JPS5924827A - Optical gate modulating method and optical gate - Google Patents

Optical gate modulating method and optical gate

Info

Publication number
JPS5924827A
JPS5924827A JP13295482A JP13295482A JPS5924827A JP S5924827 A JPS5924827 A JP S5924827A JP 13295482 A JP13295482 A JP 13295482A JP 13295482 A JP13295482 A JP 13295482A JP S5924827 A JPS5924827 A JP S5924827A
Authority
JP
Japan
Prior art keywords
optical
light
modulation
gate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13295482A
Other languages
Japanese (ja)
Other versions
JPH0114565B2 (en
Inventor
Tetsuo Kobayashi
哲郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP13295482A priority Critical patent/JPS5924827A/en
Publication of JPS5924827A publication Critical patent/JPS5924827A/en
Publication of JPH0114565B2 publication Critical patent/JPH0114565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To perform high-speed and various modulations with a simple constitution, by giving modulations of the same modulation frequency but of a different phase, to plural light intensity modulators by a modulation driving power source and modulating lights successively to emit them. CONSTITUTION:Modulating electrodes 21-23 different in optical path length are provided on the surface of an electrooptical crystal 20 in accordance with predeterminate optical paths, and a common electrode 24 is provided on the rear face, thus forming a light intensity modulator having different modulation sensitivities. A modulation driving power source 25 is connected to the modulating electrode 21 and the common electrode 24, and modulating electrodes are connected by high frequency paths 26 and 27, and the modulating electrode 23 is connected to the common electrode 24 through a resistive terminator 28, and the lengths of high frequency paths 27 and 28 are adjusted to synchronize with light in accordance with propagation of light. A modulation bias adjusting electrode 29 is provided between electrodes 29 and 24. An incident light 36 has the intensity modulated through the electrode 21 and an analyzer 31 and is reflected by a reflective mirror 34 and is light modulated by the electrode 23 and an analyzer 32 and is reflected by a reflective mirror 35 and is modulated by the electrode 23 and an analyzer 33 and is emitted as a light 37. Consequently, high-speed various modulations are performed with a simple constitution.

Description

【発明の詳細な説明】 本発明は)(、ゲート用変i9i!方法及びこの変Wf
(方法を適用した光ゲートに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention consists of
(Regarding a light gate applying the method.

光信号の短時間ゲート(光スィッチ〕として、従来一般
的に&J tv、気光学変#74器或いは音!〃光学変
ル61器か用いられている。これら変調器を便用する場
合には、これらのゲート幅と同程度の変1lit用’I
ff。
As a short-time gate (optical switch) for optical signals, &J tv, optical modulator #74 or sound! optical modulator 61 has conventionally been used.When using these modulators conveniently, , I for 1lit with the same gate width as these.
ff.

気パルス或いは音響パルスが必要となるか、このような
パルス幅がnsからpsと短かくかつデユー。
Air pulses or acoustic pulses are required, or such pulse widths are short and long, from ns to ps.

ティ比への小さい可1気或い(j肩響パルスを得ること
は困姐若しくは不可能である。これがためこのように短
い光ゲートを得るごとは卸しい。
It is difficult or impossible to obtain a small oscillatory pulse to the tee ratio. This is why obtaining such a short optical gate is expensive.

他方、最近アメリカにおいて、■L気光学効果を用いて
短時間光ゲートを可能とならしめる二つの・理論的方式
が提案された。
On the other hand, two theoretical methods have recently been proposed in the United States that make short-term optical gates possible using the optical effect.

第一の方式は米国のベル研究所のE 、 A 、J 、
Marcatiliが提案した[導波形光方向性結合器
による一短光パルスゲートJ (Applied op
tics vol・19 p1468〜1476(1υ
80〕)である。この第一の方式では、光ゲートを、第
1図に示すように、電気光学結晶lの表向附近に2本の
光導波路2,8を平行に設け、これら光導波路上に電極
4,5をそれぞれ設け、これら電極1川に、高周波電源
6から高周波電圧を印加できるように構成している。こ
の場合、2つの導波jll’+ 21 s間には弱い結
合があり、また11′L界無印加時には両専波路の光伝
倣連反もほぼ等しくなっている。また昂メ坂路艮りを珂
定してこの111界無印力旧Iひには一方の導波路2に
人l・1した光ビームP0が光ゲートの出力部では導波
路8にほぼ完全に移行し光ビームP、として出力!l−
るようになっている。この光ゲートの111.極間に電
圧を印加すると、2つのう!り波路2,3の光伝搬定数
に差異が生じ、このため導仮路lから2への光ビームの
移行は減少若しくは消滅する。従って、?′Iシ極4.
5間に高周波電圧を印加すると、電圧の小さな掻1間(
1週期に2度生ずる〕のみ導波路1より2へと光ビーム
の移行が生じることとなるので、この光ゲートの導波路
2に入射した光ビームP1は市、1.J:。
The first method is E, A, J, of Bell Laboratories in the United States.
[Applied op.
tics vol・19 p1468-1476 (1υ
80]). In this first method, as shown in FIG. 1, the optical gate is provided with two optical waveguides 2 and 8 in parallel near the surface of an electro-optic crystal l, and electrodes 4 and 5 are provided on these optical waveguides. are provided respectively, and the structure is such that a high frequency voltage can be applied from a high frequency power source 6 to one of these electrodes. In this case, there is a weak coupling between the two waveguides jll'+ 21 s, and when no 11'L field is applied, the optical propagation connections of both the special wave paths are almost equal. In addition, we have determined the 111-field Muin force former I, and the optical beam P0 entering one waveguide 2 is almost completely transferred to the waveguide 8 at the output section of the optical gate. Output as a light beam P! l-
It has become so. 111 of this light gate. When a voltage is applied between the poles, two ! A difference occurs in the light propagation constants of the waveguides 2 and 3, so that the transition of the light beam from the waveguide 1 to the waveguide 2 is reduced or eliminated. Therefore? 'I polarity 4.
When a high frequency voltage is applied between 5 and 5, the voltage is small between 1 and 1 (
The light beam P1 incident on the waveguide 2 of this optical gate will be shifted from the waveguide 1 to the waveguide 2 only when it occurs twice in one week. J:.

の小さいト#間には導波路3に移行して光ビームP8と
して出力し、他の時間では移行が起らず、従って原導波
路2から元ビーJ\P1、ツ6信七P8の補信号として
出力し、従ってこの光ゲートは短時間光ゲートとして作
用することができる。尚、Po。
During the time when the beam is small, it transfers to the waveguide 3 and outputs it as a light beam P8, and at other times no transfer occurs, so that the original beam J\P1 and the complement of the original beam J\P1 and the beam P8 are transferred from the original waveguide 2. output as a signal, so that this light gate can act as a light gate for a short time. In addition, Po.

