JPS5924524B2 - Magnetic circuit using anisotropic magnet - Google Patents

Magnetic circuit using anisotropic magnet

Info

Publication number
JPS5924524B2
JPS5924524B2 JP9016779A JP9016779A JPS5924524B2 JP S5924524 B2 JPS5924524 B2 JP S5924524B2 JP 9016779 A JP9016779 A JP 9016779A JP 9016779 A JP9016779 A JP 9016779A JP S5924524 B2 JPS5924524 B2 JP S5924524B2
Authority
JP
Japan
Prior art keywords
magnet
magnetic
anisotropic
magnetic flux
shield plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9016779A
Other languages
Japanese (ja)
Other versions
JPS5613705A (en
Inventor
加津衛 剣持
保 若畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9016779A priority Critical patent/JPS5924524B2/en
Publication of JPS5613705A publication Critical patent/JPS5613705A/en
Publication of JPS5924524B2 publication Critical patent/JPS5924524B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 本発明は異方性マグネットを用いた磁石製品に関するも
ので、異方性マグネット成形品とその磁石性能を高める
ためのシードル板との組み合わせ形状に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnet product using an anisotropic magnet, and relates to a combination shape of an anisotropic magnet molded product and a cider plate for improving its magnetic performance.

本発明の目的はマグネット表面で得られる磁束密度を高
めることにある。
An object of the present invention is to increase the magnetic flux density obtained at the magnet surface.

本発明の別の目的はマグネットとシールド板の一体化構
造を得ることにある。
Another object of the present invention is to obtain an integrated structure of a magnet and a shield plate.

同一面上に複数の極を有する磁石の場合、極が設けられ
る反対の面に、鉄板等のシールド板を設けて磁石の効率
を高めることは公知である。
In the case of a magnet having a plurality of poles on the same surface, it is known to increase the efficiency of the magnet by providing a shield plate, such as an iron plate, on the opposite surface from which the poles are provided.

第1図は平面上に4極を設けた例であり、マグネット1
とシールド板2との接した面と反対の面3にN極および
S極が設けられている。第2図はシールド板が無い場合
であり、マグネット4に設けられたN極およびs極に集
まる磁束Φ。は磁石の中を通過する磁束φ1”と磁石を
通過した後大気中を通り、再び磁石中を通過する磁束Φ
2の和となる。シールド板の効果は磁石の近傍に透磁率
の高い材質を設けることにより、励起される磁束Φ2の
量を多くすることにあり、そのことが極の表面磁束密度
を高める。また異方性フエライトマグネソト、異方性マ
ンガンアルミマグネット、異方性希土類マグネットなど
、異方性マグネットのように磁石としての性能が方向に
よつて異なる粉末を樹脂中に分散させ、磁石として機能
させる方向に配向させた成形品においては、等方性に比
べ内部を通過する磁束Φ1が減少し、代りにΦ2が増大
する(第3図参照)。
Figure 1 shows an example in which four poles are provided on a plane, with magnet 1
An N pole and an S pole are provided on the surface 3 opposite to the surface in contact with the shield plate 2. FIG. 2 shows the case where there is no shield plate, and the magnetic flux Φ gathers at the N and S poles provided on the magnet 4. is the magnetic flux φ1” that passes through the magnet, and the magnetic flux Φ that passes through the magnet, passes through the atmosphere, and passes through the magnet again.
It becomes the sum of 2. The effect of the shield plate is to increase the amount of excited magnetic flux Φ2 by providing a material with high magnetic permeability near the magnet, which increases the surface magnetic flux density of the pole. In addition, powders such as anisotropic ferrite magnets, anisotropic manganese aluminum magnets, and anisotropic rare earth magnets, which have different magnetic performance depending on the direction, are dispersed in resin and function as magnets. In a molded product oriented in the direction in which the magnetic flux is oriented, the magnetic flux Φ1 passing through the interior decreases compared to an isotropic product, and instead, the magnetic flux Φ2 increases (see FIG. 3).

