JPS5924619B2 - battery charging device - Google Patents

battery charging device

Info

Publication number
JPS5924619B2
JPS5924619B2 JP9282179A JP9282179A JPS5924619B2 JP S5924619 B2 JPS5924619 B2 JP S5924619B2 JP 9282179 A JP9282179 A JP 9282179A JP 9282179 A JP9282179 A JP 9282179A JP S5924619 B2 JPS5924619 B2 JP S5924619B2
Authority
JP
Japan
Prior art keywords
charging current
voltage
current
battery
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9282179A
Other languages
Japanese (ja)
Other versions
JPS5619345A (en
Inventor
俊 片柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji National Industrial Co Ltd
Original Assignee
Meiji National Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji National Industrial Co Ltd filed Critical Meiji National Industrial Co Ltd
Priority to JP9282179A priority Critical patent/JPS5924619B2/en
Publication of JPS5619345A publication Critical patent/JPS5619345A/en
Publication of JPS5924619B2 publication Critical patent/JPS5924619B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は電池充電装置に関する。[Detailed description of the invention] The present invention relates to a battery charging device.

電池を又流電源忙利用して光電する場合、トリクル充電
電流は、電池の寿命の関係から電池の定格容量のl/2
0以下に定められている。
When a battery is used for photovoltaic power supply, the trickle charging current is 1/2 of the battery's rated capacity due to battery life.
It is set to 0 or less.

したがつて定格容量がたとえば1800mAnの電池で
は、そのトリクル充電電流は90mA以下でなければな
らない。ところが又流電源特に商用交流電源は必ずしも
常に一定ではな<、そのためこの変動によつても充電電
流は前記した1/20以下になるようにしておかなけれ
ばならない。そこで従来では、その予想最大変動によつ
てもl/20をこえないように、予め元電電流を充分小
さくしているが、そのためには当然充電電流は小さ〈な
らざるを粋ない。しかし充電電流が小さいときは、電池
の放電時におけるその放電電流を大きくすることができ
な(・し、あるいは放電時間を長くすることができない
欠点がある。この発明は交流電圧が変動しても、充電電
流を常に一定に保つようにし、これによって大きい充電
電流で電池を充電することを目的とする。
Therefore, for a battery with a rated capacity of, for example, 1800 mA, its trickle charging current must be 90 mA or less. However, current power sources, especially commercial AC power sources, are not always constant, so even with this fluctuation, the charging current must be kept at 1/20 or less of the above value. Conventionally, therefore, the source current is made sufficiently small in advance so that even the expected maximum fluctuation does not exceed 1/20, but for this purpose, it is natural that the charging current must be small. However, when the charging current is small, the discharge current cannot be increased when the battery is discharged (or the discharge time cannot be lengthened). , the purpose is to keep the charging current constant at all times, thereby charging the battery with a large charging current.

この発明は充電電流を比較器によつて定値と比較し、そ
の比較結果の論理出力を積分してその積分出力によつて
光電電流を一定値に、維持するようにしたことを特徴と
する。この発明の実施例を図によつて説明すると、1は
交流電源の端子、2はトランス、3は全波整流装置、4
は充電対象の電池、5は充電抵抗、6は電池4の逆放電
を防止するダイオード、Tは充電電流を増減するトラン
ジスタ回路で、ダーリントン接続されたトランジスタ8
、9から構成される。
The present invention is characterized in that the charging current is compared with a fixed value by a comparator, the logical output of the comparison result is integrated, and the photoelectric current is maintained at a constant value by the integrated output. An embodiment of the present invention will be described with reference to the drawings. 1 is a terminal of an AC power supply, 2 is a transformer, 3 is a full-wave rectifier, and 4 is a terminal of an AC power supply.
is a battery to be charged, 5 is a charging resistor, 6 is a diode that prevents reverse discharge of battery 4, T is a transistor circuit that increases or decreases the charging current, and Darlington-connected transistor 8
, 9.