P8. P、のそばにこれら光ビームの強度を略図的に
示しである。
P8. The intensities of these light beams are schematically shown beside P.

しかしなから、この第一方式にょるy6ゲートでは、μ
mサイズの導波信造がj京理的に必γとなるため、光損
傷の観点から高パワーの光を取払えない他、高度な製作
技術が要求されるという欠点がある。さらにこの第一方
式の光ゲートでは高辻動作に不可決な駆動電気信号と光
の途度との整合をとることか困卸であるため実際には実
現されていない。
However, in the y6 gate according to this first method, μ
Since a waveguide of m size is theoretically required, there are disadvantages in that high power light cannot be removed from the viewpoint of optical damage, and advanced manufacturing technology is required. Furthermore, in the optical gate of this first type, it is difficult to match the driving electric signal, which is unreliable for Takatsushi operation, with the timing of the light, so it has not been actually realized.

第二の方式は米国のマツチュセッツエ科大学のH0A、
Haus等が提案した[変θ1j周波数σ)異tcる光
変調器の直列多段接続を利用した光ゲー) J (IE
EEJournal of Quantum Elec
tronic vol、1. QE−16゜p870〜
873.(1980) )である。
The second method is H0A of Matsuthusetse University of Technology in the United States.
J (IE
EEJournal of Quantum Elec
tronic vol, 1. QE-16゜p870~
873. (1980)).

この第二方式による光ゲート(1そJtぞれ4i +よ
萄)しい友ル、゛4振幅を有しているか、倹’ IW!
周波数力(2ω。
The optical gate according to this second method (1 x Jt each 4i + y) has an amplitude of 4, IW!
Frequency force (2ω.

(但しN−1,2,8・・・・)というよう(こjl(
@次番こ倍、倍と異なる光強良度11!l器を多1帽こ
直ダ](こ自己1八して成るものである。この第二方式
の光ゲートσ)作J11について説明する。
(However, N-1, 2, 8...) (this jl(
@Next number, double, different light intensity quality 11! This second type of optical gate σ) will be explained below.

今、変ルI4以外に損失のない11L気光学変ル117
で(ま□2偏′e、同或いは2つの光波間Q)光学位氾
1差をθ(1)とすると、元込過強度T(t)は で表わせる。ここにおいて、Ooはノ<−(アス位第1
4であり、ΔUは裳−1・4位相扱幅、fは変調周波数
で、あり、tは時間である。今、θ。−〇(又はπの整
数倍)と設定すると、(1)式は となる。ここにおいて、さらにΔU−π(ラジアン)と
し、f”−2p−1・fo(p−1、2、・・・M i
 f (1−基本猷ル111周波数〕とすると、(8)
式よりとなる。この(4)式において、p−1+2及Q
・8とした3つの111気九学鮫1;1、口NをこのI
IIL(序で直列(こ配置r’、+した場合のそれぞれ
の電気光学変調器自身の光透過強度すなわち変調!lj
、I性T1,2.3(t)と、最終段から出力される光
の合成光透過強度すなわち合成変調3段の合成変り、’
a ’h性Ttot(t)−T、(t) −T2(t)
 −T8(t)を表わしでおり、これらの説明及び第8
図(a)〜(d)から明らかなように、この光ゲート最
終出力はt。。
Now, there is no loss other than Transform I4, 11L Ki Optical Transform 117
(ma □2 bias'e, the same or Q between two light waves) If the optical degree difference 1 is θ(1), the original overstrength T(t) can be expressed as follows. Here, Oo is ノ<-(first position
4, ΔU is the −1·4 phase handling width, f is the modulation frequency, and t is time. Now, θ. When set to −〇 (or an integer multiple of π), equation (1) becomes. Here, further assume ΔU-π (radian) and f''-2p-1・fo(p-1, 2,...M i
If f (1 - basic frequency 111), then (8)
From the formula. In this equation (4), p-1+2 and Q
・Three 111 Qi Gakusame 1; 1, Mouth N is this I
IIL (series in sequence (this arrangement r', + the light transmission intensity of each electro-optic modulator itself, that is, modulation! lj
, I characteristic T1,2.3(t) and the composite light transmission intensity of the light output from the final stage, that is, the composite change of the three stages of composite modulation,'
a 'h property Ttot(t)-T,(t)-T2(t)
-T8(t), and these descriptions and the eighth
As is clear from Figures (a) to (d), the final output of this optical gate is t. .

1、 、12.18 ・・・・・・の時刻に最大ピーク
を冶する幅狭のパルス状出力となる。従って、このよう
な電気光生変W1′4器を順次にM19(但しp−”+
”+・・・M ) +IJ−列に配t& した場合には
、M段の透過光ゲートの周期は最も長い周期を有する第
1段目の変ル1す、透過ゲートのlll+aは最も高速
の友Wt器(1)−M)一般の構成では得ることができ
ないようなデユーティ比(の小さいパルス光ゲー!・を
得ることが司能となる。
1, , 12.18 . . . , a narrow pulse-like output reaches its maximum peak at times 1, , 12.18, . . . . Therefore, such an electro-optical transformer W1'4 is sequentially converted into M19 (however, p-"+
"+...M) +IJ- When arranged in the column t&, the period of the M stage transmission light gate is the first stage variable 1 which has the longest period, and the transmission gate lll+a is the fastest one. Friend Wt device (1)-M) is capable of obtaining a pulsed light beam with a small duty ratio that cannot be obtained with a general configuration.

この第二方式による光ゲートでは電気光学結晶・に導波
構造を形成するか否かは本質的な問題ではないので、第
一方式による光ゲートにおいて間層1とされた光パワー
の制限及び制作上のltl &iliさはそれ程重要で
はないが、各段の変調器毎にそれぞれ異なる周波数の変
調駆動電源を11/1別に用意しなtJればならないと
いう屯大な欠点がある。さらに、変ル、tの大きさく(
3)式のΔV)をπ程度以上に大きくすると、ゲート波
形が崩れてしまうので、このΔθをそのように大きく選
定できず、従ってゲート幅を知カベするためには高い周
波数(zM−1f、 )で駆動される変a、1器が必要
となる。例えは、1pSの光ゲートを得るためには、1
67 GHzで作動する変w1°d器か必要となる。し
かしながら、変nrh器を高周波数で駆動するための′
&自駆動箪課の入手は極めて困蝕であり、変+p、’a
器の電気回路的な困黄1[な問題(例えは電極間浮遊容
量)も生じ、さらにはMiJ述したと同様に速度整合も
非常に困難となる。この第二方式のゲートもこのような
欠点を有するため未だ実用化に余っていない。
In the optical gate according to the second method, it is not an essential issue whether or not to form a waveguide structure in the electro-optic crystal, so in the optical gate according to the first method, the optical power limit and the production Although the above-mentioned ltl & ili characteristics are not so important, there is a huge drawback in that modulation drive power supplies of different frequencies must be separately prepared for each modulator in each stage. Furthermore, the size of variable t (
If ΔV) in equation 3) is made larger than about π, the gate waveform will collapse, so this Δθ cannot be selected so large. ) is required. For example, to obtain a 1 pS optical gate, 1
A variable w1°d operating at 67 GHz is required. However, in order to drive the transformer at high frequency,
& It is extremely difficult to obtain a self-driving commode, and it is strange+p,'a
This also causes problems with the electrical circuit of the device (for example, stray capacitance between electrodes), and furthermore, as mentioned above, speed matching becomes extremely difficult. This second type of gate also has these drawbacks, so it has not yet been put into practical use.