従つてシールド板の効果はさらに大きくなる。更に、磁
石の厚さをある一定限度まで厚くすることにより得られ
る表面磁束密度は大きくなる。こうしたことは既に知ら
れており、様々な工夫がなされている。それにも拘らず
、BHmm1.0MG0eの異方性フェライト系樹脂マ
グネットで得られる ゛表面磁束密度ぱ1000ガウス
程度である。本発明は磁気的効率を高め、従来法では実
現できない高磁束密度を得る構造を提供し、他方でシー
ルド板との一体構造を提供する。即ち、異方性マグネッ
ト成形品の配向方向に垂直な面および配向方向と平行な
面に各々シールド材を設けて、両シードル材を磁気的に
接続することにより、磁束の集中を実現することが本発
明の基本とするところである。
Therefore, the effect of the shield plate becomes even greater. Furthermore, by increasing the thickness of the magnet to a certain limit, the surface magnetic flux density obtained increases. This is already known, and various efforts have been made. Despite this, the surface magnetic flux density obtained with an anisotropic ferrite resin magnet with a BHmm of 1.0 MG0e is approximately 1000 Gauss. The present invention provides a structure that increases magnetic efficiency and obtains a high magnetic flux density that cannot be achieved with conventional methods, while providing an integral structure with a shield plate. In other words, concentration of magnetic flux can be achieved by providing a shield material on a surface perpendicular to the orientation direction and a surface parallel to the orientation direction of the anisotropic magnet molded product, and magnetically connecting both shield materials. This is the basis of the present invention.

実施例を用いて説明すれば、第4図は本発明を実施する
磁気回路構造の一例を示す断面図であり、異方性マグネ
ット5ぱS−N方向で配向しており、SPCC(冷間圧
延鋼板)厚み16TW1のシールド片6を包み込んでい
る。
To explain using an example, FIG. 4 is a cross-sectional view showing an example of a magnetic circuit structure implementing the present invention, in which an anisotropic magnet 5 is oriented in the S-N direction, (Rolled steel plate) It wraps around a shield piece 6 with a thickness of 16TW1.

シールド板7もSPCCよりなり、マグネツトの配向方
向に垂直な面に接し、かつシールド片6と接している。
マグネツトは異方性フエライト粉を60体積パーセント
含有したナイロン系の樹脂マグネツトであり、その磁気
特性は配向方向でBHwrml.lMGOeである。マ
グネツトの寸法は厚さ8wnである。こうしてなる磁気
回路でのシールド片6の表面(N極表示)での磁束密度
は1500ガウスである。同様の材質のマグネットを用
いた同じ厚さの表面磁束密度は均一配向状態で350ガ
ウス程度であり、着磁により部分的に極を設け磁束集中
をはかつても1000ガウス程度である。従来このよう
な構造では磁気回路上の問題があるとされて来た。第5
図は従来例としてスピーカの界磁部の断面図を示すもの
であり、リング状の等方性フエライトマグネツト8の底
面に接するポールピース9とマグネツト8の上面に接す
る円板状の磁性体10とからなり、ポールピース9と磁
性体10とのスキ間11に磁束を集中されて用いている
。こうした例ではマグネツト8とポールピース9の軸と
のギヤツプtがある程度確保されていることが必髪であ
り、少なくとも磁束を集中させるスキ間11より広いこ
とを髪する。これはポールピース9の軸とマグネツト8
との内面との間で発生する漏れ磁束を極力抑えるためで
ある。然るに、本発明の如き構造は、異方性マグネツト
に付して極めて有効である。
The shield plate 7 is also made of SPCC, and is in contact with a surface perpendicular to the orientation direction of the magnets, and is also in contact with the shield piece 6.
The magnet is a nylon resin magnet containing 60% by volume of anisotropic ferrite powder, and its magnetic properties are BHwrml. It is lMGOe. The dimensions of the magnet are 8wn thick. In this magnetic circuit, the magnetic flux density at the surface of the shield piece 6 (indicated by N pole) is 1500 Gauss. The surface magnetic flux density using a magnet made of similar material and having the same thickness is about 350 Gauss in a uniformly oriented state, and the magnetic flux concentration by partially forming poles by magnetization is about 1000 Gauss. Conventionally, such a structure has been considered to have problems with the magnetic circuit. Fifth
The figure shows a cross-sectional view of the field part of a speaker as a conventional example, and shows a pole piece 9 in contact with the bottom surface of a ring-shaped isotropic ferrite magnet 8 and a disk-shaped magnetic body 10 in contact with the top surface of the magnet 8. The magnetic flux is concentrated in the gap 11 between the pole piece 9 and the magnetic body 10. In such an example, it is essential that the gap t between the magnet 8 and the axis of the pole piece 9 be maintained to some extent, and it must be at least wider than the gap 11 that concentrates the magnetic flux. This is the axis of pole piece 9 and magnet 8
This is to suppress leakage magnetic flux generated between the inner surface and the inner surface as much as possible. However, the structure of the present invention is extremely effective when applied to anisotropic magnets.