光電抵抗5の両端に生ずる電圧は増巾器10によって増
巾され、更にコンデンサ11によつて平滑される。これ
によつて得られる直流電圧Eは充電抵抗5に流れる光電
電流に比例する。前記電圧Eは比較器12に与えられる
。比較器12には別にツェナーダイオード13のツェナ
ー電圧による基準電圧EKが与えられている。比較器1
2刀・らは、EK〉Eのとき論理出力1を出し、EK<
Eのとき論理出力0を出す。この出力はコンデンサ14
による積分回路15によつて積分され、その積分出力が
トランジスタ8のベースに与えられる。比較器12、ト
ランジスタ回路T等がない場合、交流電圧の波高値が規
準値であるときの充電電流を第2図のAであるとすれば
、交流電圧の波高値が大きくなれば、充電電流はBのよ
うに、又交流電圧の波高値が小さぐなれば、充電電流は
Cのように変化する。そして充電電流がBのように増大
したとき、これが電池容量から定まるトリクル充電電流
をこえてしまうことは前述したとおりである。今図の構
成において、交流電圧の波高値が規準値であるとすると
、そのときの充電電流によって定まる充電抵抗5の端子
電圧に基いて比較器12に与えられる電圧Eが基準電圧
EKより大きいとすれば、比較器12の論理出力は0と
なるが、積分回路15のため、トランジスタ8のベース
電位は直ちに低下せず、時間の経過にしたがつて徐々に
低下する。
The voltage appearing across the photoresistor 5 is amplified by an amplifier 10 and further smoothed by a capacitor 11. The DC voltage E thus obtained is proportional to the photoelectric current flowing through the charging resistor 5. The voltage E is applied to a comparator 12. A reference voltage EK based on the Zener voltage of the Zener diode 13 is separately applied to the comparator 12 . Comparator 1
Two swords and others output logic output 1 when EK>E, and EK<
When E, a logic output of 0 is output. This output is capacitor 14
is integrated by an integrating circuit 15, and its integrated output is given to the base of transistor 8. If there is no comparator 12, transistor circuit T, etc., and if the charging current when the peak value of the AC voltage is the standard value is A in Figure 2, then as the peak value of the AC voltage increases, the charging current changes as shown in B, and as the peak value of the AC voltage decreases, the charging current changes as shown in C. As described above, when the charging current increases as indicated by B, this exceeds the trickle charging current determined from the battery capacity. In the configuration shown in the figure, assuming that the peak value of the AC voltage is the standard value, if the voltage E given to the comparator 12 based on the terminal voltage of the charging resistor 5 determined by the charging current at that time is greater than the reference voltage EK. Then, the logic output of the comparator 12 becomes 0, but because of the integration circuit 15, the base potential of the transistor 8 does not drop immediately, but gradually drops as time passes.

この低下にしたがつてトランジスタ9のコレクタ電流、
すなわち充電電流も徐々に減少する。この減少にしたが
って、電圧Eが低下し、これにより基準電圧Ekより低
くなると、比較器12の論理出力は1となる。しかし積
分回路15のため、トランジスタ8のベース電位は直ち
に増大せず、時間の経過にしたがつて増大する。この増
大によつてトランジスタ9のコレクタ電流すなわち充電
電流も増大する。以下これを繰返す。積分回路15の放
電時定数が交流電圧の半波の周期より長がいとすれば、
このときの充電電流の波形は第3図のAに示すようにな
る。ここで交流電圧の変動によつてその波高値が高かく
なつたとする。
According to this decrease, the collector current of transistor 9,
In other words, the charging current also gradually decreases. According to this decrease, the voltage E decreases and becomes lower than the reference voltage Ek, and the logic output of the comparator 12 becomes 1. However, because of the integration circuit 15, the base potential of the transistor 8 does not increase immediately, but increases over time. Due to this increase, the collector current of transistor 9, that is, the charging current also increases. Repeat this below. If the discharge time constant of the integrating circuit 15 is longer than the half-wave cycle of the AC voltage, then
The waveform of the charging current at this time is as shown in A of FIG. Now suppose that the peak value becomes higher due to fluctuations in the AC voltage.

