JPS5924181B2 - glass with metal wire - Google Patents

glass with metal wire

Info

Publication number
JPS5924181B2
JPS5924181B2 JP5583178A JP5583178A JPS5924181B2 JP S5924181 B2 JPS5924181 B2 JP S5924181B2 JP 5583178 A JP5583178 A JP 5583178A JP 5583178 A JP5583178 A JP 5583178A JP S5924181 B2 JPS5924181 B2 JP S5924181B2
Authority
JP
Japan
Prior art keywords
glass
metal wire
wire
encapsulated
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5583178A
Other languages
Japanese (ja)
Other versions
JPS54146819A (en
Inventor
立 星野
勇 材木
幹夫 千原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP5583178A priority Critical patent/JPS5924181B2/en
Publication of JPS54146819A publication Critical patent/JPS54146819A/en
Publication of JPS5924181B2 publication Critical patent/JPS5924181B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 本発明は金属線入りガラスに関し、特に切口に「線ビリ
」を発生し難い金属線入りガラスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal wire-containing glass, and more particularly to a metal wire-containing glass that is less likely to cause "line fraying" at the cut end.

金属線を網状に、あるいは平行線状に封入した金属線入
りガラスは、万一ガラスが破壊してもガラス破片が脱落
しない利点を有し、窓ガラス、間仕切壁等広範な用途に
使用され、形状も平板に限らずチャンネル型等種々のも
のが市販されている。
Metal wire-filled glass, which is made by enclosing metal wires in the form of a mesh or parallel lines, has the advantage that glass fragments will not fall off even if the glass breaks, and is used in a wide range of applications such as window glass and partition walls. Various shapes are commercially available, including not only a flat plate but also a channel type.

かかる金属線入りガラス製品は連続帯状に製造されたも
のを所定寸法に切断して製作されるのであるが、この切
断時に、ガラスと金属の破断機構の本質的な相違に起因
して封入金属線が切口端部近くにおいてガラスから剥離
する現象を起す。
Such glass products containing metal wires are produced by cutting a continuous band into predetermined dimensions, but due to the essential difference in the breaking mechanism of glass and metal, the encapsulated metal wires are cut during cutting. This causes a phenomenon in which the glass peels off from the glass near the cut edge.

このとき同時に、封入金属線がガラスから剥離している
境界部のガラス中に微細な逆円錐状のクラックをしばし
ば生じ、このクラックを[線ビ1月とよんでいる。
At the same time, fine inverted cone-shaped cracks often occur in the glass at the boundary where the encapsulated metal wire is separated from the glass, and these cracks are called "wire cracks."

かかる線ビリを有する金属線入りガラスは線ビリのない
ガラスに比して施工後熱割れを生じやすい。
Glass with metal wires having such lines is more likely to cause thermal cracking after construction than glass without lines.

すなわち使用中に中央付近と端部付近との間に生じる温
度差に基づいて金属線入りガラスには熱応力が発生する
が、ガラスが破壊する限界熱応力が線ビリのあるものは
ないものに比し平均値で約30係程度低いという実験結
果が得られている。
In other words, thermal stress occurs in glass with metal wires based on the temperature difference that occurs between the center and the edges during use, but the critical thermal stress at which the glass breaks is the same for glass without wires. Experimental results have shown that the average value is about 30 times lower.

したがって金属線入りガラスの封入金属線の性質として
切断時に線ビリを発生し難いことが強く望まれる。
Therefore, it is strongly desired that the metal wires encapsulated in the metal wire-containing glass should be resistant to wire fraying during cutting.

加えて次のような条件を全て満足することが望ましい。In addition, it is desirable to satisfy all of the following conditions.

(1)強磁性を有すること。(1) Must have ferromagnetism.

これにより金属線入りガラス屑からガラスを回収する場
合に金属線を磁選除去できる。
Thereby, when recovering glass from glass waste containing metal wires, metal wires can be removed by magnetic separation.

(2)焼鈍後の破断伸率か小さいこと。(2) The elongation at break after annealing must be small.

これにより金属線入りガラスの折り曲げ切断が可能とな
る。
This makes it possible to bend and cut glass containing metal wires.

(3)高温強度大であること。(3) High temperature strength.

(4)カラス中への封入時に発泡せぬこと。(4) No foaming occurs when encapsulating in the glass.

