JPS592427Y2 - Hot water supply device - Google Patents

Hot water supply device

Info

Publication number
JPS592427Y2
JPS592427Y2 JP9411277U JP9411277U JPS592427Y2 JP S592427 Y2 JPS592427 Y2 JP S592427Y2 JP 9411277 U JP9411277 U JP 9411277U JP 9411277 U JP9411277 U JP 9411277U JP S592427 Y2 JPS592427 Y2 JP S592427Y2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
mixing
outer shells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9411277U
Other languages
Japanese (ja)
Other versions
JPS5421254U (en
Inventor
信夫 浜野
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP9411277U priority Critical patent/JPS592427Y2/en
Publication of JPS5421254U publication Critical patent/JPS5421254U/ja
Application granted granted Critical
Publication of JPS592427Y2 publication Critical patent/JPS592427Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は温水温度を検知して自動的に0NOFF制御さ
れるバーナ等の熱源を備えた比較的に貯湯量の小さな瞬
間型湯沸器による温水供給装置に関し、熱源の断続作動
時の供給温水の温度ディファレンシャルを0またはそれ
に近くなし、給湯あるいは暖房性能を向上させ、また安
全な温水供給装置を提供しようとするものである。
[Detailed description of the invention] The present invention relates to a hot water supply device using an instantaneous water heater with a relatively small hot water storage capacity, which is equipped with a heat source such as a burner that detects the hot water temperature and automatically turns off the heat source. The purpose of this invention is to eliminate the temperature differential of supplied hot water during intermittent operation to zero or close to it, improve hot water supply or heating performance, and provide a safe hot water supply device.

一般にボイラーの温水温度を検知して自動的に0N−O
FF制御されるバーナを備えた比較的に貯湯量の小さな
瞬間型湯沸器を温水供給源とする温水供給装置において
は、ある流量以上の温水を供給するとボイラー内の温水
が上がらないため、温度検知子であるサーモスタットが
閉じてバーナは連続燃焼をするが、ある流量以下の温水
供給時にはボイラー内の温水温度が上昇し、バーナは断
続燃焼をする。
Generally, it detects the hot water temperature of the boiler and automatically turns 0N-O.
In a hot water supply system whose hot water supply source is an instantaneous water heater with a relatively small hot water storage capacity and equipped with an FF-controlled burner, the hot water in the boiler will not rise if hot water is supplied above a certain flow rate, so the temperature will increase. The detector thermostat closes and the burner burns continuously, but when hot water is supplied below a certain flow rate, the temperature of the hot water in the boiler rises and the burner burns intermittently.

上記バーナの連続燃焼と断続燃焼の境界流量を臨界流量
とすると、供給温水温度の特性は臨界流量の上下におい
て全く異なったものとなる。
If the boundary flow rate between continuous combustion and intermittent combustion in the burner is defined as the critical flow rate, the characteristics of the supplied hot water temperature will be completely different above and below the critical flow rate.

すなわち第3図および第4図は供給温水の温度と時間の
関係および供給温水の温度と流量の関係を示し、流量が
臨界流量Xをこえた領域においてはバーナが連続燃焼し
、供給温水の温度特性はAのように比較的低い温度でか
つ安定している。
In other words, Figures 3 and 4 show the relationship between the temperature of the supplied hot water and time, and the relationship between the temperature of the supplied hot water and the flow rate. In the region where the flow rate exceeds the critical flow rate X, the burner burns continuously, and the temperature of the supplied hot water decreases. The characteristics are stable at relatively low temperatures like A.

一方、流量が臨界流量X以下の領域においてはバーナが
断続燃焼し、供給温水の温度特性はBのように比較的に
高い温度でかつ、時間的に正弦波的な変化サイクルをも
つ。
On the other hand, in a region where the flow rate is less than or equal to the critical flow rate X, the burner performs intermittent combustion, and the temperature characteristic of the supplied hot water has a relatively high temperature as shown in B and a temporally sinusoidal change cycle.

そしてこの温度特性Bは供給温水の温度に高低差を有し
、すなわち温度差Jθをもつ供給温水ディファレンシャ
ルを有する。
This temperature characteristic B has a temperature difference in the temperature of the supplied hot water, that is, a supplied hot water differential having a temperature difference Jθ.

以上のように貯湯量の小さい瞬間型湯沸器においては供
給温水の臨界流量の上下領域において2つの代表的な供
給温水の温度特性を有する。
As described above, instantaneous water heaters with a small storage capacity have two typical temperature characteristics of supplied hot water in the upper and lower regions of the critical flow rate of supplied hot water.

そして臨界流量の下方領堀における供給温水の温度特性
は大貯湯量のボイラーに比較してディファレンシャルJ
θが大きく、通常20〜30℃になると、jθの温度差
の1サイクルが約3分(第5図参照)ときわめて短い。
The temperature characteristics of the supplied hot water in the lower area of the critical flow rate are different from those of boilers with large hot water storage capacity.
When θ is large, usually 20 to 30° C., one cycle of the temperature difference in jθ is extremely short, about 3 minutes (see FIG. 5).