その理由は、磁力線の通り易い方向が限定されているた
め、配向方向に平行な面での漏れ磁束の発生が少ないた
めである。また第4図に卦いて、N極を形成するシール
ド片6とS極を形成するマグネツト5の表面とが極めて
接近していることから磁束を発生する空間のパーミアン
ス係数が大きくなり、高磁束密度を得る一因をなしてい
る。第6図は本発明の別の実施例を示す部分断面図であ
り、円盤上のマグネット12に設けられた複数の穴に挿
人された磁性体13はマグネット12の底面に接して設
けられたシールド板14と接している。
The reason for this is that since the directions in which the lines of magnetic force can easily pass are limited, there is little leakage magnetic flux generated in planes parallel to the orientation direction. Furthermore, as shown in Figure 4, since the shield piece 6 forming the N pole and the surface of the magnet 5 forming the S pole are extremely close to each other, the permeance coefficient of the space where magnetic flux is generated increases, resulting in a high magnetic flux density. This is one of the reasons for obtaining FIG. 6 is a partial sectional view showing another embodiment of the present invention, in which the magnetic body 13 inserted into a plurality of holes provided in the magnet 12 on the disc is provided in contact with the bottom surface of the magnet 12. It is in contact with the shield plate 14.

当然マグネット12の配向方向は円盤の軸方向である。
このような多極を設ける場合には加工性のすぐれた樹脂
マグネツトが有効であり、極となす磁性体13の形状が
複雑になる程樹脂マグネツトの有効さが強調される。ま
た第7図も本発明の他実施例であり、シールド板15は
部分的に切り起こし16が設けられ、樹脂マグネツト1
7と一体成形化されている。
Naturally, the orientation direction of the magnet 12 is the axial direction of the disk.
When providing such multiple poles, a resin magnet with excellent workability is effective, and the more complex the shape of the magnetic body 13 forming the pole, the more effective the resin magnet becomes. FIG. 7 also shows another embodiment of the present invention, in which the shield plate 15 is partially cut and raised 16, and the resin magnet 1
7 and is integrally molded.

切り起こし部は樹脂の収縮により、樹脂と強い保持力を
生じ、シールド板15とマグネツト17との接合の役割
を果す。切り起し16の先端は一体成形時に金型を傷め
ないようにマグネツト表面より少し低くなつているが、
得られる表面磁束密度の低下は少なく、樹脂マグネツト
だけの場合に得られる表面磁束密度より高いレベルが得
られる。第8図も本発明の応用例であり、図の矢印方向
に配向した扇状の異方性マグネツト18をシールド板1
9とシールド片20とが予め組み合わされたケースに装
着したものである。このような構造により一体成形でき
ない大きなものも製造可能となる。第9図は本発明の別
の実施例であり、シールド板21に突起22,23,2
4が設けられ、突起により区切られて、マグネツト25
,26,27,28が設けられ、マグネツト25,26
はN極がシールド板と接し、マグネツト27,28はS
極がシールド板と接している。
The cut and raised portion generates a strong holding force with the resin due to the contraction of the resin, and plays the role of joining the shield plate 15 and the magnet 17. The tip of the cut-out 16 is slightly lower than the magnet surface so as not to damage the mold during integral molding.
The decrease in the surface magnetic flux density obtained is small, and a level higher than the surface magnetic flux density obtained when using only a resin magnet is obtained. FIG. 8 is also an application example of the present invention, in which a fan-shaped anisotropic magnet 18 oriented in the direction of the arrow in the figure is attached to the shield plate 1.
9 and a shield piece 20 are assembled in advance and attached to a case. With this structure, it is possible to manufacture large items that cannot be integrally molded. FIG. 9 shows another embodiment of the present invention, in which projections 22, 23, 2 are provided on the shield plate 21.
4 are provided, separated by protrusions, and magnets 25
, 26, 27, 28 are provided, and magnets 25, 26
The N pole is in contact with the shield plate, and the magnets 27 and 28 are S
The pole is in contact with the shield plate.