(5)ガラス中への封入時の温度とガラス便用時の温度
との中間温度範囲内lこAr3変態が存在しないこと。
(5) There is no Ar3 transformation within the intermediate temperature range between the temperature at the time of sealing in the glass and the temperature at the time of use of the glass.

これは変態に伴なう体積膨張ζこよるガラス破損を防止
する上で必要である。
This is necessary to prevent glass breakage due to volumetric expansion ζ accompanying transformation.

(6)実使用環境で錆び難いこと。(6) Resistant to rust in actual usage environments.

本発明の主な目的は線ビリが発生し難い金属線入りガラ
スを提供することである。
The main object of the present invention is to provide a metal wire-containing glass that is less likely to cause line fraying.

本発明の他の目的は、線ビリが発生し難く、しかも上述
した諸条件を全て満足する金属線入りガラスにおける封
入金属線の材質を提供することである。
Another object of the present invention is to provide a material for an encapsulated metal wire in a metal wire-containing glass that is less likely to cause wire fraying and satisfies all of the above-mentioned conditions.

すなわち本発明に係る金属線入りガラスの封入金属線は
、フェライト系ステンレス鋼から成り且つその断面積1
−当りの平均結晶粒数が16384個以上のものである
ことを特徴とする。
That is, the encapsulated metal wire of the metal wire-containing glass according to the present invention is made of ferritic stainless steel and has a cross-sectional area of 1
- The average number of crystal grains per grain is 16,384 or more.

ここで本発明において規定する金属線の結晶粒数は、該
金属線がガラス中にすでに封入されている状態で且つ常
温のもと、厳密ζこは金属線入りガラスが切断される環
境温度のもとで満足されるべき条件である。
Here, the number of crystal grains of the metal wire specified in the present invention is determined strictly when the metal wire is already encapsulated in the glass and at room temperature, which is the environmental temperature at which the metal wire-containing glass is cut. This is a condition that must be satisfied under the following conditions.

すなわち高温軟化状態にあるガラス中へ封入する前の段
階で金属線の結晶粒がいくら細かいものであっても、金
属線の組成によっては封入後の冷却過程で結晶が粗大化
して常温下での切断時に結晶粒数が上記範囲外となるこ
とがあり、かかる場合は所期の効果が得られない。
In other words, no matter how fine the crystal grains of the metal wire are before being encapsulated in glass that is in a high-temperature softening state, depending on the composition of the metal wire, the crystals may become coarse during the cooling process after being encapsulated, and may become unstable at room temperature. During cutting, the number of crystal grains may fall outside the above range, and in such a case, the desired effect cannot be obtained.

また逆に封入前の金属線の結晶粒が粗大なものであって
も、金属線入りガラス切断時に本発明の規定範囲内とな
っていれば所期の効果が得られる。
On the contrary, even if the crystal grains of the metal wire before encapsulation are coarse, the desired effect can be obtained as long as the crystal grains are within the specified range of the present invention when cutting the metal wire-containing glass.

本発明で用いるフェライト系ステンレス鋼は、金属線入
りガラスの封入金属線として望まれる前述の(1)ない
しく6)の条件を全て満足するものであり、且つ結晶粒
数が本発明範囲内であると切断時に線ビリを発生し難い
The ferritic stainless steel used in the present invention satisfies all of the above-mentioned conditions (1) to 6) desired as a metal wire encapsulated in metal wire-containing glass, and has a crystal grain number within the range of the present invention. If there is, it is difficult to cause line burrs when cutting.

金属線の結晶粒数と線ビリ発生との関係についてさらに
詳しく説明する。
The relationship between the number of crystal grains in a metal wire and the occurrence of line fraying will be explained in more detail.

本発明者らの知見によると、同一鋼種、同一処理条件の
金属線を封入したガラスでも線ビリ発生率に非常に大き
なバラツキがある。
According to the findings of the present inventors, there is a very large variation in the incidence of wire fraying even in glasses encapsulating metal wires of the same steel type and under the same processing conditions.

この差を詳細に観察すると線ビリが発生しない金属線入
りガラスにおける金属線の切口近くの表面肌は比較的な
めらかで凹凸は微細であるが、線ビリの発生している金
属線入りガラスでは金属線の上記箇所に強い凹凸が見ら
れる。
When observing this difference in detail, we find that the surface texture near the cut end of the metal wire in glass with metal wires that does not have line fraying is relatively smooth and has minute irregularities, but in glass with metal wires that do have line fraying, the surface texture near the cut edge of the metal wire is relatively smooth. Strong unevenness can be seen at the above-mentioned portion of the line.