ところで上記供給温水の温度ディファレンシャルJθは
ボイラーの貯湯量、給水口、罐水温度制御用サーモスタ
ットの特性(設定温度およびディファレンシャル)と取
付位置等によって決定される。
By the way, the temperature differential Jθ of the supplied hot water is determined by the amount of hot water stored in the boiler, the water inlet, the characteristics (temperature setting and differential) of the can water temperature control thermostat, the mounting position, etc.

たとえばサーモスタットのテ゛イファレンシャルを極度
に小さくすると供給温水の温度テ゛イファレンシャルl
θも小さくできるが、あまり小さくするとサーモスタッ
トの温度検知に誤動作が生じるおそれがある。
For example, if the differential of the thermostat is made extremely small, the temperature of the supplied hot water will be
θ can also be made smaller, but if it is made too small, there is a risk that the temperature detection of the thermostat will malfunction.

また、それだけバーナの起動がひんばんになりすぎ、制
御系の接点トラブルや起動過度による部品の耐久性の劣
化があり、サーモスタットのディファレンシャルを小さ
くするだけではボイラーの寿命を短くシ、総合的には好
ましくなく、したがって通常は供給温水の温度ディファ
レンシャルの1サイクルが約3シャ度にならざるを得な
い設計となっている。
In addition, the burner starts up too frequently, causing contact problems in the control system and deterioration of the durability of parts due to excessive startup.Simply reducing the thermostat differential will shorten the life of the boiler, and overall This is undesirable, and therefore the design is such that one cycle of the temperature differential of the supplied hot water must be approximately 3 degrees Celsius.

かかる特性は従来の貯湯量の小さい瞬間型湯沸器にみら
れる給湯性能であって、通常の風呂への落し込み給湯時
には比較的トラブルになることは少ないが、シャワー等
に利用する場合には問題がある。
This characteristic is the hot water supply performance seen in conventional instantaneous water heaters with a small hot water storage capacity, and although there are relatively few problems when supplying hot water to a regular bath, when using it for showers etc. There's a problem.

すなわち、シャワー条件は給湯温度40℃±20℃、給
湯流量61〜121 /minの条件を満たすことが望
ましいわけで、これに対し給湯温度ディファレンシャル
lθが20〜30℃もあっては混合水栓を使用しても1
0〜15℃の温度変化があり、シャワー使用時の体感限
度±2℃をこえ、かつ、温度変化サイクル時間が3分程
度と短いため、155分程シャワーを使うとすると、あ
つくなったり、ぬるくなったりして不快感をひんばんに
感じることになる。
In other words, it is desirable that the shower conditions satisfy the conditions of hot water supply temperature of 40°C ± 20°C and hot water supply flow rate of 61 to 121/min.On the other hand, if the hot water supply temperature differential lθ is 20 to 30°C, it is necessary to use a mixed tap. 1 even if used
The temperature changes from 0 to 15 degrees Celsius, which exceeds the maximum sensitivity when using a shower by ±2 degrees Celsius, and the temperature change cycle time is only about 3 minutes, so if you take a shower for about 155 minutes, it will feel hot or lukewarm. This can cause you to feel a lot of discomfort.

たとえばサーモスタットが通常に設定されているとして
、貯湯量151、出力26.000 kal/hc7)
瞬間型ボイラーの場合、常温で1017m1nが臨界流
量に相当し、107/min以上の給湯時には連続燃焼
時の供給水温温度特性を示し、101/min以下の給
湯時にはlθが20〜30℃の断続燃焼時の供給温水温
度特性となる。
For example, assuming the thermostat is set to normal, the hot water storage capacity is 151, and the output is 26,000 kal/hc7).
In the case of an instantaneous boiler, 1017 m1n corresponds to the critical flow rate at room temperature, and when hot water is supplied at a rate of 107/min or more, it exhibits the supply water temperature characteristics of continuous combustion, and when hot water is supplied at a rate of 101/min or less, it exhibits intermittent combustion with lθ of 20 to 30°C. supply hot water temperature characteristics at the time.

そして51/min給湯時には第5図で示すように正弦
波形に最も近い温水温度特性Bを示す。
When hot water is supplied at 51/min, hot water temperature characteristic B is shown, which is closest to a sine waveform, as shown in FIG.

本考案は前記バーナの断続燃焼時の供給温水の温度特性
が交流波形的な変化を示すことに着目し、これを第5図
Cに示すような直流的な変化のない特性にしようとする
ものである。
The present invention focuses on the fact that the temperature characteristics of the supplied hot water during intermittent combustion in the burner exhibits alternating current waveform changes, and attempts to transform this into a characteristic that does not exhibit direct current changes as shown in Figure 5C. It is.

すなわち、第5図の供給温水温度特性Bに対し、これよ
りも÷周期遅れた供給温水温度特性B′を加え、前述の
温度変化が直線的な特性Cを得ることができる装置を提
供するものである。
That is, the present invention provides an apparatus that can obtain the above-mentioned characteristic C in which the temperature change is linear by adding the supplied hot water temperature characteristic B' which is delayed by ÷ period to the supplied hot water temperature characteristic B shown in FIG. 5. It is.