本発明の目的は上述した従来提案されている光、ゲート
変調方式とは全く異なる方式σ)光ゲート変調方法全提
供することにある。
An object of the present invention is to provide an entire optical gate modulation method (σ) that is completely different from the conventionally proposed optical gate modulation methods described above.

さらに本発明の目的は、光ゲートを人手が容易な単一の
変1i14駆動71源を利用して「111単な構成とし
得る光ゲート変晶遣方法を提供することにある。
A further object of the present invention is to provide an optical gate variable crystallization method in which the optical gate can be made into a simple 111 structure by using a single variable 1i14 drive 71 source that is easy to handle.

ざらに本発明の目的は大きなノマワーの光を取扱ったり
集瑣小形化を図ること弯・の1l)il応性に優れるト
共ニピコ秒(10−12秒)にまで及ぶ超窩連動作が用
龍な高途光ゲートを得ることができるようにした光ゲー
ト変WrA方法を提供することにある。
Roughly speaking, the purpose of the present invention is to handle a large amount of light and to miniaturize the collection. An object of the present invention is to provide an optical gate modification WrA method that allows obtaining a high-speed optical gate.

本発明のさらに他の目的は光ゲートの総合変調透過波形
を多様にibl制御できる光ゲート変FJ4方法を提供
することにある。
Still another object of the present invention is to provide an optical gate variation FJ4 method that can control the total modulation transmission waveform of the optical gate in various ways.

本発明のさらに他の目的はこの光ゲート変θ11方法を
適用した光ゲートを提供することにある。
Still another object of the present invention is to provide an optical gate to which this optical gate changing θ11 method is applied.

これらの目的の達成を図るため、本発明によれば、光路
中に複数個の光強度変調器を順次に具える光ゲートに入
射した光をRt94させて出射させるに当り、1個の変
W1を駆動′電源から全ての前記光強[& m+j器に
対し同一の変調周波数を共通に与え及・び前記光強度変
調器1器の各々に対し、変ル、+fi位相振幅、変調バ
イアス位相及び俊読高周波位相の各変W1′1因子から
選はれたー又は二級」二の昶調因子を異ならしめて、前
記光強度変調器の各々にそれぞれ異なる変調特性を与え
ることを1ζ′r徴とする。
In order to achieve these objects, according to the present invention, when the light incident on the light gate which sequentially includes a plurality of light intensity modulators in the optical path is outputted with Rt94, one variable W1 The same modulation frequency is commonly given to all the light intensity modulators from the power supply, and the variable, +fi phase amplitude, modulation bias phase and The 1ζ'r characteristic is to make different modulation factors selected from each variable W1'1 factor of the quick-read high frequency phase to give different modulation characteristics to each of the optical intensity modulators. shall be.

さらに、本発明の好適実施例においては、N個全ての0
iJ記光jjiji度変調益の変、v1″1バイアス位
相を()又はπ(ラジアン〕の整数(j’iとじ及びJ
(但しj−1,2,・・・N)番目の光強度変調器の変
ii1.’i位相振’l’iilをπx 2]−’ (
ラジアン)近傍に設定にることができる。
Furthermore, in a preferred embodiment of the invention, all N 0
iJ write optical jjiji degree modulation gain change, v1''1 bias phase () or an integer of π (radians) (j'i and J
(However, j-1, 2, . . . N)th optical intensity modulator change ii1. 'i phase amplitude'l'iil πx 2]-' (
radians).

さらに本発明の元ゲートによれは、光路中にIIIIJ
次に配)aされかつそれぞれの変調特性を異ならしめた
作数個の光強度変調器と、これら光強屋汝ル1f11器
を共通の同一の変調周波数で駆動するため該光強度変調
器に接続された1個の変NrA駆動電τlb−とを具え
ることを特徴とする。
Furthermore, according to the original gate of the present invention, IIIJ is present in the optical path.
Next, a number of optical intensity modulators are arranged, each having different modulation characteristics. It is characterized by comprising one variable NrA drive voltage τlb- connected thereto.

以下、図面につき本発明の実施例につき説明する。Embodiments of the present invention will be described below with reference to the drawings.

先ず、杢りh明の原理から説明する。First, the principle of heathering will be explained.

今、複数例の光強度変ルー′1器がN細光路中に順次に
直列に配置されていて光ゲートが構成されているとする
。J査目一段の光強度変、ν1′j器の各変ル11因子
、すなわちバイアス位相をU。Jとし、変調位相振幅を
Δθ とし、変Wj遇高周波位相をα、とすると、J 
W LT (D 光’jm U ’!? 調’d# (
1,)光r JICIo IIL Tj(シ)は(3)
式より (但し J−1+2+・・・Nとする)となる。この(
5)式の右辺の〔〕の中がπ(ラジアンノの整数倍(0
を含む)となる時1iJ1 tの近傍でTj(t)〜1
となり、6過強曳にピークが現われる。
Assume now that a plurality of light intensity variable loops are arranged in series in N narrow optical paths to form a light gate. The light intensity variation of the first stage of the Jth scan, the 11 factors of each variation of the ν1′j device, that is, the bias phase are U. J, the modulation phase amplitude is Δθ, and the high frequency phase when variable Wj is α, then J
W LT (D light 'jm U'!? key'd# (
1,) light r JICIo IIL Tj (shi) is (3)
From the formula (however, J-1+2+...N) is obtained. this(
5) The value in brackets on the right side of the equation is π (an integer multiple of radianno (0
), then Tj(t) ~ 1 in the vicinity of 1iJ1 t
, and a peak appears at 6 super-strong pulls.

このヒ′−りの中litすなわちゲート1lIljlは
変1.i (立相(辰ψ畠Δθjか大きい稈短かくなる
が、これと同時に一周期中に現われるピークの数も増加
してしまい、従って一段のみの光強L(変調器では良質
の短時間ゲートは得られない。
The inside of this gate, ie, the gate 1lIljl, is changed to 1. i (The large culm becomes shorter, but at the same time, the number of peaks that appear in one cycle also increases, so the light intensity L of only one stage (the modulator requires a high-quality short-time gate) cannot be obtained.