又傾向として発生する線ビリの大きさと表面肌の凹凸の
強さはほぼ比例している。
Furthermore, the size of the lines that tend to occur is almost proportional to the strength of the surface roughness.

上記事実から切断時に発生する金属線表面凹凸が線ビリ
の発生に大きく関与していると考えられる。
From the above facts, it is believed that the unevenness on the surface of the metal wire that occurs during cutting is largely responsible for the occurrence of wire fraying.

この金属線の表面凹凸の発生原因については十分解明さ
れていないが、伸線加工によって強度の冷間加工を受け
た線材がガラス中に封入され徐冷される過程で焼鈍され
、冷却後ガラス切断時に封入線材が強度の引張りを受け
、降伏点を越える引張応力が切口近傍に生じるためにス
トレッチャーストレイン(Strecher 5tr
ain)あるいはりツジング(ridging)として
知られる表面凹凸現象を生じると推測される。
The cause of surface irregularities on metal wires is not fully understood, but wire rods that have undergone intense cold processing during wire drawing are encapsulated in glass and annealed during the slow cooling process. Sometimes, the encapsulated wire is subjected to strong tension, and tensile stress exceeding the yield point is generated near the cut end, resulting in stretcher strain (Stretcher 5tr).
It is presumed that a surface unevenness phenomenon known as ain) or ridging occurs.

そして上記ストレッチャーストレインは、線材の結晶粒
度を、日本工業規格(J l5)Go 552−197
7に規定される比較法による粒度番号11、すなわち線
材断面の結晶粒数に換算して平均16384個/rru
A以上の細かいものとすることにより発生を抑止するこ
とができる。
The above-mentioned stretcher strain has a crystal grain size of the wire according to Japanese Industrial Standards (Jl5) Go 552-197.
Grain size number 11 according to the comparative method specified in Section 7, that is, the average number of crystal grains in the cross section of the wire is 16,384/rru
The occurrence can be suppressed by making it finer than A.

フェライトステンレス鋼を本発明に係る所期の結晶粒数
に調整するに当っては、予め金属線の組成中にチタン、
バナジウム、ニオブ、タンタル等の成分を添加して鋼中
の窒素あるいは炭素と結合させることにより、高温下で
フェライト中に固溶しない安定な微細析出物を均一に分
散させ結晶粒の成長を防げる方法、高温下でα相、γ相
の2相をつくり、冷却時にγ相からα相へ又はγ相から
マルテンサイトへ変態させて結晶を微細化する方法等周
知の冶金技術を用いることができる。
In adjusting the ferritic stainless steel to the desired crystal grain number according to the present invention, titanium,
A method that prevents crystal grain growth by uniformly dispersing stable fine precipitates that do not dissolve in ferrite at high temperatures by adding components such as vanadium, niobium, and tantalum and combining them with nitrogen or carbon in steel. Well-known metallurgical techniques can be used, such as a method of forming two phases, an α phase and a γ phase, at high temperature, and transforming the γ phase to the α phase or from the γ phase to martensite to refine the crystals upon cooling.

いずれの方法を選ぶにしても封入金属線の材質は、10
00℃以上の高温にあるガラス中へ封入され常温まで冷
却される間に結晶粒の成長が起り難いことが重要である
Whichever method you choose, the material of the encapsulated metal wire must be 10
It is important that crystal grain growth is difficult to occur while the material is sealed in glass at a high temperature of 00° C. or higher and cooled to room temperature.

具体的数値例で示すならば、C0,05%、5i105
係、Mn0.72%、Po、015%、80.193%
、N i O,15%、 Cr 17.95%、Mo1
.04%、Al1.60%、Ti0.42%を含有する
フェライト系ステンレス鋼からなる線材を1100℃な
いし1150℃の温度にある軟化ガラス中に封入し、こ
の金属線入りガラスを数秒後に成形圧延ロール間を通過
せしめて約800℃まで冷却し、さらに1分後に600
°C程度まで冷却した後およそ40分間で約50°Cま
で徐冷することにより、平均結晶粒数16384個/m
a以上を有する金属線入りガラスを得ることができる。
To give a concrete numerical example, C0.05%, 5i105
Mn0.72%, Po015%, 80.193%
, N i O, 15%, Cr 17.95%, Mo1
.. A wire made of ferritic stainless steel containing 0.4% Al, 1.60% Al, and 0.42% Ti is encapsulated in softened glass at a temperature of 1100°C to 1150°C, and the glass containing the metal wire is molded into a rolling roll after a few seconds. Cooled to approximately 800°C, and after another minute, heated to 600°C.
By cooling to about 10°C and then slowly cooling to about 50°C for about 40 minutes, the average number of crystal grains is 16,384/m.
It is possible to obtain metal wire-containing glass having a value of a or more.