以下本考案を給湯装置に実施した例を第1図および第2
図を参照して説明する。
Examples of implementing the present invention in water heaters are shown in Figures 1 and 2 below.
This will be explained with reference to the figures.

第1図において1は貯湯量の小さな瞬間型ボイラーであ
り、給水口2を介して給水され、サーモスタット3によ
って0N−OFF制御されるたとえばガンタイプバーナ
(図示せず)によって加熱されるようになっている。
In FIG. 1, reference numeral 1 denotes an instantaneous boiler with a small hot water storage capacity, and water is supplied through a water inlet 2 and heated by, for example, a gun-type burner (not shown), which is controlled ON-OFF by a thermostat 3. ing.

上記ボイラー1の給湯口4よりは温水供給器5を介して
蛇口6に給湯するようになっている。
Hot water is supplied from the hot water inlet 4 of the boiler 1 to a faucet 6 via a hot water supply device 5.

前記温水供給器5は第2図に示すように内胴7外に、こ
の内胴7とは容積の異なる外筒8を設けた2重構造をし
ており、内胴7のボイラー1側には分流用の孔9を、そ
の下流の内胴には、内、外胴7゜8内を導通する混合用
の孔10を設け、前記内胴7内を第■の流路11となし
、外胴8内を第2の流路12としている。
As shown in FIG. 2, the hot water supply device 5 has a double structure in which an outer cylinder 8 having a different volume from the inner cylinder 7 is provided outside the inner cylinder 7. is provided with a hole 9 for diversion, and a hole 10 for mixing that conducts between the inner and outer shells 7°8 is provided in the inner shell downstream thereof, and the inside of the inner shell 7 is formed as a No. 1 flow path 11, The inside of the outer shell 8 is defined as a second flow path 12.

そして第1の流路11には貯湯量QAを、また第2の流
路12には貯湯量Q8をもたせている。
The first flow path 11 has a hot water storage amount QA, and the second flow path 12 has a hot water storage amount Q8.

なお第1の流路11には縮流部13を設けている。Note that the first flow path 11 is provided with a contraction section 13 .

5aは、温水供給器5の吐出側、即ち混合用の孔10の
下流側に設けた温水混合促進室で、第1.第2の流路1
1,12から出た温水の混合を促進する。
5a is a hot water mixing promotion chamber provided on the discharge side of the hot water supply device 5, that is, on the downstream side of the mixing hole 10; Second flow path 1
Promote mixing of hot water from 1 and 12.

5bは促進室5a内に配した混合用部材で、温水供給器
5の吐出口5Cにその平面部を対向して配する。
Reference numeral 5b denotes a mixing member disposed within the promotion chamber 5a, with its flat portion facing the discharge port 5C of the hot water supply device 5.

混合用部材5bは単なる板材で構成しても良いし、その
他、プロペラファン等の回転装置によって構成しても良
い。
The mixing member 5b may be composed of a simple plate material, or may be composed of a rotating device such as a propeller fan.

令弟1の流路11と第2の流路12の貯湯量の差、すな
わち、容量差をQB−QA=Q8.−Aとし、QB−A
を次のように設定する。
The difference in the amount of hot water stored in the younger brother 1 flow path 11 and the second flow path 12, that is, the capacity difference, is calculated as QB-QA=Q8. -A, QB-A
Set as follows.

すなわち第1図、第2図および第5図において、給湯口
4での給湯量が57/min時にバーナ断続燃焼時の供
給温水温度特性の1サイクル時間(バーナのON時間と
OFF時間を加えた時間)が3分であったとすると、第
1の流路11に縮流部13を設けて、第1.第2の流路
11,12の流路抵抗を同じにして第1の流路11に2
.5’/min、第2の流路12に2.51/minが
流れるように分流したとすれば、第1の流路11と第2
の流路12の1サイクルの温度特性に変化はない。
In other words, in Figs. 1, 2, and 5, when the hot water supply rate at the hot water supply port 4 is 57/min, one cycle time of the supply hot water temperature characteristics during burner intermittent combustion (burner ON time and OFF time are added) time) is 3 minutes, a contraction section 13 is provided in the first flow path 11, and the first. The flow path resistance of the second flow paths 11 and 12 is made the same, and the flow path resistance of the first flow path 11 is
.. 5'/min and the second flow path 12 at 2.51/min, the first flow path 11 and the second flow path 12 flow at a rate of 2.51/min.
There is no change in the temperature characteristics of the flow path 12 during one cycle.

なおこの実施例では縮流部13を設けて第1、第2の流
路11.12内に流入する温水量を決定したが、他の板
体等で行っても良い。
In this embodiment, the flow contraction section 13 is provided to determine the amount of hot water flowing into the first and second channels 11.12, but other plates or the like may be used.

したがって第2図の分流岐点イ位置と合流岐点口位置の
供給温水温度特性は波形的に同じで、且つ周期ずれがな
いので第5図Bの温度特性の波形のようになり、これで
は大きな温度ディファレンシャルがでてしま譬 う。
Therefore, the supply hot water temperature characteristics at the branch point A position and the confluence point mouth position in Figure 2 are the same in terms of waveform, and there is no period shift, so the waveform of the temperature characteristic is as shown in Figure 5 B. A large temperature differential appears.

