側板18、補強桁15間に介
装した態様であり、第15図に示す実施例は環状補強桁
19をアニユラープレート20の側板21の外周に垂設
し、リブ22を設けたものであり、又、第16図に図示
する実施例は補強桁23をタンク24外部のアニユラー
プレート25外周端部に垂設し側板26との間にリブ2
7を介装した懸様であり、更に第17図に示す実施例は
補強桁28をアニユラープレート29の側板30を間し
た内外方に垂設し、リブ31を設けた態様である。In addition, to show another design example of the above-mentioned embodiment, the one shown in FIG. In the embodiment shown in FIG. 15, an annular reinforcing beam 19 is vertically disposed on the outer periphery of the side plate 21 of the annular plate 20, and a rib 22 is provided. In the embodiment shown in FIG.
Further, in the embodiment shown in FIG. 17, reinforcing beams 28 are vertically disposed on the inner and outer sides of the annular plate 29 with side plates 30 interposed therebetween, and ribs 31 are provided.
又、この発明は土述実施例のドーム屋根タンクに限るも
のではなく、低温貯蔵タンク、及び、浮屋根タンクをも
含んだ平底円筒タンク一般に適用するものである。Further, the present invention is not limited to the dome roof tank of the embodiment described above, but is applicable to flat bottom cylindrical tanks in general, including low temperature storage tanks and floating roof tanks.
く発明の効果〉
以上この発明によれば、アニユラープレートの上面に補
強桁を設けることにより地震時にタンク本体や貯蔵液の
慣性力によつてタンク自体に働く種々の荷重のうち特に
周方向剪断力を強度設計上の重要な要素として充分な設
計配慮を行なうことになり、アニユラープレートに環状
補強桁を垂設することにより該アニユラープレート部の
周方向断面二次モーメントを増加させ、上記地震時の平
底円筒タンク側板よりアニユラープレートに伝播される
周方向剪断力を著しく減少させることか出来、したがつ
て補強桁付近のアニユラープレート、及び底板に於ける
周方向剪断力による変形を極めて小さくし、その結果、
タンク破壊を防止してその強度を強めることが出来る優
れた効果が奏される。According to the present invention, by providing a reinforcing girder on the upper surface of the annular plate, among the various loads that are applied to the tank itself due to the inertia of the tank body and stored liquid during an earthquake, in particular, the circumferential shear is reduced. We decided to give sufficient design consideration to force as an important element in strength design, and by vertically installing annular reinforcing girders on the annular plate, we increased the moment of inertia of the annular plate in the circumferential direction. It is possible to significantly reduce the circumferential shear force propagated from the side plate of the flat-bottomed cylindrical tank to the annular plate during an earthquake, thereby reducing the deformation caused by the circumferential shear force in the annular plate near the reinforcing girder and the bottom plate. extremely small, and as a result,
The excellent effect of preventing tank destruction and increasing its strength is achieved.
又、例えば、アニユラープレートの板厚を厚くする等し
て同時にアニユラープレート底板に於けるアニユラ一部
フープカの低減を企り、00方向のアニユラ一部フープ
応力を低減させ、タンクの安全性を増加させる効果も奏
される。In addition, for example, by increasing the thickness of the annular plate, we also aim to reduce the annular part hoop force on the bottom plate of the annular plate, reduce the annular part hoop stress in the 00 direction, and improve the safety of the tank. It also has the effect of increasing.
よつて、側板に於ける荷重00方向に就いても上記アニ
ユラ一部フープカに伴なう側板フープカの増加を極力小
さくさせることが出来、側板の耐震強度の低下をも付随
的に防止することが可能となる効果が奏される。Therefore, even when the load on the side plate is in the 00 direction, it is possible to minimize the increase in the side plate hoop due to the above-mentioned annular partial hoop, and it is also possible to incidentally prevent a decrease in the seismic strength of the side plate. The effect of making it possible is achieved.
加えて、タンク形状が円筒であるが故に、如何なる地震
方向に対しても上記耐震性を同様に発揮することが出来
る効果もある。In addition, since the tank is cylindrical in shape, it has the advantage of being able to exhibit the above-mentioned earthquake resistance in the same manner against any earthquake direction.
そしてアニユラープレートと基礎とは非拘束状態である
ため基礎は在来仕様で良い効果もある。Furthermore, since the annular plate and the foundation are not constrained, the foundation has the advantage of being of conventional specifications.