次に本発明の実施例につき説明する。Next, examples of the present invention will be described.

実施例 5US430の線材を製造ロフトの異なる304ボビン
用意し、該線材を軟化状態にあるガラス中に封入して金
属線入りガラス板を製造し、徐冷後常温下で各ボビンの
線材を含むガラスを各各20カ所にわたり、切断し、封
入金属線の結晶粒度および線ビリ発生の有無を観察した
Example 5 304 bobbins with different production lofts of US430 wire rods are prepared, and the wire rods are encapsulated in glass in a softened state to manufacture a glass plate containing metal wires. After slow cooling, the glass containing the wire rods of each bobbin is prepared at room temperature. were cut at 20 locations each, and the crystal grain size of the encapsulated metal wire and the presence or absence of line fraying were observed.

その結果を表1に示す。The results are shown in Table 1.

また同表中の粒度番号は、JISGO552−1977
の規定による比較法に従い、倍率400倍の顕微鏡で観
察した粒度をN(400)として同規定にある通り、 N(100)二N(400)+Q 00 Q=6.64 l o g□ 00 の式で求めたN(100)の数値である。
In addition, the particle size number in the same table is JISGO552-1977
According to the comparative method according to the regulations, the particle size observed under a microscope with a magnification of 400 times is N (400). This is the numerical value of N (100) determined by the formula.

なお本発明において用いた結晶粒数はJISGO552
−1977に記載された粒度番号と結晶粒数の対照表お
よび算式を用いて前記で求めた粒度番号から換算したも
のである。
The number of crystal grains used in the present invention is JISGO552.
It is calculated from the particle size number obtained above using the comparison table of the particle size number and the number of crystal grains and the calculation formula described in -1977.

次に、封入金属線の材質として表2に示す如き成分を含
有する4種のフェライト系ステンレスを用いて各々金属
線入りガラスを製作し、常温で切断して線ビリ発生率お
よび金属線の結晶粒度、線材表面凹凸、硬度(HV)に
ついて調べた。
Next, four types of ferritic stainless steel containing the components shown in Table 2 were used as the material for the encapsulated metal wires, and glasses containing metal wires were manufactured, and they were cut at room temperature to determine the incidence of wire fraying and the crystallization of the metal wires. The particle size, wire surface unevenness, and hardness (HV) were investigated.

その結果を表3に示す。The results are shown in Table 3.

表1の結果から金属線の結晶粒数が平均 16384個/−以上に細かくなると急激に線ビリ発生
率が低下する傾向を示すことがわかり、また表3の結果
からも結晶粒の細かい方が線ビリを発生し難いことがわ
かる。
From the results in Table 1, it can be seen that when the number of crystal grains in the metal wire becomes finer than an average of 16,384/-, the line fray occurrence rate tends to decrease rapidly, and from the results in Table 3, the finer the crystal grains, the more It can be seen that line burrs are less likely to occur.

なお表3の結果では線ビリ発生率と封入金属線の硬度と
の間に相関関係があるようにも見えるが、別途の実験で
5US430の線材を使用した場合には硬度が大であっ
ても結晶粒が粗大であると線ビリが発生し易いという結
果が得られている。
In addition, from the results in Table 3, it seems that there is a correlation between the wire fray occurrence rate and the hardness of the encapsulated metal wire, but in a separate experiment, when 5US430 wire was used, even if the hardness was high, Results have been obtained that line cracks are more likely to occur when the crystal grains are coarse.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス中に封入されている金属線がフェライト系ス
テンレス鋼から成り且つその金属線断面1rru?を当
りの平均結晶粒数が16384個以上のものであること
を特徴とする金属線入りガラス。
1. The metal wire enclosed in the glass is made of ferritic stainless steel, and the cross section of the metal wire is 1rru? A metal wire-containing glass characterized in that the average number of crystal grains per glass is 16,384 or more.
JP5583178A 1978-05-10 1978-05-10 glass with metal wire Expired JPS5924181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5583178A JPS5924181B2 (en) 1978-05-10 1978-05-10 glass with metal wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5583178A JPS5924181B2 (en) 1978-05-10 1978-05-10 glass with metal wire

