JPS5924140A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPS5924140A JPS5924140A JP13341782A JP13341782A JPS5924140A JP S5924140 A JPS5924140 A JP S5924140A JP 13341782 A JP13341782 A JP 13341782A JP 13341782 A JP13341782 A JP 13341782A JP S5924140 A JPS5924140 A JP S5924140A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- flow
- heat
- combustion gas
- outer periphery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/02—Air heaters with forced circulation
- F24H3/06—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
- F24H3/065—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators using fluid fuel
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は気体または液体燃料全燃焼させ、その燃焼ガス
と室内空気を熱交換させる暖房機全般に利用できる熱交
換器に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat exchanger that can be used in general heaters that completely burns gas or liquid fuel and exchanges heat between the combustion gas and indoor air.
従来例の構成とその問題点
従来この種熱交換器は、第1図、第2図に示すように、
熱交換器本体1の内面軸方向に複数個の内部フィン2を
押出形材にて一体的に構成し、この外周面に外部フィン
3を巻付加工後、炉中ろう付等にて固着している。この
熱交換器本体1の内部には円錐台形状の中間筒4全配設
し、一端にはバーナ6を具備した構成がある。バーナ5
で燃焼した高温燃焼ガスは内部フィン2を通過する際に
内部フィン2にて吸熱し、外部フィン3にて対流空気流
と熱交換される。Structure of conventional example and its problems Conventionally, this type of heat exchanger is as shown in Figs. 1 and 2.
A plurality of internal fins 2 are integrally formed from an extruded shape in the axial direction of the inner surface of the heat exchanger main body 1, and after the external fins 3 are wrapped around the outer peripheral surface of the heat exchanger body 1, they are fixed by furnace brazing or the like. ing. Inside the heat exchanger body 1, a truncated conical intermediate cylinder 4 is entirely disposed, and one end is provided with a burner 6. burner 5
The high-temperature combustion gas burned in the internal fins 2 absorbs heat when passing through the internal fins 2, and exchanges heat with the convection air flow in the external fins 3.
しかし、この種熱交換構造では次のような欠点を有して
いた。However, this type of heat exchange structure has the following drawbacks.
(1)内部フィン間に波乱体全具備せず、内部フィンの
吸熱面積を増大するか、丑たは燃焼ガスの流速を増大し
て熱伝熱を促進する構成である。(1) This is a configuration in which heat transfer is promoted by increasing the heat absorption area of the internal fins or by increasing the flow velocity of the combustion gas, without providing any wave disturbance bodies between the internal fins.
しかし乍ら、この構成では押出加工における金型の強度
的な制約により内部フィン間の小隙間を形成することは
困難であり、燃焼ガス流速増大による熱伝達の向上は期
待できず高度の熱効率を得ることができない。However, with this configuration, it is difficult to form small gaps between internal fins due to the strength constraints of the mold during extrusion processing, and it is not possible to expect an improvement in heat transfer due to an increase in the combustion gas flow rate, resulting in a high degree of thermal efficiency. can't get it.
(2) ガス側伝熱面積全増大するため、内部フィン
の列数や高さを高くし面積を確保する必要があり材料費
が割高となったり、熱交換器のコンパクト性に欠ける。(2) Since the total heat transfer area on the gas side increases, it is necessary to increase the number and height of the internal fins to secure the area, resulting in higher material costs and a lack of compactness of the heat exchanger.
(37ガス側伝熱面積全増大しても上記1の理由によシ
高度な熱効率が達成できない。(37) Even if the total heat transfer area on the gas side is increased, a high degree of thermal efficiency cannot be achieved due to the above-mentioned reason 1.
(4) ガス側伝熱面積の増大に伴ないバーナの火炎
に面した内部フィンが輻射熱を集中的に受けるため、局
部的に異常高温となり、変形を生じたυ溶解に至る等、
耐久性の点で問題となってめた。寸た火炎が内部フィン
に直接接触スルコとで、火炎が冷却されcoが大量に発
生する等の欠点を有していた。(4) As the heat transfer area on the gas side increases, the internal fins facing the burner flame intensively receive radiant heat, resulting in locally abnormally high temperatures, leading to υ melting that causes deformation, etc.
This caused problems in terms of durability. This has the disadvantage that the small flame comes into direct contact with the internal fins, which cools the flame and generates a large amount of coke.
(5)外部フィンを巻付は加工後、炉中ろう付は全行な
うものであるから、製造コストが割高となっていた。(5) After the external fins are wrapped and processed, the entire process is brazed in a furnace, resulting in relatively high manufacturing costs.
発明の目的
本発明は、このような従来の欠点金除去するもので、高
部燃焼ガスの乱流促進による小型高効率化と、熱交換器
温度の均一化による局部加熱を防止し、耐久性を確保す
ると同時に低コストの熱交換器を得ることを目的として
いる。Purpose of the Invention The present invention eliminates these conventional disadvantages, and improves the size and efficiency by promoting turbulent flow of combustion gas in the upper part, prevents local heating by equalizing the heat exchanger temperature, and improves durability. The aim is to obtain a low-cost heat exchanger at the same time.
