JPS5924349Y2 - Powder mixture manufacturing equipment - Google Patents
Powder mixture manufacturing equipmentInfo
- Publication number
- JPS5924349Y2 JPS5924349Y2 JP14636980U JP14636980U JPS5924349Y2 JP S5924349 Y2 JPS5924349 Y2 JP S5924349Y2 JP 14636980 U JP14636980 U JP 14636980U JP 14636980 U JP14636980 U JP 14636980U JP S5924349 Y2 JPS5924349 Y2 JP S5924349Y2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- particle size
- components
- flow rate
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Accessories For Mixers (AREA)
- Control Of Non-Electrical Variables (AREA)
Description
【考案の詳細な説明】
本考案は所望の粘度構成比率を有する粉粒体混合物を製
造する装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing a powder mixture having a desired viscosity composition ratio.
粘度構成が異なる粉粒体を所望な比率で混合して中間製
品または製品を作る場合、粘度構成比率はその製品の性
質を決定する上で極めて重要な因子となる。When an intermediate product or a product is produced by mixing powders and granules having different viscosity compositions at a desired ratio, the viscosity composition ratio becomes an extremely important factor in determining the properties of the product.
たとえば、醤油醸造における澱粉原料(小麦粉)の粘度
構成は、製麹の良否ひいては醤油品質の良否に決定的な
影響を及ぼし、従って、最適粘度構成に関する知見も発
表されているほどである。For example, the viscosity composition of the starch raw material (wheat flour) used in soy sauce brewing has a decisive influence on the quality of koji production and, ultimately, the quality of the soy sauce.Therefore, knowledge regarding the optimal viscosity composition has even been published.
またセラミックス等の焼結製品における原料の粒度構成
は、製品の焼成中の収縮、製品の強度に大きな影響を与
える。In addition, the particle size structure of raw materials in sintered products such as ceramics has a large effect on shrinkage during firing of the product and on the strength of the product.
また鋳造における鋳物砂においても粒度構成は強度、ガ
ス抜け、鋳肌(すくわれ)等に大きな影響を及ぼす。In addition, the particle size composition of foundry sand used in casting has a large effect on strength, gas release, casting surface (scooping), etc.
また顆粒状農薬はその粘度構成によって植物への付着性
が異なることが知られており、粘度構成は農薬の有効使
用上重要な因子となる。Furthermore, it is known that the adhesion of granular agricultural chemicals to plants differs depending on their viscosity structure, and the viscosity structure is an important factor in the effective use of agricultural chemicals.
さらに鉛筆の黒鉛の粒度構成は書き付けた線の鮮明さに
表わされてくる。Furthermore, the particle size structure of the graphite in a pencil is reflected in the sharpness of the lines drawn.
このように粉粒体の粘度構成の制御は粉粒体混合物を扱
う場合に非常に重要な特性値である。In this way, control of the viscosity composition of a powder or granule is a very important characteristic value when handling a powder or granule mixture.
従ってこの粘度構成は粉粒体混合物を原料とする中間製
品または製品の製造においては、重要なノウハウでもあ
る。Therefore, this viscosity structure is also important know-how in the production of intermediate products or products using powder mixtures as raw materials.
従来所望の粒度構成比率を有する粉粒体混合物を得る方
法としては、粉砕工程において粉砕機にクリアランス等
を制御して粉粒体を既知の粒度構成毎に予め分画して貯
留しておき、各構成成分を必要量だけ取り出して混合す
るバッチ方式が代表的なものであるが、この方式による
粒度構成比率は専ら造粒・粉砕技術に左右される。Conventionally, as a method for obtaining a powder mixture having a desired particle size composition ratio, the powder and granule are pre-fractionated and stored for each known particle size composition by controlling the clearance etc. in the crusher in the crushing process. A typical method is a batch method in which required amounts of each component are taken out and mixed, but the particle size composition ratio in this method depends solely on the granulation and pulverization technology.
従って正確な粒度構成比率を得るには精度の高い造粒・
粉砕技術が要求される。Therefore, in order to obtain an accurate particle size composition ratio, highly accurate granulation and
Grinding technology is required.