そこで本実施例ではQBをQAより大きくして、第1.
第2の流路11,12を通る温水の周期を士サイクルず
らして、ディファレンシャルを打ち消そうとするもので
ある。
Therefore, in this embodiment, QB is made larger than QA, and the first .
The purpose is to offset the differential by shifting the period of the hot water passing through the second flow paths 11 and 12 by a cycle.

そのためにQ、−、=QBQA=2.51/minx3
minx4−X3.75 lとすれば、第2の流路12
の出ロバ位置での温水温度特性の波形は第5図において
破線B′で示されるように÷サイクルに相当する分だけ
温度特性Bの波形より周期が遅れたものとなる。
Therefore, Q,−,=QBQA=2.51/minx3
minx4-X3.75 l, the second flow path 12
As shown by the broken line B' in FIG. 5, the waveform of the hot water temperature characteristic at the output donkey position is delayed in period from the waveform of the temperature characteristic B by an amount corresponding to ÷cycle.

この温度特性Bの波形と温度特性B′の波形を重ね合わ
せると、第2図の流路11と第2の流路12の流量は同
一にしているので、温度特性Cで示されるように直線化
し、すなわち温水温度が一定となる。
When the waveform of the temperature characteristic B and the waveform of the temperature characteristic B' are superimposed, the flow rate of the flow path 11 and the second flow path 12 in FIG. In other words, the hot water temperature becomes constant.

すなわち混合用の孔10の部分において供給温水の温度
テ゛イファレンシャルjθは0に調整される。
That is, the temperature differential jθ of the supplied hot water is adjusted to 0 at the mixing hole 10.

そして蛇口6からは温度変化のない温水を得ることがで
きる。
Then, hot water with no temperature change can be obtained from the faucet 6.

ところが、実際には両流路11,12の温水が混合する
部分があまりにも小さな空間であると、各々の流路11
,12の温水の偏流等によって、混合が良好に威されな
い。
However, in reality, if the space where the hot water in both flow paths 11 and 12 mix is too small, each flow path 11
, 12, etc., the mixing is not affected properly.

そこで、温水混合促進用の大なる空間を有する促進室5
aを設け、さらに、促進室5a内に混合用部材5b、例
えば板材、プロペラファンを設ければ、流路11,12
からの温水を外周方向へ導き、次に外周部から円心部へ
対向せしめて温水を混合することができる。
Therefore, the promotion chamber 5 which has a large space for promoting hot water mixing.
If a mixing member 5b, such as a plate or a propeller fan, is provided in the promoting chamber 5a, the flow paths 11, 12
The hot water can be guided toward the outer circumference, and then the hot water can be mixed by directing the hot water from the outer circumference toward the center.

ここで、室5aにおける大なる空間とは、温水に比重差
があれば、比重差による対流が促進できる空間を意味し
ている。
Here, the large space in the chamber 5a means a space where convection can be promoted due to the difference in specific gravity if there is a difference in specific gravity in the hot water.

即ち、室5a、部材5bにより比重差による対流と対向
流による混合を促進する空間を設けているのでJθ=0
に近づく。
That is, since the chamber 5a and the member 5b provide a space for promoting convection due to the difference in specific gravity and mixing due to countercurrent, Jθ=0.
approach.

もちろん、部材5bがなくても良いが、その場合には室
5aの空間は、対流作用のみの混合になるので、部材5
bがある場合に比べ、相当分大きくならざるを得ない。
Of course, the member 5b may be omitted, but in that case, the space in the chamber 5a will be mixed only by convection, so the member 5b
It cannot help but be considerably larger than when there is b.

上記の説明は本考案装置を給湯装置に適用した実施例に
ついて述べたが、本考案は暖房の場合にも同様にディフ
ァレンシャルのない温水を供給し、安定した暖房を得る
ことができる。
Although the above description has been made regarding an embodiment in which the device of the present invention is applied to a water heater, the present invention can similarly supply hot water without a differential and provide stable heating even in the case of heating.

すなわち暖房装置においてボイラーの出力以下の暖房負
荷がかかつている場合、ボイラーの湯温が上昇し、バー
ナは断続燃焼する。
That is, when a heating load lower than the output of the boiler is applied to the heating device, the temperature of the hot water in the boiler increases and the burner performs intermittent combustion.

そして断続燃焼時の供給温水温度特性は第7図のBで示
すようにテ゛イファレンシャルAθをもつ正弦波形とな
る。
The supplied hot water temperature characteristic during intermittent combustion becomes a sine waveform with a differential Aθ, as shown by B in FIG.

なお第7図中のB//は温水の戻り温度特性であり、温
度は下がっているが前記特性Bと同期したテ゛イファレ
ンシャルをもつ温度特性となる。
Note that B// in FIG. 7 is the return temperature characteristic of hot water, and although the temperature has decreased, the temperature characteristic has a differential that is synchronized with the characteristic B described above.

なお、断続燃焼時の供給温水温度特性における1サイク
ル当りの時間は第8図に示すように暖房負荷がボイラー
出力の士の場合に最短となる。
Note that the time per cycle in the supply hot water temperature characteristics during intermittent combustion is the shortest when the heating load is equal to the boiler output, as shown in FIG.