こうしてなる磁気回路では、突起22はN極に、突起2
3は無極に、突起24はS極となり、磁石の長面上に交
互の極を設けることができる。第10図、第11図は本
発明の応用例であり、上記のように磁束を得る表面が平
面に限らず、曲面でも可能であることを示すものであり
、第10図は磁性体の軸29に放射状に設けられた突起
30の間に設けられた異方性マグネット31は径方向に
配向している。
In the magnetic circuit constructed in this way, the protrusion 22 becomes the N pole, and the protrusion 2
3 is non-polar, the protrusion 24 is an S pole, and alternate poles can be provided on the long side of the magnet. Figures 10 and 11 show application examples of the present invention, and show that the surface from which the magnetic flux is obtained as described above is not limited to a flat surface, but can also be a curved surface. Anisotropic magnets 31 provided between protrusions 30 provided radially on 29 are oriented in the radial direction.

また第11図は円筒状の内面に極を設けた例であり、リ
ング状のシールドケース32に設けられたシールド片3
3の間に異方性マグネット34を装着してなり、異方性
マグネツト34は円筒の径方向に配向している。本発明
でいうシールド材は通常の鉄あるいは鉄系合金に限らず
、透磁率の高い材料の粉末を含有した樹脂組成物でも可
能であり、更に第6図の例を用いて説明すれば、磁性体
13、シールド板14が装着されていない状態の異方性
マグネツト12を金型内に装填し、前述の透磁性の高い
粉末を含有する樹脂組成物を加圧成形し、磁性体13、
シールド板14に代るべき成形体を一体成形することも
可能である。
Further, FIG. 11 shows an example in which poles are provided on the inner surface of a cylindrical shape, and a shield piece 3 provided on a ring-shaped shield case 32 is shown.
An anisotropic magnet 34 is attached between the cylinders 3 and 3, and the anisotropic magnet 34 is oriented in the radial direction of the cylinder. The shielding material referred to in the present invention is not limited to ordinary iron or iron-based alloys, but may also be a resin composition containing powder of a material with high magnetic permeability. The anisotropic magnet 12 without the body 13 and the shield plate 14 is loaded into a mold, and the resin composition containing the above-mentioned highly permeable powder is pressure-molded to form the magnetic body 13,
It is also possible to integrally mold a molded body to replace the shield plate 14.

以上の説明で明らかなように、本発明は異方性マグネツ
ト成形品の配向方向に垂直な面卦よび平行な面にそれぞ
れシールド性を有する部材を設け、上記平行な面に設け
られたシールド材を磁極として用いることを特徴とする
ものであり、前述の実施例の形態に何らの拘束を受ける
ものではない。
As is clear from the above description, the present invention provides a member having shielding properties on a plane perpendicular to the orientation direction of an anisotropic magnetic molded product and a plane parallel to the orientation direction, and a shielding member provided on the parallel plane. is characterized in that it is used as a magnetic pole, and is not restricted in any way to the form of the above-described embodiment.

さらに異方性マグネツトであればその種類を問わない。
本発明による利点は次の通りである。
Furthermore, any type of anisotropic magnet may be used.
The advantages of the invention are as follows.

イL高い磁束密度が得られる。High magnetic flux density can be obtained.

口1マグネツトとシールド材の一体化が容易である。It is easy to integrate the opening 1 magnet and the shield material.

一・).異方性樹脂マグネツトの加工性等の特徴を有効
に活用できる。
one·). Features such as workability of anisotropic resin magnets can be effectively utilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシールド板を備えたマグネツトの従来例を示す
断面図、第2図はシールド板なしのマグネツトの断面図
、第3図は異方性マグネツトの特徴を示す断面図、第4
図は本発明の一実施例を示す断面図、第5図は従米例と
して用いたスピーカ界磁部の断面図、第6図は本発明の
別の実施例を示す俯敵図、第7図は本発明を一体成形で
実施した場合の断面図、第8図は本発明の応用例を示す
俯敵図、第9図は本発明の別の実施例を示す断面図、第
10図は本発明の応用例を示す俯敵図、第11図も本発
明の応用例を示す俯撮図である。 5・・・・・・異方性マグネツト成形品、6,7・・・
・・・シールド材。
Fig. 1 is a sectional view showing a conventional example of a magnet equipped with a shield plate, Fig. 2 is a sectional view of a magnet without a shield plate, Fig. 3 is a sectional view showing the characteristics of an anisotropic magnet, and Fig. 4 is a sectional view showing the characteristics of an anisotropic magnet.
The figure is a sectional view showing one embodiment of the present invention, FIG. 5 is a sectional view of a speaker field section used as an example, FIG. 8 is a cross-sectional view showing an example of application of the present invention, FIG. 9 is a sectional view showing another embodiment of the present invention, and FIG. An overhead view showing an example of application of the invention; FIG. 11 is also an overhead view showing an example of application of the invention. 5...Anisotropic magnetic molded product, 6,7...
...shielding material.