また基本的な問題として、上記方式によると、分画され
る各粒度構成成分の量は造粒・粉砕工程における調整に
より無関係に決定されるために各成分間に不均衡が生じ
、その結果混合に際して過不足を生し系の運転不能のや
むなきに至ることがある。In addition, a fundamental problem is that according to the above method, the amount of each particle size component to be fractionated is determined independently by adjustments in the granulation and pulverization processes, resulting in an imbalance between each component, resulting in mixing. In some cases, excess or deficiency may occur, resulting in the system being unable to operate.
このため混合物における粒度構成の重要性を認識しなが
らも現実にはある一定の条件で造粒・粉砕してそのまま
混合するのが実情である。For this reason, although we recognize the importance of the particle size structure in a mixture, in reality, the reality is that the mixture is granulated and pulverized under certain conditions and then mixed as is.
従って正確な粒度構成比率の混合物を得ることは困難で
あった。Therefore, it was difficult to obtain a mixture with an accurate particle size composition ratio.
本考案は、上記バッチ方式に伴う種々の欠点を排除しし
かも粒度構成比率を正確に制御して所望の粒度構成比率
を有する粉粒体混合物を連続的に得ることができる技術
を提案するものであり、本考案によれば、一定粒度の粒
子またはある粒度分布を有する粉粒体から所望の粒度構
成比率を有する粉粒体混合物を連続的に製造する装置が
提案される。The present invention proposes a technology that eliminates the various drawbacks associated with the above-mentioned batch method, and that can accurately control the particle size composition ratio to continuously obtain a powder mixture having a desired particle size composition ratio. According to the present invention, an apparatus is proposed for continuously producing a powder mixture having a desired particle size composition from particles having a constant particle size or powder having a certain particle size distribution.
上に述べたように本考案はあらゆる種類の粉粒体の混合
に適用して同様な効果が期待できるが、以下にいくつか
の実施例につき説明する。As mentioned above, the present invention can be applied to the mixing of all kinds of granular materials and similar effects can be expected, but some examples will be explained below.
第一の実施例として、粉20%、粒30%、粗粒50%
の粒度構成比率を有する小麦粉の混合物を製造する例に
ついて第1図を参照して説明する。As a first example, 20% powder, 30% grains, 50% coarse grains.
An example of producing a mixture of wheat flour having a particle size composition ratio will be described with reference to FIG.
第1図はその系統図を示している。Figure 1 shows the system diagram.
原料としての小麦粉は造粒工程において水蒸気などを添
加されペレットミルで造粒された後流動乾燥機で乾燥さ
れて次の粉砕工程に供給される。Wheat flour as a raw material is added with steam in the granulation process, granulated in a pellet mill, dried in a fluidized fluid dryer, and then supplied to the next pulverization process.
粉砕工程ではロール式粉砕機などの任意の慣用型式の粉
砕機により造粒小麦粉が粉砕され粗い範囲で粒度構成が
調整される。In the grinding step, the granulated flour is ground by any conventional type of grinder, such as a roll grinder, to adjust the particle size structure within a coarse range.
粉砕工程における粒度構成の粗調整は、ロール式粉砕機
の場合はロールクリアランスの調整またはブレーキロー
ルの歯形の選択により行なわれる。Rough adjustment of the particle size structure in the crushing process is performed by adjusting the roll clearance or selecting the tooth profile of the brake roll in the case of a roll type crusher.
粉砕された小麦粉粉粒体は次の粒度選別工程に供給され
そこで3種類の篩網S1.S2.S3から構成された多
段篩機により選別されて特定範囲の粒径毎に4戊分流A
、 B、 C。The pulverized flour powder is supplied to the next particle size sorting step, where it is passed through three types of sieve screens S1. S2. A multi-stage sieve machine consisting of S3 separates particles into 4 separate streams A for each particle size within a specific range.
, B, C.
Dに分級される。It is classified as D.
篩網S1は8メツシユ、篩網S2は]−4メツシユ、篩
網S3は50メツシユである。The sieve screen S1 has 8 meshes, the sieve screen S2 has ]-4 meshes, and the sieve screen S3 has 50 meshes.