すなわち第8図においてB1は1サイクルにおけるバー
ナOFF時の時間−暖房負荷特性、B2は1サイクルに
おけるバーナON時の時間−暖房負荷特性であり、両特
性の時間を加えると実線のB2の特性となる。
That is, in Fig. 8, B1 is the time-heating load characteristic when the burner is OFF in one cycle, B2 is the time-heating load characteristic when the burner is ON in one cycle, and when the time of both characteristics is added, it becomes the characteristic of B2 shown by the solid line. Become.

そしてY点がボイラー出力相当時の暖房負荷で゛あるこ
とから、時間的には÷ボイラー出力点Y′が最も短いこ
とになる。
Since point Y is the heating load corresponding to the boiler output, the shortest time is ÷boiler output point Y'.

これらのことから第7図に示すjθのディファレンシャ
ルをもつ断続燃焼時の供給温水温度特性に÷周期ずらせ
た供給温水温度特性をつくりだし、両特性の供給温水を
混合することによりテ゛イファレンシャル0の温水とし
てこれを循環させることができる。
From these facts, we created a supply hot water temperature characteristic obtained by dividing the supplied hot water temperature characteristic during intermittent combustion with a differential of jθ shown in Fig. 7 by shifting the period, and by mixing the supplied hot water with both characteristics, hot water with a differential of 0 was created. This can be cycled as .

第6図は上記本考案を実施した暖房装置の一例を示し、
図において14はボイラーであり、サーモスタット15
によって0N−OFF制御されるたとえばガンタイプバ
ーナ(図示せず)によって加熱されるようになっている
FIG. 6 shows an example of a heating device implementing the above invention,
In the figure, 14 is a boiler, and a thermostat 15
It is heated by, for example, a gun-type burner (not shown) which is ON-OFF controlled by the heater.

上記ボイラー14の温水は温水出口16から循環ポンプ
17を介して前述第2図に示す第1の回路と第2の回路
をもつ温水供給器18、暖房往き回路19を通り、放熱
器20を介して暖房返り回路21を経てボイラー14の
温水返り口22に戻るようになっている。
The hot water from the boiler 14 is passed from the hot water outlet 16 through the circulation pump 17, through the hot water supply device 18 having the first circuit and the second circuit shown in FIG. The hot water returns to the hot water return port 22 of the boiler 14 via a heating return circuit 21.

前記ボイラー14には給水口23からジスターン24お
よび給水管25を介して水が供給され、ボイラー14の
膨張水は膨張管26を介してジスターン24にもどされ
、またジスターン24には溢水を処理するオーバーフロ
ー管27を設けである。
Water is supplied to the boiler 14 from the water supply port 23 through a gas tank 24 and a water supply pipe 25, and the expansion water of the boiler 14 is returned to the gas tank 24 via an expansion pipe 26. An overflow pipe 27 is provided.

上記構成において前述の給湯装置の場合と同様に温水供
給器18の第1の流路と第2の流路に貯湯量差をもたせ
、システムの循環量を101/minとした場合、バー
ナの断続燃焼時の供給温水温度特性の1サイクル時間を
4分とし、第1の流路と第2の流路にそれぞれ51/m
inづつ流すとし、さらに両流路の貯湯量差を57’/
m1nx4 m1nx4−10 lとして÷サイクル相
当流量にして÷周期遅れた供給温水温度特性を得ること
ができ、これを本来の断続燃焼時の供給温水温度特性に
重ね合わせることにより、ディファレンシャルlθ=0
とする温水となし、これを循環して常に安定した暖房を
行なわせることができるものである。
In the above configuration, if the first flow path and the second flow path of the hot water supply device 18 are made to have a difference in hot water storage amount as in the case of the water heater described above, and the circulation rate of the system is set to 101/min, the burner is switched on and off. One cycle time of the supply hot water temperature characteristics during combustion is 4 minutes, and the first flow path and the second flow path are each 51/m.
In addition, the difference in the amount of hot water stored in both channels is 57'/
As m1nx4 m1nx4-10 l, it is possible to obtain the supply hot water temperature characteristic ÷ cycle equivalent flow rate ÷ period delayed supply hot water temperature characteristic, and by superimposing this on the supply hot water temperature characteristic during the original intermittent combustion, differential lθ = 0
By circulating hot water, stable heating can be achieved at all times.

上記した暖房の場合においても、温水供給器18の吐出
側には、温水混合促進室を設けており、前述した給湯時
と同様に第1.第2の流路から出た温水をより均一に混
合でき、循環する温水の温度の一定化がより確実に威さ
れる。
In the case of heating as described above, a hot water mixing promotion chamber is provided on the discharge side of the hot water supply device 18, and the first. The hot water coming out of the second flow path can be mixed more uniformly, and the temperature of the circulating hot water can be more reliably maintained.

本考案装置は上記給湯および暖房の温水の温度ディファ
レンシャルJθを0とする以外に出湯時の安全性を高め
る上からも効果を有する。
In addition to setting the temperature differential Jθ of hot water for hot water supply and heating to 0, the device of the present invention has the effect of increasing safety when hot water is tapped.