一方、変調特性すなわちl”IJ a過ゆIII見T、
(t)の異なる光強度変ρ1′l器を例えばN個直列に
光路中に配置した光ゲートの全体の光1カ過、7!Ij
度T、。1(t)はTtot(t)−T1(t) x 
T2(t) x ・T、(t)      (o)で与
えられる。従って、光Jn1度変調器の各々に対し共ノ
mの同一の駆動変ルIa周t)12i々を与えても、変
8N4内子である変11・1位相jlA ’l’i11
ΔOv 1変θ1′4バイアスイj″f相(’ 0 ]
 、変ril:i高高層位相α、を各光強度変調器のそ
れぞれに対し個別的に適当に選定ず−ることによって、
これら光強1り変1Dil器にス・1しそれぞれ英4J
゛る雀ル1v特性を与え、これら要調相性の合成によっ
て光ゲートから知11!J間光ゲート波形やその他4’
!Ii々の形状の光ゲート波形のような単体の光強度変
調器では得られない’A−fu、“i特性、変R’−波
形を得ることができる。
On the other hand, the modulation characteristics, i.e.,
One light beam passes through an optical gate in which, for example, N light intensity transformers ρ1′l with different values (t) are arranged in series in the optical path, 7! Ij
Degree T. 1(t) is Ttot(t)-T1(t) x
T2(t) x ・T, (t) (o) is given. Therefore, even if we give each of the optical Jn 1-degree modulators the same driving variable Ia of common m and the rotation t)12i, the variable 11·1 phase jlA 'l'i11 which is the inner child of the variable 8N4
ΔOv 1 change θ1′4 bias Ij″f phase (' 0 ]
, by appropriately selecting the variable ril:i high phase α for each optical intensity modulator individually.
These light intensity 1 variable 1 Dil devices are each 4J English.
By giving the 1v characteristics of the 1V, and by combining these important compatibility, we can understand 11! from the light gate! J optical gate waveform and other 4'
! It is possible to obtain 'A-fu', 'i-characteristic, and variable R'-waveforms that cannot be obtained with a single optical intensity modulator, such as optical gate waveforms of various shapes.

本発明はこのような原理に基づくものであり、全ての光
強反駁1i11’!器に対し単一の周波数駆動源から同
一の比較的低い変調層r11数を共通に与えると共に各
光強度変調器毎にそれぞれの変ル111因チを適当に慮
定し、よって光ゲート全体の合成のずなわち総合変W、
′1特性を所斐のものとするようになしている。尚、1
)11述の変調周波数は全ての光強度変調器に対し共1
■1に変えることもできる。
The present invention is based on such a principle, and all light and strong refutations 1i11'! The same relatively low modulation layer r11 number is commonly given to the optical gates from a single frequency driving source, and the respective variables 111 factors are appropriately considered for each optical intensity modulator. The nature of composition, that is, the synthetic change W,
'1 characteristic is set to a certain value. Furthermore, 1
) The modulation frequency described in 11 is the same for all optical intensity modulators.
■You can also change it to 1.

第3図は本発明によ4J元ゲート変ル、′1方法による
裟fui°4特性のd1゛稈にノI(つく−例を71<
ず櫂しjであって、細軸にiM過光強度T1(t) 、
Tz(t) 、To(L) + T@0z(t)を夫々
とり、4’&i 11ql+にi−tをそれぞれとって
いる。この場合には光ゲートを3段+1i“I成とし7
、各1々の光強度変個1器の変’fJr4 !トシ性す
なわち光Jた過’jilt I旦’、[’コ(t) (
但しJ”−1+ ” + 8 )の波形と、総合変調特
性すなわち総合透過強度゛れ。t(t)−Tよ(t)X
 T2(シ)X T8(t、)波形を+11vt次に第
3図(a)〜(d)に示しである。尚、この場合、バイ
アス位相U。コー0及び変調高層υに位相α3 ” 0
と前足しかつkNj過位相振輻ΔOJ−πX2J−’(
j−1+2+8)としている。この第8図に示す計算例
から、この8段構成の光ゲートのゲート幅は一周期の3
〜4%程度と非′Kに短かくなり、このことからチュー
ティ比゛への小さな元パルスゲートが得られることが一
1〃乙。
FIG. 3 shows an example of 71<
The small axis has the iM excess light intensity T1(t),
Tz(t) and To(L) + T@0z(t) are respectively taken, and it is taken as 4'&i 11ql+, respectively. In this case, the optical gate is set to 3 stages + 1i "I" and 7
, each one light intensity variable one variable 'fJr4! Toshi nature, that is, light J passed 'jilt Idan', ['ko(t) (
However, there is a difference between the waveform of J''-1+''+8) and the overall modulation characteristic, that is, the overall transmission intensity. t(t)-T yo(t)X
T2(shi)X T8(t,) waveforms are shown in +11vt in FIGS. 3(a) to 3(d). In this case, the bias phase U. phase α3 ” 0 to the co 0 and modulation upper υ
and the front leg and kNj overphase oscillation ΔOJ−πX2J−′(
j-1+2+8). From the calculation example shown in Fig. 8, the gate width of this 8-stage optical gate is 3 times one period.
It becomes very short to about ~4%, and from this it is possible to obtain a small original pulse gate to the Tutey ratio.

次に第4図な診照して本発明の変調方法を適用した光ゲ
ートの基本的構成例につき説明する。
Next, an example of the basic configuration of an optical gate to which the modulation method of the present invention is applied will be explained with reference to FIG.