ここで重要なことは、この実施例において所望の粒度構
成比率を得るには、粉砕工程から粒度選別工程に供給さ
れる小麦粉粉粒体の粒度構成に対して、篩網S1を通過
しない成分は殆んどなく、篩網8は通過するが篩網S2
は通過しない成分が粉粒体全体の50%以上、篩網S2
は通過するが篩網S3は通過しない成分は粉粒体全体の
30%以上、篩網亀を通過する成分が零ではないことが
必要である。What is important here is that in order to obtain the desired particle size composition ratio in this example, the components that do not pass through the sieve screen S1 must be There is almost nothing and it passes through the sieve screen 8, but the sieve screen S2
Components that do not pass through are 50% or more of the entire powder and granular material, sieve screen S2
It is necessary that the components that pass through the sieve screen S3 but not the sieve screen S3 account for 30% or more of the entire powder and granular material, and the components that pass through the sieve screen S3 must be not zero.
分級された4戒分流のうち成分流Aは粉であり、電磁フ
ィーダMFAによりミキシング工程に連続的に送給され
る。Among the classified four-command branch streams, component stream A is powder, and is continuously fed to the mixing process by the electromagnetic feeder MFA.
成分流Aの流量はインパクトライン流量計FAにより測
定される。The flow rate of component flow A is measured by impact line flowmeter FA.
同様に成分流Bは細粒体であり、電磁フィーダMFBに
よりミキシング工程に連続的に送給され、成分流Cは粗
粒体であり、電磁フィーダMFCによりミキシング工程
に連続的に送給される。Similarly, component stream B is fine particles and is continuously fed to the mixing process by electromagnetic feeder MFB, and component stream C is coarse particles and is continuously fed to the mixing process by electromagnetic feeder MFC. .
成分流BおよびCの流量はそれぞれインパクトライン流
量計FBおよびFCにより測定される。The flow rates of component streams B and C are measured by impact line flowmeters FB and FC, respectively.
成分流Aの過剰分はスクリューフィーダSFAにより造
粒工程に戻されて造粒され次に粉砕工程で粉砕されて再
び粒度選別工程に供給される。The excess of the component stream A is returned to the granulation process by the screw feeder SFA for granulation, then pulverized in the pulverization process and fed again to the particle size selection process.
成分流BおよびCの過剰分はスクリューフィーダSFB
およびSFCにより前記とは別の第2の粉砕工程に供給
され粉砕された後粒度選別工程に再び供給される。The excess of component streams B and C is fed to screw feeder SFB.
Then, it is supplied to a second pulverization step different from the above by SFC, and after being pulverized, it is again supplied to the particle size selection step.
成分流りはその全部が第2の粉砕工程に直接供給され粉
砕されて同様に粒度選別工程に供給される。The component stream is fed in its entirety directly to a second grinding step where it is ground and also fed to a particle sizing step.
第2の粉砕工程ではインパクトミル、ボールミル、衝撃
粉砕機などにより小麦粉粉粒体をさらに粉砕する。In the second pulverization step, the flour powder is further pulverized using an impact mill, ball mill, impact pulverizer, or the like.
成分流BおよびCに対してはそれぞれ比例設定器PBお
よびPCが設けられており、比例設定器PBは流量計F
Aからの成分流Aの流量に相当する出力信号と成分流B
の流量に相当する出力信号とを受けて電磁フィーダMF
Bの送給量を制御する。Proportional setters PB and PC are provided for component flows B and C, respectively, and proportional setter PB is connected to flowmeter F.
Output signal corresponding to the flow rate of component flow A from A and component flow B
The electromagnetic feeder MF receives an output signal corresponding to the flow rate of
Control the feeding amount of B.
本実施例においては、所望粒度構成比率が粉20%、粒
30%、粗粒50%であることから、電磁フィーダMF
Bの送給量はこの比例設定器PBにより電磁フィーダM
FAの送給量の1.5倍となるように制御される。In this example, since the desired particle size composition ratio is 20% powder, 30% grains, and 50% coarse particles, the electromagnetic feeder MF
The feeding amount of B is determined by the electromagnetic feeder M by this proportional setting device PB.
It is controlled to be 1.5 times the feed amount of FA.
同様に、比例設定器PCは、流量計FAからの成分流A
の流量に相当する出力信号と成分流Cの流量に相当する
出力信号とを受けて電磁フィーダMFCの送給量を制御
する。Similarly, the proportional setter PC controls the component flow A from the flowmeter FA.