Claims (1)

【特許請求の範囲】[Claims] 1 異方性のマグネット成形品に対し前記マグネット成
形品の配向方向に平行な面及び垂直な面にそれぞれ磁気
シードル性の高い部材を密着して設け、前記平行な面に
設けられたシードル材の一端と前記垂直な面に設けられ
たシードル材とを磁気的に接続し、前記平行な面に設け
られたシードル材の他端を磁極の一方とすると共に、前
記マグネット成形品又は他のシードル材を他方の磁極と
した異方性マグネットを用いた磁気回路。
1. For an anisotropic magnetic molded product, members with high magnetic seedling properties are provided in close contact with surfaces parallel and perpendicular to the orientation direction of the magnet molded product, respectively, and the cider material provided on the parallel surfaces is One end and the cider material provided on the perpendicular surface are magnetically connected, the other end of the cider material provided on the parallel surface is used as one of the magnetic poles, and the magnetic molded product or other cider material A magnetic circuit using an anisotropic magnet with the other magnetic pole.
JP9016779A 1979-07-16 1979-07-16 Magnetic circuit using anisotropic magnet Expired JPS5924524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9016779A JPS5924524B2 (en) 1979-07-16 1979-07-16 Magnetic circuit using anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9016779A JPS5924524B2 (en) 1979-07-16 1979-07-16 Magnetic circuit using anisotropic magnet

Publications (2)

Publication Number Publication Date
JPS5613705A JPS5613705A (en) 1981-02-10
JPS5924524B2 true JPS5924524B2 (en) 1984-06-09

Family

ID=13990920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9016779A Expired JPS5924524B2 (en) 1979-07-16 1979-07-16 Magnetic circuit using anisotropic magnet

Country Status (1)

Country Link
JP (1) JPS5924524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241419A (en) * 1985-08-14 1987-02-23 Hitachi Ltd Crankshaft
JPS6356310U (en) * 1986-09-30 1988-04-15

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133703A (en) * 1983-12-21 1985-07-16 Matsushita Electric Ind Co Ltd Permanent magnet
JPS60134402A (en) * 1983-12-23 1985-07-17 Matsushita Electric Ind Co Ltd Permanent magnet
EP0535902A3 (en) * 1991-09-30 1993-11-03 Kawasaki Steel Co Internal closed magnetic circuit anisotropic magnet and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241419A (en) * 1985-08-14 1987-02-23 Hitachi Ltd Crankshaft
JPS6356310U (en) * 1986-09-30 1988-04-15

Also Published As

Publication number Publication date
JPS5613705A (en) 1981-02-10

Similar Documents

Publication Publication Date Title
EP0048966B1 (en) Field pole structure of dc motor
US3067366A (en) Magnet system having little stray
GB2046528A (en) Permanent magnets
US2551447A (en) Electrodynamic speaker
JP3111079B2 (en) Medical high-field magnet
JPS5924524B2 (en) Magnetic circuit using anisotropic magnet
US3095525A (en) Permanent magnet assembly
JPS6012870B2 (en) pulse motor
JP2528307Y2 (en) Magnetic circuit for speaker
US3971054A (en) Method and apparatus for magnetizing permanent magnet in magnetic structure
JPS638090Y2 (en)
JPH01129741A (en) Magnet for rotor
JPS6127140Y2 (en)
JPH03117358U (en)
JP3012077B2 (en) Anisotropic long magnet
JPH0644303Y2 (en) Magnetic circuit
JP2549167Y2 (en) Magnetic circuit for speaker
JP2540135Y2 (en) Split cylindrical ferrite core
JPH01300696A (en) Magnetic circuit using permanent magnet
JPH039288Y2 (en)
JP3151676B2 (en) Data line filter
JPH08279415A (en) Yoke for multipolar magnetization
JP2568014Y2 (en) Magnetic circuit for speaker
JPS6237423Y2 (en)
JPH0314206B2 (en)