Publications (2)

Publication Number Publication Date
JPS54146819A JPS54146819A (en) 1979-11-16
JPS5924181B2 true JPS5924181B2 (en) 1984-06-07

Family

ID=13009911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5583178A Expired JPS5924181B2 (en) 1978-05-10 1978-05-10 glass with metal wire

Country Status (1)

Country Link
JP (1) JPS5924181B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621489A (en) * 1985-06-27 1987-01-07 株式会社 サタケ Cleaner for light source for color selector
JPS621490A (en) * 1985-06-27 1987-01-07 株式会社 サタケ Cleaner for light source for color selector
JPS624484A (en) * 1985-06-29 1987-01-10 株式会社 サタケ Cleaner for light source for color selector
JPS624486A (en) * 1985-06-29 1987-01-10 株式会社 サタケ Granular-material color selector
JPS627483A (en) * 1985-07-03 1987-01-14 株式会社 サタケ Cleaner for light source for color selector
JPS6211583A (en) * 1985-07-05 1987-01-20 株式会社 サタケ Granular-material color selector
JPS6211584A (en) * 1985-07-09 1987-01-20 株式会社 サタケ Granular-material color selector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535726B2 (en) * 2001-09-28 2010-09-01 旭硝子株式会社 Netted glass sheet and its manufacturing method, meshed glass sheet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621489A (en) * 1985-06-27 1987-01-07 株式会社 サタケ Cleaner for light source for color selector
JPS621490A (en) * 1985-06-27 1987-01-07 株式会社 サタケ Cleaner for light source for color selector
JPS624484A (en) * 1985-06-29 1987-01-10 株式会社 サタケ Cleaner for light source for color selector
JPS624486A (en) * 1985-06-29 1987-01-10 株式会社 サタケ Granular-material color selector
JPS627483A (en) * 1985-07-03 1987-01-14 株式会社 サタケ Cleaner for light source for color selector
JPS6211583A (en) * 1985-07-05 1987-01-20 株式会社 サタケ Granular-material color selector
JPS6211584A (en) * 1985-07-09 1987-01-20 株式会社 サタケ Granular-material color selector

Also Published As

Publication number Publication date
JPS54146819A (en) 1979-11-16

Similar Documents

Publication Publication Date Title
TWI479032B (en) Non-oriented magnetic steel sheet being less in the deterioration of iron loss property through blanking
US2867558A (en) Method for producing grain-oriented silicon steel
JPS5924181B2 (en) glass with metal wire
JPH0586455B2 (en)
EP0390142B1 (en) Process for producing grain-oriented electrical steel sheet having high magnetic flux density
US4917722A (en) Single crystals of chromium and method for producing the same
EP0390374B1 (en) Method of hot forming copper-beryllium alloy and hot formed product thereof
JPH06316736A (en) Ni-fe magnetic alloy excellent in magnetic property and producibility and its production
US5186762A (en) Process for producing grain-oriented electrical steel sheet having high magnetic flux density
JPH073368A (en) High ni base alloy excellent in hydrogen embrittlement resistance and production thereof
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
JPH0148337B2 (en)
JP2684860B2 (en) Method for producing high silicon steel strip in continuous line
JP2803550B2 (en) Ni-Fe-based magnetic alloy excellent in magnetic properties and manufacturability and method for producing the same
JP2794846B2 (en) Giant grains or single crystals of chromium and methods for their production
JPS5961004A (en) Thin strip of permanent magnet and manufacture thereof
JPH0798975B2 (en) Method for producing Fe-Ni alloy
JP2939118B2 (en) Fe-Ni alloy for electronic and electromagnetic applications
JP3844142B2 (en) Fe-Ni alloy thin plate for electronic parts having excellent softening annealing characteristics and method for producing the same
JPS6240343A (en) Fe-ni alloy and its manufacture
JPS5856732B2 (en) Manufacturing method for full process non-oriented silicon steel sheet with extremely low iron loss
JPH03158417A (en) Production of fe-co soft-magnetic material
JPH0259491A (en) Giant particle or single crystal of chromium and production thereof
US5882445A (en) Method of making semi-finished metal products
JPH02225639A (en) New chromium-nickel sintered body and its manufacture