The feeding amount of the electromagnetic feeder MFC is controlled in response to an output signal corresponding to the flow rate of the component flow C and an output signal corresponding to the flow rate of the component flow C.
具体的には、電磁フィーダMFCの送給量は比例設定器
PCにより電磁フィーダMFAの送給量の2.5倍とな
るように制御される。Specifically, the feed amount of the electromagnetic feeder MFC is controlled by the proportional setting device PC to be 2.5 times the feed amount of the electromagnetic feeder MFA.
比例設定器としては、流量に相当する信号を直流電圧の
形で受けて所望送給量に相当する出力信号を直流電流の
形で出す型式のものでよい
成分流A、 B、 Cの実際の流量は比率設定値に対
して±0.2の幅を持たせ、この設定値を外れる場合に
は警報を発するようにすることができる。The proportional setting device may be of the type that receives a signal corresponding to the flow rate in the form of DC voltage and outputs an output signal corresponding to the desired feed rate in the form of DC current. The flow rate can be set within a range of ±0.2 with respect to the ratio setting value, and an alarm can be issued if the flow rate deviates from this set value.
こうして成分流A、 B、 Cが20%、30%、50
%の比率でミキシング工程に連続的に供給され混合され
て所望粒度構成比率の小麦粉粒体混合物が得られる。In this way, component streams A, B, and C are 20%, 30%, and 50%.
% ratio is continuously fed to the mixing step and mixed to obtain a flour granule mixture with a desired particle size composition ratio.
また、上記実施例においては、原料が小麦粉である場合
について予め造粒工程に付しているが、粉粒体原料の粒
度によっては造粒工程を省略してもよい。Furthermore, in the above embodiments, when the raw material is wheat flour, it is subjected to a granulation process in advance, but the granulation process may be omitted depending on the particle size of the powder raw material.
上記実施例においては、スクリューフィーダ5FA−8
FC1電磁フイ一ダMFA−MFC1流量計FA−FC
は慣用構造のものでよい。In the above embodiment, the screw feeder 5FA-8
FC1 electromagnetic feeder MFA-MFC1 flowmeter FA-FC
may have a conventional structure.
次に第2図を参照して微粒状農薬の製造に関する実施例
について説明する。Next, with reference to FIG. 2, an example relating to the production of finely divided agricultural chemicals will be described.
第2図において第1図と同じ文字は同じ構成部分を示し
ており、各構成部分の構成および作用は第1図に関して
説明したところと同じであるから省略する。In FIG. 2, the same letters as those in FIG. 1 indicate the same components, and the configuration and operation of each component are the same as those described with respect to FIG. 1, so a description thereof will be omitted.
クレー92部、リグニンスルホン酸ソーダ5部、りん酸
0.5部、界面活性剤2部およびカスガマイシン(純度
60%)0.5部をニューマスケールで配合し、これを
リボンミキサーで混合して原料として造粒工程に供給す
る。92 parts of clay, 5 parts of sodium ligninsulfonate, 0.5 part of phosphoric acid, 2 parts of surfactant, and 0.5 part of kasugamycin (purity 60%) are blended with pneumascale, and mixed with a ribbon mixer to obtain raw materials. It is supplied to the granulation process as
造粒工程ではこの混合物100部に対し水5部を噴霧し
ながら攪拌混合し、ペレットミルで造粒した後流動乾燥
機で乾燥する。In the granulation step, 100 parts of this mixture are mixed with stirring while spraying 5 parts of water, granulated with a pellet mill, and then dried with a fluidized fluid dryer.
こうして得られた粉粒体を次の粉砕工程に供給し、ロー
ルクリアランス等を調整した粉砕機により粉砕する。The granular material thus obtained is supplied to the next pulverization step and pulverized by a pulverizer with adjusted roll clearance and the like.
次に粉砕された粉粒体は粒度選別工程に供給され、そこ
で上段から48メツシユ、70メツシユ、145メツシ
ユの3種類の篩網S1.S2゜S3で構成された多段篩
機により分級される。Next, the pulverized powder is supplied to a particle size sorting process, where three types of sieve screens S1. It is classified by a multistage sieve machine composed of S2 and S3.