第4図において、10−1〜10− Nは光ゲートを1
イヴ成するため光路中に原1次に11′ノ列に配置tシ
させたN (N″:2’2 )個の光強側1.“1器で
あり、これら変’e!j器を個別の変が1器1月1結晶
を月4いて或いは1個の共1111 (1)結晶に個別
的に形成しでらよい。この光ゲートの一段目の変θ・1
器10−1の左側から入射した入射光13をN段目の右
側か1:)出ね・1するようになしている。尚、14は
出射光を示す。12は変iu;1駆動111.課で最大
でも数十Gf(z l□1度の周仮数であり、この1リ
ペ動1u1詠で個々の変W、を器10−1〜10−Nを
全て同一の変昭1周波数で駆動する。そして前述した様
に各段の変勘1器の変1ν、□1+ !tar性はy4
ならしめ、そのためK 漕因子すなわち変調バイアス位
相、変調位相振幅及び変W、′d高周波位相を変、lL
%器毎にそれぞれ設定している。この変調バイアスイ〜
“f相は光の位相であり例えは既知の内部的、外rfR
I’l’Jな光学的又はtit気光学的手段により設定
できる。またに調位相3’k ll’f+1を変化させ
るには、例えは、各段へ供給する変調電力若しくは電圧
を調整する方法の他、各段の変化!J tli極の長さ
を変えること等番こより、各段の変調感度を変化させる
方法及びこれら方法を組合わせる方法等がある。また変
調高周波()L相を変化させるには、例えば、高周波位
相シフタを変化11局周波駆動電源と各変i!1.1器
間に設けたり各変ルj1器間の島周波線路長とか光路長
と力)を調整して高1に波位相シフタの代用とすること
もできる。そこで第4図に示す基本構成例では、変1ν
1′1器の各段番こヌ寸する変調バイアス位相及び各段
番こ対する目J力111に力若しくは電圧或いは各段の
変調感度を光ゲート全体の総合変i11!l特性が所要
の特性となるよう番こ和1々の値に設定されており、各
段の変1νj器10−1〜10−Nとy<動電fA12
との間にそれぞれ対1.トする高周波位相シフタ15−
1.15−2.15−8、・・・・・・、15−(N−
1)、15− Nを設【す、こσ〕位相シフタによって
各斐θ11器毎に光及び変W1を用高周波の走行時間の
差によって生ずる変調タイミングのずれを個別的に補正
したり、或I/MGよ、こ0)K調タイミングを積極的
にずらすようにして光ゲートのゲート波形を所要の波形
にflj制御するよう番こなしている。
In Fig. 4, 10-1 to 10-N are optical gates 1
In order to create an image, there are N (N": 2'2) light intensity side 1."1 devices arranged in the original 1st order 11' row in the optical path, and these strange 'e! (1) The crystals may be individually formed into one crystal per month, or one crystal may be formed individually. The change θ・1 of the first stage of this light gate
The incident light 13 entering from the left side of the vessel 10-1 is output from the right side of the Nth stage. Note that 14 indicates the emitted light. 12 is variable iu; 1 drive 111. In the section, the maximum is several tens of Gf (z l□ 1 degree circular mantissa, and with this 1 repetition motion 1 u 1 chant, each of the units 10-1 to 10-N are all driven at the same 1 degree frequency) Then, as mentioned above, the change 1ν, □1+ !tar property of each stage is y4
normalizing, so that K factor, i.e. modulation bias phase, modulation phase amplitude and variation W, 'd varies high frequency phase, lL
Each percentage is set individually. This modulation bias
“The f phase is the phase of light, for example the known internal and external rfR
It can be set by optical or tit optical means. Furthermore, in order to change the modulation phase 3'k ll'f+1, for example, in addition to adjusting the modulation power or voltage supplied to each stage, there is also a method of changing each stage! There are methods such as changing the length of the J tli pole, changing the modulation sensitivity of each stage, and combining these methods. To change the modulated high frequency ()L phase, for example, change the high frequency phase shifter and change the 11 station frequency drive power supply and each i! 1. It is also possible to use it as a substitute for a wave phase shifter in height 1 by providing it between two transformers or by adjusting the island frequency line length, optical path length, and force between each transformer. Therefore, in the basic configuration example shown in FIG.
1' The modulation bias phase corresponding to each stage number of the device and the force or voltage or modulation sensitivity of each stage corresponding to each stage number are changed to a total change of the entire optical gate i11! The value of the harmonic sum is set to 1 so that the l characteristic has the required characteristic, and the variable 1νj transformers 10-1 to 10-N of each stage and y<electrodynamic fA12
and 1. High frequency phase shifter 15-
1.15-2.15-8, 15-(N-
1) The phase shifter 15-N is used to individually correct the shift in the modulation timing caused by the difference in the transit time of the high frequency wave used for the light and the variable W1 for each θ11 device, or I/MG, please actively shift the K key timing to flj control the gate waveform of the optical gate to the required waveform.

上述した第4図の基本構成例からもわかる様に、光ゲー
トを構成するところの光路中に順次に直列に配置された
各段の光fA曳変W、を器の変θ、を位札撮幅、Ki1
!lバイアス位相及び変W1°4 、t、i511d坂
位相を仕刈に法定して異1(らしめて各段の変調器の変
mad特性を異ならしめ、よつ°C光ゲート全体の総合
変’fJ:4 Q、′I性(変W1+A波形もn゛む)
を多様に選択できるととなる。
As can be seen from the basic configuration example shown in FIG. 4 above, the light fA displacement W of each stage arranged in series in the optical path constituting the light gate is expressed as the vessel variation θ, Shooting width, Ki1
! The l bias phase and the variable W1°4, t, i511d slope phase are determined by law to make the variable mad characteristics of the modulators at each stage different, and the overall change of the entire optical gate is made. fJ: 4 Q, 'I property (variable W1 + A waveform is also n゛)
This means that you can choose from a variety of options.

次に第5図及び第6図を用いて本発明光ゲート及びその
変?J11力法の具体例につき説明する。尚、いずれの
実施例も光強度変jjli、j器を8段とした場合につ
き説明する。
Next, using FIG. 5 and FIG. 6, what is the optical gate of the present invention and its variations? A specific example of the J11 force method will be explained. In each of the embodiments, a case will be described in which the light intensity changer jjli, j has eight stages.

第5図に示す光ゲートの実施例では、特定の光線波路を
設けておらす、1個の電気光学結晶20の一方の表1T
ti上に予定の光路に対応させてそれぞれ光路に沿う方
向の長さの異なる第1.第2及び第8変調電極21’、
22.11を設けると共に、他方の表面上に共通1L極
24を設けて、光路中に順次に配置にされた8個の友ル
4感度のそれぞれ異なる光強度変W1′i器を形成する
。これら各変化4器に変調用高調波電圧を与えるため、
変?Jjg駆動電源25を第1変Wjd電極21と共通
電極24との間Gこ接続し、さらに第1及び第2変調電
極21及び22間、及び第2及び第3変ル1゛a電極2
2及び28間をそれぞれ尚周波線路26及び27で接L
llj L’ 、さらにこσ)第3貧it!! ?W 
Jむ(を)r+<反射終端28を終て共1FJJ 7t
’b極24に接続し、よってiw ray、 25に、
&−I Lこれら6電IJJ、 21 、22 、28
が直列に接続す乞ようになしてし)る。これら高周波線
路26及び27の長さを適当に選定し高周波′電圧の伝
11(a 117r間や位相σ)iν・“a整を行ない
、光の伝搬に合わせて光と同期させることかできるよう
にする。29は変化1′dノくイアス位相を変化させる
ため、電気光学結晶20の一方の表面上の、光路に対1
心する個Fjrにnr安に応じて設けた変調バイアスル
ja整用゛市榔(図中ザ)線を施して示す)であり、こ
の’IIf、 g429と共通電極24との間に接続し
た電源80からの1し圧を調整して光のノ(イアス位相
をv4整できるようになしている。図中、31゜32.
88は検光子、34.35はプリズム又は反、射鏡等の
光学素子である。
In the embodiment of the optical gate shown in FIG.
ti, corresponding to the planned optical path, the first . second and eighth modulation electrodes 21';
22.11 is provided, and a common 1L pole 24 is provided on the other surface to form eight light intensity modulators W1'i each having a different sensitivity and having four sensitivities arranged sequentially in the optical path. In order to apply harmonic voltage for modulation to each of these four changers,
strange? The Jjg driving power source 25 is connected between the first variable Wjd electrode 21 and the common electrode 24, and is further connected between the first and second modulating electrodes 21 and 22, and between the second and third variable electrode 1a electrode 2.
2 and 28 are connected by high-frequency lines 26 and 27, respectively.
llj L', furthermore σ) 3rd poor it! ! ? W
Jmu(wo)r+<Reflection end 28 both 1FJJ 7t
'b connected to pole 24, thus iw ray, 25,
&-IL These 6 electric IJJ, 21, 22, 28
are connected in series). By appropriately selecting the lengths of these high-frequency lines 26 and 27, the propagation of the high-frequency voltage 11 (between a and 117r and the phase σ) iν・a can be adjusted so that it can be synchronized with the light according to the propagation of the light. 29 changes the Ias phase by a change of 1'd.
A modulation bias voltage is provided in accordance with the nr value for the target Fjr (shown with a line in the figure), and a power supply connected between this 'IIf, g429 and the common electrode 24. By adjusting the pressure from 80 to 80, the phase of the light can be adjusted to v4. In the figure, it is 31°, 32.
88 is an analyzer, and 34.35 is an optical element such as a prism or a reflection mirror.