すなわち一般の瞬間型湯沸器は高出力・小貯湯量の湯沸
器であるため、湯沸器内の罐水の上昇速度が大きく、毎
分30 degになるものが多い。
That is, since a general instantaneous water heater is a water heater with a high output and a small amount of hot water storage, the rate of rise of water in the can in the water heater is high, often reaching 30 degrees per minute.

このような湯沸器においてはバーナを制御するためのサ
ーモスタットの設定温度を70℃前後に設定すると、サ
ーモスタットの罐水温度検出が湯沸器罐水温度の上昇速
度に追従できないことや、サーモスタット作動後の罐体
の燃焼室内側の滞留高温ガスの燃焼室壁面を通しての伝
熱遅れによって罐水温度が上昇し、沸騰状態に近づくこ
とがある。
In such water heaters, if the set temperature of the thermostat for controlling the burner is set to around 70°C, the temperature detection of the can water by the thermostat may not be able to follow the rate of increase in the water temperature of the water heater can, and the thermostat may not operate properly. Due to the delay in heat transfer of the high temperature gas remaining inside the combustion chamber of the latter housing through the combustion chamber wall surface, the temperature of the can water may rise and approach a boiling state.

一方、サーモスタットの設定温度を低くすると、出湯後
の落ち込み温度が低くなりすぎるという欠点がある。
On the other hand, if the set temperature of the thermostat is set low, there is a drawback that the temperature at which the hot water falls after tapping becomes too low.

第9図は前記温度特性を示し、特性曲線Eで示す一般の
瞬間型ボイラーの出湯温度特性は沸き上がり時の温度(
出湯開始温度)a点より時間が経過するにつれてb点の
ように温度が落ち込む。
Figure 9 shows the temperature characteristics, and the hot water temperature characteristic of a general instantaneous boiler shown by characteristic curve E is the temperature at boiling (
Starting temperature of hot water) As time passes from point a, the temperature drops as shown at point b.

このことはたとえば一旦風呂を使用し浴槽内のお湯がぬ
るくなったときに温水を加えて浴槽内のお湯の温度を上
げる場合、落ち込み温度が低いと浴槽内の温度を再び上
昇させることが困難となり、浴槽への給湯の実際の使用
時に再びお湯があつくならないという欠点がある。
For example, if you use a bath and the water in the bathtub becomes lukewarm and you add warm water to raise the temperature of the water in the bathtub, it will be difficult to raise the temperature in the bathtub again if the temperature drops to low. However, there is a drawback that the hot water does not get hot again when the hot water supply to the bathtub is actually used.

また沸上り時の沸騰を防止し、かつ落ち込み温度が低く
ならないようにサーモスタット温度を60℃程度とし、
さらに給水・給湯配管の配置を置慮しても、出湯開始時
には90℃前後の高温のお湯が出てくるという欠点があ
り、やけどなどの危険がともなう。
In addition, the thermostat temperature is set at around 60℃ to prevent boiling at the time of boiling and to prevent the temperature from dropping to low.
Furthermore, even if the arrangement of the water supply and hot water supply piping is taken into consideration, there is a drawback that hot water of around 90°C comes out when the hot water starts, which poses a risk of burns.

これに対し本考案は第1図および第2図の構成において
ボイラー1内に90℃のの湯が沸き上がったとしても、
第1の流路11および第2の流路12内の温水がボイラ
ー1内の罐体と対流により上昇しないように、たとえば
給湯口4の分岐部の径を小さくしておくことにより、第
1の流路11および第2の流路12内の温水が40℃前
後にしか上昇しないようにしておけば、給湯口4より9
0℃のお湯が出はじめても第1の流路11および第2の
流路12内の40℃前後の温水と混合されて第9図Cの
温度特性のように50℃前後がらなだらかに温水温度を
上昇させていくことができ、落ち込みのないそして安全
な出湯が得られる。
In contrast, in the present invention, even if water at 90°C is boiled in the boiler 1 in the configuration shown in Figs. 1 and 2,
In order to prevent the hot water in the first flow path 11 and the second flow path 12 from rising due to convection with the casing in the boiler 1, the diameter of the branch part of the hot water supply port 4 is made small, for example. If the hot water in the flow path 11 and the second flow path 12 is set to rise only to around 40 degrees Celsius, the temperature will rise from the hot water supply port 4 to 9.
Even when hot water at 0°C begins to flow, it is mixed with the hot water of around 40°C in the first flow path 11 and the second flow path 12, and the hot water temperature gradually rises to around 50°C as shown in the temperature characteristics shown in Figure 9C. This allows for safe hot water to be drawn without sagging.

なお第9図における温度特性Cにおいて、上昇中に一旦
温度が降下しているのは第1の流路11と第2の流路1
2の容量差によって混合遅れが生じるためである。
In addition, in the temperature characteristic C in FIG. 9, the temperature drops once during the rise in the first flow path 11 and the second flow path 1.
This is because a mixing delay occurs due to the difference in capacity between the two.