篩網S3を通過する成分流Aの全量は適当な送給装置に
より造粒工程に戻されそこで造粒されその後粉砕工程で
粉砕されて再び粒度選別工程に供給される。The entire amount of the component stream A passing through the sieve screen S3 is returned to the granulation step by a suitable feeding device, granulated there, then ground in a pulverization step and fed again to the particle size selection step.
篩網S2を通過し篩網S3上にある成分流Bは電磁フィ
ーダMFBによりインパクトライン流量計FBを経てミ
キシング工程へ連続的に送給される。The component flow B that has passed through the sieve screen S2 and is on the sieve screen S3 is continuously fed to the mixing process by an electromagnetic feeder MFB via an impact line flow meter FB.
同様に篩網S1を通過し篩網S2上にある成分流Cは成
分流Bの流量に対し一定割合0.25倍となるよう制御
した比例設定器PCを経て所定量だけミキシング工程へ
連続的に送給される。Similarly, the component stream C that has passed through the sieve screen S1 and is on the sieve screen S2 passes through the proportional setting device PC, which is controlled to have a constant ratio of 0.25 times the flow rate of the component stream B, and then continues to the mixing process by a predetermined amount. will be sent to
成分流BおよびCの過剰分はスクリューフィーダSFB
およびSFCにより第2の粉砕工程に供給されそこで粉
砕されて粒度選別工程へ戻される。The excess of component streams B and C is fed to screw feeder SFB.
and is fed to a second grinding step by SFC where it is ground and returned to the particle size selection step.
篩網S1を通過しない成分流りの全量についても全く同
様である。The same holds true for the total amount of component streams that do not pass through the sieve screen S1.
こうして粒度範囲145メツシユ〜70メツシユの成分
79%、70メツシユ〜48メツシユの成分21%の粒
度構成比率を有する微粒状農薬を連続的に調整すること
ができた。In this way, it was possible to continuously prepare a fine granular pesticide having a particle size composition ratio of 79% of the component in the particle size range of 145 mesh to 70 mesh and 21% of the component in the particle size range of 70 mesh to 48 mesh.
次に第三の実施例として、とうもろこしを粉砕分級して
鶏の飼料を製造する例について説明する。Next, as a third embodiment, an example in which corn is crushed and classified to produce chicken feed will be described.
この実施例については、第1図に示した第一の実施例に
おいて造粒工程が不要となり多段篩機の篩網のメツシュ
数が異なるのみであるから、特に図面は示さなかった。Regarding this embodiment, the granulation step is not required in the first embodiment shown in FIG. 1, and the only difference is the number of meshes of the sieve screen of the multi-stage sieve machine, so no drawings are particularly shown.
原料としてのとうもろこしを粉砕工程に供給して粉砕し
た後粒度選別工程において6メツシユの篩網、16メツ
シユの篩網、22メツシユの篩網から構成された多段篩
機で、22メツシユ以下の粉体と、■6メツシユ〜22
メツシュの中粒と、6メツシユ〜16メツシユの粗粒と
に分級する。After supplying corn as a raw material to the grinding process and pulverizing it, in the particle size sorting process, a multi-stage sieve machine consisting of a 6-mesh sieve screen, a 16-mesh sieve screen, and a 22-mesh sieve screen is used to collect powder of 22 meshes or less. And ■6 mesh ~ 22
Classified into medium grains of mesh and coarse grains of 6 to 16 meshes.
鶏の嗜好性に合わせて決定された各成分の比率を比例設
定器PBおよびPCに設定して所望の粒度構成比率のと
うもろこし混合飼料を製造した。The ratio of each component determined according to the palatability of the chickens was set in the proportion setting devices PB and PC to produce a corn mixed feed having a desired particle size composition ratio.
上記三つの実施例においては最終混合物の粒度構rf7
.e、分の数は2または3であるが、本発明では任意の
数の粒度構成成分を任意の比率で得ることができる。In the three examples above, the particle size structure of the final mixture rf7
.. e, the number of fractions is 2 or 3, but any number of particle size components can be obtained in any ratio in the present invention.
その場合、粒度構成成分の数に等しい数の分級手段が必
要となる。In that case, a number of classification means equal to the number of particle size components will be required.
分級手段としては上記実施例における多段篩機のほかに
風力分級機など慣用型式のものでよい。As the classification means, in addition to the multi-stage sieve in the above embodiment, a conventional type such as an air classifier may be used.