この光ゲートでは入射光86は図中破線で示す光路を経
て出射光87として出力される。すなわち入射光36は
第1変W11電i+U、+ 21及び検光子31を通じ
て光強良度Ni4され、次に反射鏡(又はプリズム)3
4で反射され、次に第2変調′電極22及び検光子82
で再度光度1u7dされ、続いて(I)度反射鏡(又は
プリズム)35でノ又り・(された後第8変θ11笥7
榔23及び検光子33で+1度光J+ti度変調を受け
てlりr要の総合変1p8−特性を有する射出光37ど
して出力される。この際、所IJi+に+tCじて電極
29を介し光のバイアス位相をiil!i 整する。4
段以上の多段の場合には、段数に対応した数の変化El
 ?ii、極や光学素子をそれぞれ設けてやれはよい。
In this optical gate, incident light 86 is outputted as outgoing light 87 through an optical path indicated by a broken line in the figure. That is, the incident light 36 passes through the first variable W11 electric i+U, +21 and the analyzer 31 to have a light intensity Ni4, and then passes through the reflecting mirror (or prism) 3.
4 and then the second modulation' electrode 22 and analyzer 82.
The luminous intensity is reduced to 1u7d again at
The beam 23 and the analyzer 33 modulate the +1 degree light J+ti degrees and output it as an emitted light 37 having a general change characteristic of 1p8-. At this time, the bias phase of the light is changed to iil! via the electrode 29 at +tC at IJi+. i Adjust. 4
In the case of multiple stages of stages or more, the change in number El corresponding to the number of stages
? ii. It is good to provide poles and optical elements respectively.

尚、これらの各電極及び光学素子の配置11は設定ずべ
き光路にルレ1じて任煎所望に選定し得る。又、出射光
37の一部を検出し、その信号を変f9.1バイアス藺
6!lけ用の% IIに80にフィードバックさせてL
 1lfdバイアス位相の111」御のmA K安定化
を図ることもできる。
The arrangement 11 of these electrodes and optical elements can be selected as desired depending on the optical path to be set. Also, a part of the emitted light 37 is detected and the signal is changed to f9.1 bias 6! Feed back 80 to % II for L
It is also possible to stabilize mAK by controlling the 1lfd bias phase by 111''.

第6図は本発明の光ゲートの他の具体的実施例を示し、
この場合には電気光学結晶40に所望の゛パターンで光
導波路41を設け、この光導波路41の、形成されるべ
き変調器に対応した部分に所要の11L極42−1.4
2−2;48−1.43−2.44−1.44−2<図
中窄1線を施して示す)を夫々設けて第1.第2及び第
71バランスドブリツジ形光強度変i’、l!器42 
、43及び44を形成している。尚、この光導波路に対
する1狂極の位1aは所要に応じ洪べばよい。勿1ki
fl %これら電極の組はそれぞれ容度u・′l器の設
定すべきび!: iff!!感度にj心じたb′りなる
長さを有している。またし1示例では変N、′]駆動電
源45をそれぞれの変Wt電極4.2−1.42−2 
i 43−1 、43−2 i 44−1 + 44−
2に対し高周波位相シフタ46,4・7及び48を設け
て光と変調駆動′厖圧との同期を行なっている。尚、こ
の高周波位相シフタを用いる代わりに第5図に示すよう
に各′酢極間を蔦周波線路で接続してもよい。この光ゲ
ートの場合には、入射光49は光導波路41に沿って実
線矢印で示すように各変調器42.48.44を柱て辿
みそれぞれ光強度変ル、tを受けてji)r mの総合
変調特性(変W11波形を含む)の出射光50として出
力される。
FIG. 6 shows another specific embodiment of the optical gate of the present invention,
In this case, an optical waveguide 41 is provided in the electro-optic crystal 40 in a desired pattern, and a required 11L pole 42-1.4 is provided in a portion of the optical waveguide 41 corresponding to the modulator to be formed.
2-2; 48-1.43-2.44-1.44-2 (shown with a single line in the figure) are provided respectively. 2nd and 71st balanced bridge type light intensity changes i', l! Vessel 42
, 43 and 44. Incidentally, the number of one pole 1a for this optical waveguide may be increased as required. No need 1ki
fl % Each of these electrode sets should be used to set the capacity u・'l device! : if! ! It has a length b' which is based on the sensitivity. In addition, in one example, the drive power source 45 is connected to each of the variable Wt electrodes 4.2-1.42-2.
i 43-1 , 43-2 i 44-1 + 44-
High-frequency phase shifters 46, 4, 7, and 48 are provided for 2 to synchronize the light and the modulation driving pressure. Incidentally, instead of using this high frequency phase shifter, as shown in FIG. 5, the respective ′′ vinegar poles may be connected by a vine frequency line. In the case of this optical gate, the incident light 49 traces the modulators 42, 48, 44 along the optical waveguide 41 as shown by the solid arrows, receives a light intensity change, t, and then changes to The output light 50 has an overall modulation characteristic of m (including the variable W11 waveform).