本考案装置は以上の構成ならびに動作によりっぎのよう
な効果を有する。
The device of the present invention has the following effects due to the above-described configuration and operation.

(1)大貯湯量のボイラーでなくても、貯湯量の小さな
比例制御なしの0N−OFFバーナの瞬間型ボイラーに
、わずか31程度の温水供給装置を給湯出口に取りつけ
るだけで、断続燃焼時の供給温水温度特性に高低差のデ
ィファレンシャルのない安定さをもたせることができる
(1) Even if the boiler is not a boiler with a large amount of hot water storage, by simply attaching a hot water supply device of about 31 to the hot water outlet to an instantaneous boiler with a small amount of hot water storage and an 0N-OFF burner without proportional control, it is possible to It is possible to provide stability in the temperature characteristics of the supplied hot water without any differentials due to height differences.

(2)給湯時の温度ディファレンシャルを0としつるの
で、シャワー使用時に不快感を生じさせない。
(2) Since the temperature differential during hot water supply is set to 0, there is no discomfort when using the shower.

(3)暖房回路の給湯口に設けた場合、暖房往き温度に
変化がなく、均一であり、対流式のファンコンベクター
では温風温度に変化がなくなり、高級な暖房ができると
同時に、フロアヒーティングに使用すると温度変化が床
面に生しないので、むらのない均一な暖房効果が倍増さ
れる。
(3) When installed at the hot water inlet of a heating circuit, the temperature flowing out of the heating circuit remains uniform and does not change.With a convection type fan convector, there is no change in the temperature of the hot air, making it possible to provide high-grade heating and at the same time provide floor heating. When used on the floor, temperature changes do not occur on the floor surface, so the heating effect is doubled.

(4)給湯または暖房配管に温水温度差による繰り返し
熱応力が加わらないので配管材の繰り返し熱応力による
破損を防止できる。
(4) Since repeated thermal stress due to hot water temperature differences is not applied to hot water supply or heating piping, damage to piping materials due to repeated thermal stress can be prevented.

(5)温水供給装置がわずか31程度と小型のため、温
水供給装置を含むボイラーは大貯湯量のボイラーに比較
してはるかにコスト的メリットを有する。
(5) Since the hot water supply device is small, with only about 31 boilers, a boiler including a hot water supply device has a much greater cost advantage than a boiler with a large hot water storage capacity.

(6)出湯開始時の高温出湯の防止と給湯時の温度の落
ち込みを防止できるので、安全性を高め、かつ浴槽等に
使用する場合の再加熱用給湯時の加熱がスムーズである
(6) It is possible to prevent high-temperature hot water at the start of hot water dispensing and to prevent the temperature from dropping during hot water supply, which improves safety and allows smooth heating during reheating hot water supply when used in a bathtub or the like.

(7)温水供給器が二重筒から構成されているので、前
記温水供給器がコンパクトになり、がつ簡単な構成であ
るため取付が容易であるとともに、内胴部の伝熱面を通
して温水が熱交換されるので、熱交換によりJθは小さ
くなるという効果を有する。
(7) Since the hot water supply device is composed of double cylinders, the hot water supply device is compact and has a simple structure, making it easy to install. is heat exchanged, so the heat exchange has the effect of reducing Jθ.

(8)温水混合促進室により、温水の混合むらがなくな
り、比重差による対流と、必要であれば対向流による混
合によって、確実にJθ二〇とすることか゛できる。
(8) The warm water mixing promotion chamber eliminates uneven mixing of hot water, and Jθ can be reliably maintained at 20 by convection due to the difference in specific gravity and, if necessary, mixing by counterflow.

なお、前述の実施例においては一緒式ボイラの場合につ
いてのみ説明したが、2罐式ボイラーで給湯用熱交換器
を内蔵するタイプにおいても、本考案装置を組み込めば
同等の効果が得られることは言うまでもない。
In the above embodiment, only the case of a combined boiler was explained, but it is possible to obtain the same effect by incorporating the device of the present invention in a two-can boiler with a built-in heat exchanger for hot water supply. Needless to say.

また、ボイラー熱源はガス、灯油、電気等のいずれでも
よい。
Further, the boiler heat source may be gas, kerosene, electricity, or the like.