第1図は一般的な平底円筒タンクの側板に働く液静荷重
の説明図、第2図はその地震時の説明図、第3図は地震
時のトータル荷重の説明図、第4図はアニユラ部の斜視
図、第5図は側板の任意の一点に働く静荷重、モーメン
トの説明図、第6図はアニユラ一部に於ける静荷重の説
明図、第7図は地震入力を与えた場合の側板の任意の一
点に働く荷重、モーメント説明図、第8図はそのうちの
周方向剪断力の作用説明図及び動液圧分布図であり、第
9図は周方向剪断力分布説明図、第10図はアニユラ一
部フープカ分布説明図、そして、第11図はアニユラー
プレート3の地震時の剪断変形説明図、第12図以下は
この発明の実施例の説明図であり、第12図は平底円筒
タンクの部分断面斜視図、第13図はその底板、側板附
近の部分断面図、第14〜17図はそれぞれ他の実施例
を示す補強桁の取付説明断面図である。
1,5,24・・・・・・平底円筒タンク、3,6,1
6,20,25,29・・・・・・アニユラープレート
、7,8,15,17,19,22,23,27,28
,31・・・・・・耐震補強部材、7,15,19,2
3,28・・・・・・環状桁、12・・・・・・基礎。Figure 1 is an illustration of the static load acting on the side plate of a typical flat-bottom cylindrical tank, Figure 2 is an illustration of the static load during an earthquake, Figure 3 is an illustration of the total load during an earthquake, and Figure 4 is an illustration of the annulus load. Fig. 5 is an explanatory diagram of the static load and moment acting on an arbitrary point on the side plate, Fig. 6 is an explanatory diagram of the static load on a part of the annulus, and Fig. 7 is when an earthquake input is applied. Fig. 8 is an explanatory diagram of the action of circumferential shearing force and a dynamic hydraulic pressure distribution diagram, and Fig. 9 is an explanatory diagram of circumferential shearing force distribution. Fig. 10 is an explanatory diagram of the hoopka distribution in a part of the annular plate, Fig. 11 is an explanatory diagram of the shear deformation of the annular plate 3 during an earthquake, and Fig. 12 and the following are explanatory diagrams of the embodiments of the present invention. FIG. 13 is a partially sectional perspective view of the flat bottom cylindrical tank, FIG. 13 is a partial sectional view of the vicinity of the bottom plate and side plate, and FIGS. 14 to 17 are sectional views illustrating the installation of reinforcing girders showing other embodiments. 1, 5, 24...Flat bottom cylindrical tank, 3, 6, 1
6, 20, 25, 29... Annular plate, 7, 8, 15, 17, 19, 22, 23, 27, 28
, 31...Seismic reinforcement member, 7, 15, 19, 2
3,28...Annular girder, 12...Foundation.
Claims (1)
強部材を固設する平底円筒タンクにおいて、該耐震補強
部材が環状桁であつて基礎上に非拘束に設けた上記アニ
ユラープレートの上面に断面垂立に固設されてあること
を特徴とする平底円筒タンク。1. In a flat-bottom cylindrical tank in which an annular seismic reinforcing member is fixed to an integral annular plate at the lower end of the side plate, the seismic reinforcing member is an annular girder and has a vertical cross section on the upper surface of the annular plate which is provided unrestricted on the foundation. A flat-bottomed cylindrical tank characterized by being fixed vertically.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51069707A JPS5924955B2 (en) | 1976-06-16 | 1976-06-16 | flat bottom cylindrical tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51069707A JPS5924955B2 (en) | 1976-06-16 | 1976-06-16 | flat bottom cylindrical tank |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS52153223A JPS52153223A (en) | 1977-12-20 |
JPS5924955B2 true JPS5924955B2 (en) | 1984-06-13 |
Family
ID=13410569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51069707A Expired JPS5924955B2 (en) | 1976-06-16 | 1976-06-16 | flat bottom cylindrical tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5924955B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140851A (en) * | 1986-12-02 | 1988-06-13 | Mitsubishi Heavy Ind Ltd | Power generation by water cooled internal combustion engine and hot water generative device |
JPS63118359U (en) * | 1987-01-23 | 1988-07-30 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO331928B1 (en) * | 2010-03-31 | 2012-05-07 | Aker Engineering & Technology | Extruded elements |
CN109439921B (en) * | 2019-01-08 | 2024-06-11 | 成都市微晶特种金属材料有限责任公司 | Oval slab ingot crystallizer |
-
1976
- 1976-06-16 JP JP51069707A patent/JPS5924955B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63140851A (en) * | 1986-12-02 | 1988-06-13 | Mitsubishi Heavy Ind Ltd | Power generation by water cooled internal combustion engine and hot water generative device |
JPS63118359U (en) * | 1987-01-23 | 1988-07-30 |
Also Published As
Publication number | Publication date |
---|---|
JPS52153223A (en) | 1977-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101733091B1 (en) | Buckling Restraint Brace with assembly type steel restraint material | |
US9514907B2 (en) | Member-to-member fuse connection | |
US6474030B1 (en) | Pile foundation structure | |
US5349794A (en) | Wall for damping vibration | |
US5386671A (en) | Stiffness decoupler for base isolation of structures | |
US10851559B2 (en) | Combination of foundation anchor and energy damper for vertical liquid storage tanks, vertical pressure container, silo or the like with a thin wall and a continuous support | |
US2355947A (en) | Storage tank or container and like shell structure | |
JP4414833B2 (en) | Seismic walls using corrugated steel | |
JPS5924955B2 (en) | flat bottom cylindrical tank | |
US8925285B2 (en) | Pressure resisting barrier walls | |
JPH03199581A (en) | Vibration suppressing device for building | |
JP2017082904A (en) | Rod-like vibration isolation member | |
JP4547979B2 (en) | Vibration control pillar | |
JP4998059B2 (en) | Seismic control panel and frame structure using the same | |
JPS593347B2 (en) | Flat bottom cylindrical tank structure | |
JPS5938147B2 (en) | flat bottom cylindrical tank | |
KR102199927B1 (en) | up-lift control and Anti-fall prevention steel box girder bridge | |
JPH08246547A (en) | Pole-beam junction structure | |
JP3826355B2 (en) | Seismic control structure of structure | |
JP2010007395A (en) | Vibration control wall using corrugated steel plate | |
JP3895866B2 (en) | Multistage history damper | |
JP7351271B2 (en) | Steel beams, column-beam joint structures, and structures containing them | |
JP7508495B2 (en) | Damage Control Struts | |
JPH0535973U (en) | Vibration control structure of the body | |
JP2567435Y2 (en) | Pillar hardware |