尚、上述した電気光学結晶や’I(f、枠拐相は従来が
ら電気光早変1Url器に使用されている結晶や43判
を使用でき、又結晶」二への?lj極の設は方はm y
/l、川4’S(、貼付けその他一般的方法で杓ない得
る。さらに各変hrh器ljJ、に電気光学結晶をfl
l’il別的に使用してもよいし又各夛ル1′j器を共
]1flの1個のTtf、気光学結晶に集積化してもよ
く、後者の場合には光ゲートを小形化し得ると共にlh
A 1丈特性の安定化を図ることができる。
In addition, for the electro-optic crystal and 'I(f) frame phase mentioned above, the crystal used in conventional electro-optic quick change 1Url devices and 43 size can be used, and the setting of the ?lj pole for the crystal '2' can be used. The direction is m y
/l, river 4'S (, obtained by pasting or other common methods.Furthermore, attach an electro-optic crystal to each transformer ljJ,
The light gate may be used separately, or each device may be integrated into a single TTF of 1fl, and an optical crystal; in the latter case, the optical gate can be miniaturized. As I get it lh
A1 It is possible to stabilize the length characteristics.

又、本発明においては変θiJ周坂数駆動蚕課として1
つの電脈(マスター)若しくはそれによって完全に冊(
、+1される初数個の同一周波数のlit課(スレーブ
〕を用いてもよい。
In addition, in the present invention, 1
one electric vein (master) or a complete book (
, +1 may be used for the first few lit units (slaves) of the same frequency.

次に上述した本発明による光ゲート昶w・1方法及び光
ゲートの効果につき説明する。
Next, the effect of the optical gate w.1 method and optical gate according to the present invention described above will be explained.

本発明によれは、各光強良友e# hNに対し共J11
1の同一の変rJ!h周波数を供給するため、人手容易
な比較的低い周波数の唯1個の変θ7711に&動屯課
を使用できることとなり、これがため光ゲートを安価な
小°形かつfiN便なltl成となし得ると共に各段の
光強良友θ’! <’iの同期は、位相調整が必要とな
るが、自動的に行なうことかできる。
According to the present invention, for each Kogyo Yoshitomo e#hN, the J11
1 identical variation rJ! In order to supply the h frequency, it is possible to use the & moving unit for the only variable θ7711 with a relatively low frequency that is easy to handle, and this allows the optical gate to be made into an inexpensive, small-sized, fiN-convenient LTL configuration. Along with each stage of Kouyoshi Yoshitomo θ'! <'i synchronization requires phase adjustment, but can be performed automatically.

さらに本発明によれは、それぞれ相異なる変W、′1特
性をイ21するツC強良度ル1′4器を光路に111列
に配tkt シている。従って、光ゲートの総合変Vr
h特性の洪択のll’id k広げることができ、よっ
てr% ’Rにルトして多様に変iν1°1波形を!l
!II御したり、九二屯パルスを発生させたり、光パル
ス整形等を行なうことができる。
Furthermore, according to the present invention, 111 rows of C strength filters each having different W and '1 characteristics are arranged in the optical path. Therefore, the total change of the optical gate Vr
It is possible to widen the h characteristic's ll'id k, thus turning it to r% 'R and changing the iν1°1 waveform in various ways! l
! II control, generation of 92-ton pulses, optical pulse shaping, etc.

さらに、デユーティ比懇の小さいビニ1秒に及ぶ短時間
光ゲートを得ることかでき1.)らにG、1単体の光強
曳変riot器では得られない変N・−lP、ν性や変
ル・″d波形を得ることかできる。
Furthermore, it is possible to obtain a short-time optical gate of about 1 second with a small duty ratio.1. ) In addition, it is possible to obtain variable N・-lP, ν characteristics and variable L・″d waveforms that cannot be obtained with a G, 1 single optical intensity transducer.

さらに、本!56明によれば従来提案されているような
超、届周波の変、1M周波数を使用しないので、′亀j
ij11間賓11′cや光走竹効朱に起因する不hr望
な問題が生じないため、ツC強良度n’ta器の構成が
簡単かつ容易となる。
Plus, books! According to Akira 56, since he does not use the 1M frequency that has been proposed in the past,
Since there are no undesirable problems caused by ij 11 senbin 11'c or light running bamboo effects, the construction of the TS C strength n'ta device becomes simple and easy.

さらに、本発明によれは光信号に対し光導波路を設ける
必然性は全くないので(但し小形化のたの光導波路を設
けることは可Nls’である)、光損傷の問題の生ずる
おそれがなく高パワーの光を取νシえると共に、高度な
製作技ヤ14が必要とならず、光ゲートを容易かつ安価
に製造することができる。
Furthermore, according to the present invention, there is no necessity to provide an optical waveguide for optical signals (however, it is possible to provide an optical waveguide for miniaturization), so there is no risk of optical damage and high performance. The optical gate can be easily and inexpensively manufactured without requiring a sophisticated manufacturing technique 14, in addition to being able to take high-power light.

本づ6明により、大出力より小出力までの光信号の短時
間で品速度ゲートを161便に達成でき、さらに卸元パ
ルス、光クロツクパルス等を発生させたり、また光信号
全ピコ秒σI ll+r I+il梢り丈でゲート制御
(サンプリング検出)することかb■能となり、<i(
1って通信、計測、光情報ダト坤、加工、光技術(+I
t究等の多方向で利用できる。
With this invention, it is possible to achieve a product speed gate of 161 times in a short time for optical signals from high output to low output, and also to generate wholesaler pulses, optical clock pulses, etc. Gate control (sampling detection) at I + il treetop height becomes b ■ function, and < i (
1 means communication, measurement, optical information, processing, optical technology (+I
It can be used in many directions such as research.

さらに本発明の適用例としては1シδ辻ツr;ゲート、
短光パルス発生器、光ザンブリングオツシロスコープ、
ツ6波ル観渾1器、ツ6バルス計測器、ぞの他1等があ
る。
Furthermore, as an application example of the present invention, one series δ Tsujitsur; gate,
Short optical pulse generator, optical sambling oscilloscope,
There is one 6-wave observation instrument, 6-wave measurement instrument, and 1 other instrument.

【図面の簡単な説明】[Brief explanation of drawings]