また給湯出口を2分流以上に細分化して分流すれば、一
層広範囲で供給温水の温度テ゛イファレンシャルJθ=
0とした性能を出すことができる。
Furthermore, if the hot water supply outlet is subdivided into two or more branches, the temperature differential Jθ=
It is possible to achieve a performance of 0.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案を実施した給湯装置の構成図、第2図は
同温水供給装置の断面図、第3図および第4図は瞬間型
ボイラーの供給温水温度特性図、第5図は同供給温水温
度特性の詳細説明図、第6図は本考案を実施した暖房装
置の構成図、第7図は暖房時の温水温度特性図、第8図
は0N−OFFサイクル−暖房負荷特性図、第9図は出
湯温度特性図である。 1・・・・・・ボイラー、4・・・・・・給湯口、5・
・・・・・温水供給器、7・・・・・・内胴、8・・・
・・・外胴、9・・・・・・分流用孔、10・・・・・
・混合用孔、11・・・・・・第1の流路、12・・・
・・・第2の流路、5a・・・・・・温水混合促進室。
Figure 1 is a block diagram of a hot water supply system implementing the present invention, Figure 2 is a cross-sectional view of the same hot water supply system, Figures 3 and 4 are temperature characteristics of hot water supplied to an instantaneous boiler, and Figure 5 is the same A detailed explanatory diagram of supply hot water temperature characteristics, Figure 6 is a configuration diagram of a heating device implementing the present invention, Figure 7 is a diagram of hot water temperature characteristics during heating, Figure 8 is a diagram of 0N-OFF cycle-heating load characteristics, FIG. 9 is a diagram showing the outlet temperature characteristics. 1...Boiler, 4...Hot water inlet, 5.
...Hot water supply device, 7...Inner shell, 8...
... Outer body, 9 ... Diversion hole, 10 ...
・Mixing hole, 11...First channel, 12...
...Second channel, 5a...Hot water mixing promotion chamber.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ボイラーの熱源が温水の設定温度において0N−OFF
制御される貯湯量の小さな瞬間型湯沸器を温水供給源と
し、この温水供給源からの温水の供給路に温水供給器を
接続し、上記温水供給器は内胴外に、この内胴とは容積
の異なる外胴を設けた二重筒で構成され、前記内胴の上
記温水供給源側には内、外胴内を導通するとともに、こ
れらの内、外胴内の一方に流入した温水を他方に分流す
る分流用の孔、この孔の下流の内胴には内、外胴内を導
通するとともに、これらの内、外胴内の一方に流れる温
水を他方に流入させ、混合させる混合用の孔を形威し、
この温水供給器に入った温水を上記分流用の孔で内、外
胴に分流するとともに、上記混合用の孔で混合した後に
、この混合用の孔の下流に流出させる構成とするととも
に、この混合用の孔の下流には、内部に温水混合用部材
を配した温水混合促進室を設けた温水供給装置。
The boiler heat source turns 0N-OFF at the hot water set temperature.
An instantaneous water heater with a small controlled hot water storage capacity is used as a hot water supply source, and a hot water supply is connected to the hot water supply path from this hot water supply source, and the hot water supply is connected to the outside of the inner shell and connected to the inner shell. It is composed of a double cylinder with outer shells having different volumes, and the hot water supply source side of the inner shell is connected to the inner and outer shells, and the hot water flowing into one of these inner and outer shells is connected to the hot water supply source side of the inner shell. A diversion hole that divides the water into the other, and a mixing hole that connects the inner and outer shells to the inner shell downstream of this hole, and allows hot water flowing into one of these inner and outer shells to flow into the other and mix. Shape the hole for the purpose,
The hot water that has entered the hot water supply device is configured to be divided into the inner and outer shells through the above-mentioned diversion holes, mixed in the above-mentioned mixing holes, and then flowed out downstream of the mixing holes. A hot water supply device provided with a hot water mixing promotion chamber in which a hot water mixing member is arranged downstream of the mixing hole.
JP9411277U 1977-07-14 1977-07-14 Hot water supply device Expired JPS592427Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9411277U JPS592427Y2 (en) 1977-07-14 1977-07-14 Hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9411277U JPS592427Y2 (en) 1977-07-14 1977-07-14 Hot water supply device

Publications (2)

Publication Number Publication Date
JPS5421254U JPS5421254U (en) 1979-02-10
JPS592427Y2 true JPS592427Y2 (en) 1984-01-23

Family

ID=29025823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9411277U Expired JPS592427Y2 (en) 1977-07-14 1977-07-14 Hot water supply device

Country Status (1)

Country Link
JP (1) JPS592427Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267266A (en) * 2001-03-12 2002-09-18 Showa Mfg Co Ltd Atmospheric pressure boiler

Also Published As

Publication number Publication date
JPS5421254U (en) 1979-02-10

Similar Documents

Publication Publication Date Title
CN109489241B (en) Gas water heater and control method thereof
CN108444094A (en) A kind of thermostatic type central heater and control method
US7140378B2 (en) Instantaneous water heater
JPS592427Y2 (en) Hot water supply device
CN208735888U (en) A kind of thermostatic type central fuel gas water heating device
JPS5918260Y2 (en) Hot water supply device
CN108844220A (en) A kind of gas heater with heating function
JPS5853256B2 (en) Hot water supply device
JP2511898B2 (en) Water heater
JPS5945902B2 (en) Circulating hot water bath pot
US2410994A (en) Water heater
JPS5938684Y2 (en) instant water heater
JPS60152857A (en) Hot water supplying device
JPS55152343A (en) Water heater of hot-water supply-type bathtub
JPS5916734Y2 (en) heating system
JPH029337Y2 (en)
CN105910271A (en) Wall-hanging stove
JPH0218432Y2 (en)
JPS589136Y2 (en) Hot water heating system
JP2882160B2 (en) Water heater with bath kettle
JPS5818121Y2 (en) Kyuutousouchi
JPS591946A (en) Heat exchanger
JPH0218430Y2 (en)
JPH074407Y2 (en) Hot water heater
JPH02225944A (en) Instantaneous hot-water heater