このときも、電圧Eと基準電圧EKとの比較によつてト
ランジスタ8のベース電位が変動するが、基準電圧Ek
は、前述した場合とは何ら変るところがないので、トラ
ンジスタ9のコレクタ電流、すなわち光電電流は同じと
なる。実際には交流電圧の波高値が高力・くなったので
、その父流電流波形の裾が広がるため、充電電流が同じ
であれば、第3図のBに示す充電電流波形のように、波
形Aと同じ面積となるように、波形Aよりも波高値は低
くなる。逆に父流電圧の変動によつてその波高値が低く
なったときでもトランジスタ9のコレクタ電流は同じと
なり、この場合の光電電流波形は第3図のCに示すよう
に波形Aと同じ面積と同じになるようにその波高値は高
かくなる。ここでもし積分回路15がな(・とすると、
たと.えば電圧Eが基準電圧Ekより大きくなつたこと
により比較器12の論理出力がOとなると、直ちにトラ
ンジスタ8のベース電位が低下し、トランジスタ8にし
や断されてしまつて充電電流が流れなくなつてしまう。
At this time as well, the base potential of the transistor 8 fluctuates by comparing the voltage E and the reference voltage EK, but the reference voltage Ek
Since there is no difference from the case described above, the collector current of transistor 9, that is, the photoelectric current is the same. In reality, since the peak value of the AC voltage has become high, the tail of the current waveform becomes wider, so if the charging current is the same, it will look like the charging current waveform shown in B in Figure 3. The peak value is lower than that of waveform A so that it has the same area as waveform A. Conversely, even when the peak value decreases due to fluctuations in the father current voltage, the collector current of transistor 9 remains the same, and the photoelectric current waveform in this case has the same area as waveform A, as shown in Figure 3C. The peak value becomes higher so that they remain the same. Here, if the integrator circuit 15 is
And. For example, when the logic output of the comparator 12 becomes O because the voltage E becomes larger than the reference voltage Ek, the base potential of the transistor 8 immediately decreases, and the transistor 8 is suddenly cut off, so that no charging current flows. Put it away.

すなわちこれによつて充電電流はその断続を繰返すこと
になつてしまう。し力・し電池の放電電流の所定値を確
保するためには充電電流として必要な電流量を供給しな
ければならないのに、前記のように充電電流が断続すれ
ば、充電電流が流れない期間が発生することによつて、
このままでは充電電流として必要な電流量が確保できな
〈なる。この必要な電流量の確保のために、波高ピーク
値の高い電流波形の充電電流を供給しなければならない
ことになるが、このような波高ピーク値の高い充電電流
を供給すれば、電池の電極が損傷されてしまうようにな
る。ところが積分回路15を設けて卦けば、比較器12
の論理出力がOとなつても、直ちにトランジスタ8のベ
ース電位が低下せず、徐々に低下するようになる。そし
てトランジスタ8がしや断するに至るまでに、電圧Eが
低下するので、比較器12の論理出力は1となり、トラ
ンジスタ8のベース電位は上昇する。このようにして、
トランジスタ8はしや断されることがないので、充電電
流は増減こそすれ、断続することはない。したがつて充
電電流としては波高ピーク値の高い電流を流す必要はな
いので、電池の電極と損傷させることもない。以上詳述
したように、この発明によれば交流電圧を整流して電池
を充電する場合、交流電圧が変動しても光電電流を一定
にすることができ、したがつて従来のように電圧変動を
見越して予め充電電流を低下させて卦く必要はなくなり
、もつて電池の放電電流を大きくすることができる効果
を奏する。
In other words, this causes the charging current to be repeatedly interrupted. In order to secure a predetermined value for the discharging current of a battery, it is necessary to supply the necessary amount of charging current, but if the charging current is intermittent as described above, there will be a period during which no charging current flows. By the occurrence of
If this continues, it will not be possible to secure the amount of current required as the charging current. In order to secure this necessary amount of current, it is necessary to supply a charging current with a current waveform with a high peak value, but if such a charging current with a high peak value is supplied, the battery electrode becomes damaged. However, if the integrating circuit 15 is provided, the comparator 12
Even when the logic output of the transistor 8 becomes O, the base potential of the transistor 8 does not immediately decrease, but gradually decreases. Since the voltage E decreases until the transistor 8 is finally turned off, the logic output of the comparator 12 becomes 1, and the base potential of the transistor 8 increases. In this way,
Since the transistor 8 is never turned off, the charging current increases and decreases without being interrupted. Therefore, it is not necessary to flow a current with a high peak value as a charging current, so that there is no possibility of damaging the battery electrodes. As described in detail above, according to the present invention, when rectifying AC voltage to charge a battery, the photoelectric current can be kept constant even if the AC voltage fluctuates, so that voltage fluctuations can be avoided as in the conventional case. It is no longer necessary to reduce the charging current in advance in anticipation of this, and the effect is that the discharge current of the battery can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す回路図、第2図は従来
構成の充電電流の波形図、第3図はこの発明による充電
電流の波形図である。 1・・・・・・交流電源端子、3・・・・・・全波整流
装置、4・・・・・・電池、5・・・・・・充電抵抗、
7・・・・・・トランジスタ回路、10・・・・・・増
巾器、12・・・・・・比較器、13・・・・・・ツエ
ナダイオード、15・・・・・・積分回路。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a waveform diagram of a charging current in a conventional configuration, and FIG. 3 is a waveform diagram of a charging current according to the present invention. 1... AC power supply terminal, 3... Full wave rectifier, 4... Battery, 5... Charging resistor,
7...Transistor circuit, 10...Amplifier, 12...Comparator, 13...Zena diode, 15...Integrator circuit .