第1Iz目°Jf重来(11!案された光ゲート変軸方
法の説明に供する4J−図、 第2図は位−来提案された他の光ゲート変W、(1方法
の説明に供する線図、 第3図は本発明の光ゲート変W、′4方法及び光ゲート
の原理を説明するための線図、 第4図は本発明による光ゲート変1l11′d方法及び
光ゲートのシ、(本釣47′り成例を説明するための線
し1、第5図及び第6図は本発明による光ゲートの具体
的実施例をそれぞれ示す線図である。 10−I N10−N 、42.43.44・・・光強
度変W114器、12.25.48・・・変W1′1周
波数駆動′71↑’、 +I!ル、13,86゜4υ・
・・入射光、14,37.50・・・出!’l=j光、
15−1〜15−N、46.47.48・・・高周波位
相シ7り、20.40・・・電気光学結晶、21,22
,23.42−1゜42−2.43−1.48−2.4
4−−1.44−2・・・変Wlt電極・24・・・共
通電極、26.27・・・高周波線路、28・・・無反
射終端、29・・・変W4バイアス調整用電極、30・
・・電赤、31,32.88・・・検光子、84゜85
・・・プリズム又は反射i、41・・・光導波路。 第1図 第2図 第3図
1st Iz° Jf Shigai (11! Figure 4J-presents for explanation of the proposed method of changing the axis of the optical gate, Figure 2 shows another optical gate modification W proposed since then, (11!) 3 is a diagram for explaining the optical gate modification method and the principle of the optical gate according to the present invention. FIG. , (Line diagram 1 for explaining the construction example of the main fishing 47'), FIG. 5, and FIG. 6 are diagrams showing specific embodiments of the optical gate according to the present invention, respectively. 10-I N10-N , 42.43.44... Light intensity variable W114 device, 12.25.48... Variable W1'1 frequency drive '71↑', +I! Le, 13,86°4υ・
...Incoming light, 14,37.50...Out! 'l=j light,
15-1 to 15-N, 46.47.48...High frequency phase shifter, 20.40...Electro-optic crystal, 21,22
,23.42-1゜42-2.43-1.48-2.4
4--1.44-2... Variable Wlt electrode, 24... Common electrode, 26.27... High frequency line, 28... Non-reflection termination, 29... Variable W4 bias adjustment electrode, 30・
...Denka, 31,32.88...Analyzer, 84°85
... Prism or reflection i, 41... Optical waveguide. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 L 光路中に複数個の光強良度?1111′aを順次に
具える光ゲートに入射した光を変θ・tさせて出射させ
るに当り、1個の変ルを駆動電源から全て0) f4i
J記光強度変調器に対し同一の変W1°1周波数を共通
に与え及び前記光強度変調器の各々に対し、変調位相撮
幅、変調バイアス位相及び変調高周波位相の各変W1“
イ囚子から造ばれた−又は二以上の変調因子を、異なら
しめて、前記光強度変調器の各々にそれぞれ異なる変θ
11特性を与えることを特徴とする光ゲート変調方法。 LN(k’a全ての前記光強良度−14器の変W1tバ
イアス位相を0又はπ(ラジアン)の整数倍とし及びj
(但し’J −1+ ” +・・・1()番目の光強度
変調器の変W4位相振+111i1をπX 2,1−1
 (ラジアン)近傍に設定することを特徴とする特許請
求の範囲l記載の光ゲート圀調方法。 & 光路中に順次に配置されかつそれぞれの俊〃6特性
を異ならしめたすll/数個の光強度変調器T器と、こ
れら光強度変調器j器を共通の同一の変ル11周波数で
駆動するため該光強度変調器に接続された1(llIj
の友Wl駆動1it 諒とを具えることを特徴とする光
ゲート。
[Claims] L: Multiple light intensity levels in the optical path? In order to change the light incident on the light gate sequentially equipped with 1111′a and output it by changing θ·t, one variable is connected to the driving power source by setting all 0) f4i.
The same variable W1°1 frequency is commonly given to the light intensity modulators J, and each variation W1" of the modulation phase imaging width, modulation bias phase, and modulation high frequency phase is applied to each of the light intensity modulators.
or two or more modulation factors are made different from each other, and each of the light intensity modulators has a different modulation factor θ.
An optical gate modulation method characterized by providing 11 characteristics. LN(k'a) The variable W1t bias phase of all the optical intensity -14 devices is set to 0 or an integer multiple of π (radian), and j
(However, 'J -1+ '' +...1()-th optical intensity modulator's variable W4 phase amplitude +111i1 is πX 2,1-1
2. The method of adjusting the light gate field according to claim 1, wherein the light gate field adjustment method is set in the vicinity of (radian). & Several optical intensity modulators arranged sequentially in the optical path and each having different characteristics, and these optical intensity modulators are connected to the same frequency at a common frequency. 1 (llIj) connected to the optical intensity modulator for driving
An optical gate characterized in that it comprises a tomo Wl drive 1it.
JP13295482A 1982-07-31 1982-07-31 Optical gate modulating method and optical gate Granted JPS5924827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13295482A JPS5924827A (en) 1982-07-31 1982-07-31 Optical gate modulating method and optical gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13295482A JPS5924827A (en) 1982-07-31 1982-07-31 Optical gate modulating method and optical gate

Publications (2)

Publication Number Publication Date
JPS5924827A true JPS5924827A (en) 1984-02-08
JPH0114565B2 JPH0114565B2 (en) 1989-03-13

Family

ID=15093377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13295482A Granted JPS5924827A (en) 1982-07-31 1982-07-31 Optical gate modulating method and optical gate

Country Status (1)

Country Link
JP (1) JPS5924827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326619A (en) * 1986-07-21 1988-02-04 Oki Electric Ind Co Ltd Waveguide type optical wavelength filter
JP2007333985A (en) * 2006-06-14 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> Electro-optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497017A (en) * 1972-05-09 1974-01-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497017A (en) * 1972-05-09 1974-01-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326619A (en) * 1986-07-21 1988-02-04 Oki Electric Ind Co Ltd Waveguide type optical wavelength filter
JP2007333985A (en) * 2006-06-14 2007-12-27 Nippon Telegr & Teleph Corp <Ntt> Electro-optical element

Also Published As

Publication number Publication date
JPH0114565B2 (en) 1989-03-13

Similar Documents

Publication Publication Date Title
US3459466A (en) Optical beam peak power amplifier and buncher
US3813142A (en) Electro-optic variable phase diffraction grating and modulator
US3532890A (en) Optical multiplexing and demultiplexing systems
US5177630A (en) Method and apparatus for generating and transferring high speed data for high speed testing applications
US5033826A (en) High temporal resolution optical instrument
US4504121A (en) Interferometric multimode fiber optic switch and modulator
EP0081177A2 (en) Polarization-insensitive optical switch and multiplexing apparatus
CS214762B2 (en) Appliance for laser data and characters reading
US3736045A (en) Fast optical guided wave modulator and digital deflector
CN102713731B (en) Photonic match filter
WO2023030049A1 (en) Dual-path acousto-optic interference-based ultra-high speed frequency division method for laser pulse repetition frequency
US3961841A (en) Optical pulse position modulator
JPS5924827A (en) Optical gate modulating method and optical gate
US20230006760A1 (en) Method and apparatus for optical pulse sequence generation
US4628473A (en) System for autocorrelating optical radiation signals
JPH0375847B2 (en)
JP2006126759A (en) Light modulator
GB1497166A (en) Liquid crystal display arrangements
JPH04507012A (en) Multi-channel integrated light modulator for laser printers
RU2687513C1 (en) Device for adaptive time profiling of ultrashort laser pulses
JPS61502423A (en) Polychromatic acousto-optic deflector
JP2591003B2 (en) Pulse multiplex optical system
JPH02170142A (en) Waveguide type optical control device and driving method thereof
Lin et al. Acousto-optic multichannel programmable true time delay lines
SU1584083A1 (en) Digital controllable delay line