各成分流の流量を制御する比例設定器は広い範囲にわた
って可変的に設定できるのが好ましい。Preferably, the proportional setter controlling the flow rate of each component stream can be variably set over a wide range.
本考案においては、上記実施例で示したように、流量制
御の基準となる成分流は最小粒度の成分流に限らず任意
の粒度の成分流でよいことは明らかである。In the present invention, as shown in the above embodiments, it is clear that the component flow serving as the reference for flow rate control is not limited to the component flow with the minimum particle size, but may be a component flow with any particle size.
流量制御の基準とされる成分流以外の他の成分流の過剰
分は成分流相互間の多寡に応じて造粒工程に戻すかまた
は第2の粉砕工程を経て粒度選別工程に戻すようにした
ことにより、高精度の造粒・粉砕技術を要することなく
連続的に正確な粒度構成比率を与えることができ、しか
も成分流間に不均衡が生ずることがないので過不足によ
る系の運転不能という事態は生じない。Excess component streams other than the component streams used as standards for flow rate control are returned to the granulation process or returned to the particle size sorting process via the second pulverization process depending on the difference between the component streams. This makes it possible to continuously provide an accurate particle size composition ratio without requiring high-precision granulation and pulverization technology, and since there is no imbalance between component flows, it is possible to prevent the system from being unable to operate due to excess or deficiency. No situation arises.
本考案は異なる粒度構成比率を有する粉体、粒体温合物
について適用することができ、食品産業、飼料、セメン
ト、農薬製造の分野において特に有用である。The present invention can be applied to powders and granular mixtures having different particle size composition ratios, and is particularly useful in the fields of food industry, feed, cement, and pesticide manufacturing.
添付図面の第1図は本考案の一実施例として特定の粒度
構成比率を有する小麦粉混合物の製造系統図、第2図は
本考案の別の実施例として特定の粒度構成比率を有する
微粒状農薬の調整系統図である。
Sl、S2.S3・・・・・・篩、A、 B、 C,D
・・・・・・成分流、SFA、SFB、SFC,・・・
・・スクリューフィーダ、MFA。
MFB、MFC・・・・・・電磁フィーダ、FA、 F
B、 FC・・・・・・流量計、PB、 PC・・・・
・・比例設定器。Figure 1 of the attached drawings is a production system diagram of a flour mixture having a specific particle size composition ratio as an embodiment of the present invention, and Figure 2 is a production system diagram of a flour mixture having a specific particle size composition ratio as another embodiment of the present invention. FIG. Sl, S2. S3...Sieve, A, B, C, D
...Component flow, SFA, SFB, SFC, ...
...Screw feeder, MFA. MFB, MFC... Electromagnetic feeder, FA, F
B, FC...Flowmeter, PB, PC...
...Proportional setting device.
Claims (1)
を混合して所定の粒度構成比率を有する粉粒体混合物を
製造する装置であって、任意の粒度分布からなる粉粒体
原料を粉砕する第1の粉砕手段と、該第1の粉砕手段に
よって粉砕された粉粒体を所望の粒度範囲を有する複数
個の粉粒体成分に分級する複数個の分級手段とからなり
、必要に応じて該複数個の粉粒体成分のそれぞれを混合
して粉粒体混合物を製造する際該複数個の粉粒体成分の
それぞれの前記混合物として混合された量と混合されな
かった過剰量との不均衡を連続的に是正調整するために
該過剰量をそれぞれの粒度に応じて第2の粉砕手段を介
しまた造粒手段によって造粒した後前記第1の粉砕手段
を介して前記分級手段に帰還する手段をも備えた粉粒体
混合物の製造装置において、 前記分級手段出口に設けられた前記複数個の粉粒体成分
のそれぞれを混合のために連続的に送給する手段と、 該送給手段の出口に設けられた前記複数個の粉粒体成分
のそれぞれの流量を測定する流量計と、該流量計の流量
測定信号を受けて前記送給手段を制御し前記複数個の粉
粒体成分のうちの任意の1つの成分の流量に応答してそ
の他の混合すべき粉粒体成分の流量を前記任意の1つの
流量に対して所定の比率に設定する手段とを備え、 前記任意の1つの粉粒体成分とその他の粉粒体成分のう
ちの混合すべき成分とを所定の粒度構成比率に応じて連
続的に混合し得るようにしたことを特徴とする、粉粒体
混合物の製造装置。[Claims for Utility Model Registration] An apparatus for producing a powder mixture having a predetermined particle size composition ratio by mixing each of a plurality of powder and granule components having a predetermined particle size range, the device producing a powder mixture having an arbitrary particle size distribution. a first pulverizing means for pulverizing a granular material raw material consisting of a granular material, and a plurality of classification devices for classifying the granular material pulverized by the first pulverizing means into a plurality of granular material components having a desired particle size range. means, and if necessary, when producing a powder mixture by mixing each of the plurality of powder and granule components, the amount of each of the plurality of powder and granule components mixed as the mixture; and In order to continuously correct the imbalance with the unmixed excess quantity, said first pulverization is