Claims (1)

【特許請求の範囲】[Claims] 1 交流電圧を全波整流して電池に充電電流を供給する
電池充電装置において、前記充電電流に比例する電圧と
基準電圧とを比較する比較器と、前記比較器の論理出力
を積分する積分回路と、前記積分回路の積分出力によつ
て前記充電電流を一定に保つように前記充電電流を制御
するトランジスタ回路とからなる電池充電装置。
1. A battery charging device that full-wave rectifies an alternating current voltage and supplies charging current to the battery, including a comparator that compares a voltage proportional to the charging current with a reference voltage, and an integrating circuit that integrates the logic output of the comparator. and a transistor circuit that controls the charging current so as to keep it constant based on the integral output of the integrating circuit.
JP9282179A 1979-07-21 1979-07-21 battery charging device Expired JPS5924619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9282179A JPS5924619B2 (en) 1979-07-21 1979-07-21 battery charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9282179A JPS5924619B2 (en) 1979-07-21 1979-07-21 battery charging device

Publications (2)

Publication Number Publication Date
JPS5619345A JPS5619345A (en) 1981-02-24
JPS5924619B2 true JPS5924619B2 (en) 1984-06-11

Family

ID=14065090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9282179A Expired JPS5924619B2 (en) 1979-07-21 1979-07-21 battery charging device

Country Status (1)

Country Link
JP (1) JPS5924619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047007Y2 (en) * 1985-12-30 1992-02-25

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719369B2 (en) * 1988-10-31 1998-02-25 松下電工株式会社 Charging device
JP2731131B2 (en) * 1995-07-26 1998-03-25 松下電工株式会社 Constant current control circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047007Y2 (en) * 1985-12-30 1992-02-25

Also Published As

Publication number Publication date
JPS5619345A (en) 1981-02-24

Similar Documents

Publication Publication Date Title
US7834592B2 (en) Circuit for generating triangular waveform having relatively short linear rise time and substantially long linear fall time
US3462643A (en) Switching type voltage and current regulator and which can include voltage doubling means for a load
JPS5924619B2 (en) battery charging device
US3863129A (en) Battery charger
US3500127A (en) Switching type voltage and current regulator and load therefor
JP3152120B2 (en) Constant voltage charger
JPS635406Y2 (en)
JP2001264367A (en) Power-failure detection circuit
JPS58148633A (en) Automatic charger
JPH0145223Y2 (en)
JPH0622537A (en) High-voltage power supply protector
KR910006688Y1 (en) The circuit of charging with electricity for a.c.
KR920002186Y1 (en) Circuit recharging of battery
JPS58103834A (en) Charging circuit using switching power source
JPH0731070A (en) Pulse charger
JPH0670461A (en) Inverter power supply circuit
SU849461A1 (en) Capacitor charging device
KR100217049B1 (en) Current limiting circuit of power ic proportioned by input power
JPH0510557Y2 (en)
JPH0732545B2 (en) Charging circuit for rechargeable vacuum cleaners
JPH07143683A (en) Charging circuit
JPH06284729A (en) Power-supply circuit
JPS6016170B2 (en) DC power supply
JPH10197923A (en) Power circuit
JPS6029196B2 (en) discharge lamp lighting device