carried out after granulating said excess quantity through a second pulverization means and by a granulation means according to the respective particle size. In an apparatus for producing a powder mixture, which also includes a means for returning the powder mixture to the classification means via a means, each of the plurality of powder components provided at the outlet of the classification means is continuously mixed for mixing. a flow meter for measuring the flow rate of each of the plurality of powder components, which is provided at an outlet of the feeding means; controlling and in response to the flow rate of any one of the plurality of powder or granule components, setting the flow rate of other powder or granule components to be mixed to a predetermined ratio with respect to the arbitrary one flow rate; and means for continuously mixing the arbitrary one powder component and the other powder components to be mixed according to a predetermined particle size composition ratio. A manufacturing device for a powder mixture.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14636980U JPS5924349Y2 (en) | 1980-10-16 | 1980-10-16 | Powder mixture manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14636980U JPS5924349Y2 (en) | 1980-10-16 | 1980-10-16 | Powder mixture manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5662124U JPS5662124U (en) | 1981-05-26 |
JPS5924349Y2 true JPS5924349Y2 (en) | 1984-07-19 |
Family
ID=29377528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14636980U Expired JPS5924349Y2 (en) | 1980-10-16 | 1980-10-16 | Powder mixture manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5924349Y2 (en) |
-
1980
- 1980-10-16 JP JP14636980U patent/JPS5924349Y2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5662124U (en) | 1981-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5480617A (en) | Apparatus for continuous fluidized bed agglomeration | |
CA2005730C (en) | Milling apparatus and system therefor | |
CA2533058A1 (en) | Blending system | |
US3142862A (en) | Apparatus for control of pellet size by relating work load to atomizer pressure | |
Mort et al. | Control of agglomerate attributes in a continuous binder-agglomeration process | |
US6085912A (en) | Apparatus for sorting and recombining minerals background of the invention | |
US5054694A (en) | Method and apparatus for crushing material for grinding | |
JPS5924349Y2 (en) | Powder mixture manufacturing equipment | |
JP7130904B2 (en) | Granulation method by thin and uniform watering | |
JPS63500209A (en) | Micronized solid control device | |
CN108178541A (en) | A kind of method for preparing raw material that sulphate aluminium cement is prepared for solid waste cooperative compensating | |
JPS62279835A (en) | Particle diameter control device for continuous granulating | |
US20170196239A1 (en) | Method and apparatus for smoothing irregular particulate flow stream | |
CN105209164B (en) | For the method for the granular materials for preparing optimization | |
US2835452A (en) | Process for granulating urea-formaldehyde fertilizer compositions | |
CN105601137B (en) | Utilize the device and method of at least two power production binder materials | |
JPH10296117A (en) | Sand making method and sand making device | |
JP2784603B2 (en) | Method and apparatus for controlling pulverization of reduced iron powder for powder metallurgy | |
JP3220077B2 (en) | Method and apparatus for manufacturing cement clinker | |
US3369761A (en) | Grinding mill and fineness control system | |
JPH03209266A (en) | Production of developer for electrostatic charge image and pulverizing device for this method | |
JP2929537B1 (en) | Method and apparatus for manufacturing cement clinker | |
JP3223467B2 (en) | Method and apparatus for manufacturing cement clinker | |
CN108380358B (en) | System for preparing mixed powder particles of nano-scale mineral | |
SU1253670A1 (en) | Method of regulating classification of loose material by size |