発明の構成
この目的全達成するために、本発明は内面軸方向に複数
個の内部フィン全一体的に形成した熱交換器本体内の下
流側に流路規制体全配設し、流路規制体外周部における
内部フィン間に乱流体全複数個装着している。Structure of the Invention In order to achieve all of the above objects, the present invention provides a flow path regulating body entirely disposed on the downstream side of the heat exchanger body, which is formed integrally with a plurality of internal fins in the inner axial direction. A plurality of turbulent fluids are installed between internal fins on the outer circumference of the body.
この構成によって熱交換器本体の略中間部より下流側の
高部燃焼ガスの乱流が促進され、内部フィン表面におけ
る湯度境界層の発達全防止して有効な熱接触状態を保持
することで比較的少ないガス側伝熱面積で高度の熱効率
(93係以上)を達成するこができる。This configuration promotes the turbulent flow of combustion gas in the upper part of the heat exchanger body downstream of the approximately middle part of the heat exchanger body, and prevents the development of a thermal boundary layer on the inner fin surface to maintain an effective thermal contact state. A high degree of thermal efficiency (coefficient of 93 or higher) can be achieved with a relatively small gas side heat transfer area.
熱交換器本体の上流側のガス側伝熱面積を抑制すること
で、輻射熱等による部分的な温度上昇が防止でき熱交換
器温度の均一化が図れる。By suppressing the gas-side heat transfer area on the upstream side of the heat exchanger main body, it is possible to prevent a local temperature rise due to radiant heat, etc., and to equalize the heat exchanger temperature.
熱交換器本体を押出形材にて一体的に構成し、外部フィ
ンの圧入と、複数個の乱流体を挿入することで低コスト
の熱交換器を得ることができる。A low-cost heat exchanger can be obtained by integrally constructing the heat exchanger main body from an extruded section, press-fitting external fins, and inserting a plurality of turbulent fluids.
実施例の説明
以下、本発明の一実施例を第3図〜第7図の圃面を用い
て説明する。なお前記図中の第3図、第4図と同一部品
については同一番号を付している。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below using the field surfaces shown in FIGS. 3 to 7. Note that the same parts as in FIGS. 3 and 4 in the above figures are given the same numbers.
図において、6は熱交換器で一端に燃焼ファンと一体的
に構成したバーナ7と、他端に排気部8を設け、同軸上
で一体的に連設している。9はアルミ押出形材等で一体
的に構成した熱交換器本体で、内面軸方向に複数個の内
部フィン10を設けている。内部フィン10のバーナT
側の一部は切削加工により削除している。熱交換器本体
9の一端はバーナ7のフランジ部と、他端はフランジ1
1とそれぞれ蝕め加工により固着されている。In the figure, a heat exchanger 6 is provided with a burner 7 integrated with a combustion fan at one end, and an exhaust section 8 at the other end, which are coaxially connected integrally. Reference numeral 9 denotes a heat exchanger main body integrally constructed from an extruded aluminum member or the like, and a plurality of internal fins 10 are provided in the axial direction of the inner surface. Burner T with internal fins 10
Part of the side has been removed by cutting. One end of the heat exchanger main body 9 is connected to the flange part of the burner 7, and the other end is connected to the flange part of the burner 7.
1 and are fixed by etching.
12は熱交換器本体9の外周に複数個設けた外部フィン
で、四角のアルミ板がらなり中央部にパーIJング部1
3を設す熱交換器本体9の外周面に機械的に圧入して固
着ぜしめている。14は熱交換器本体9内の中央部で、
且っ略中間部より下流側に設けた流路規制体で、有頂筒
状の円筒を排気部8より突出している。15は前記流路
規制体14の外周部の内部フィン10間に複数個配設し
た波乱体で、複数個の屈曲部16を有した折曲片より構
成し、内部フィン1oの端部より第7図の如く挿入し、
絞り部17と拡大部18が交互に形成するよう構成して
いる。19は熱交換器本体9の上流側に構成した燃焼室
、20は燃焼室19に形成された火炎、21はパツキン
、22は排気口、23はバーナ7の一部に設けた点火電
極、24は燃焼検知を行なうフレームロッドである。2
5は定油面装置で電磁ポンプ26を介してバーナγに給
油している。27はクロスフローファン等で構成した対
流用送風機、28はモータ、29は対流空気流、3oは
燃焼ガス流、31は筐体である。Reference numeral 12 denotes a plurality of external fins provided on the outer periphery of the heat exchanger main body 9, which are made of square aluminum plates and have a par IJ ring part 1 in the center.
3 is mechanically press-fitted into the outer circumferential surface of the heat exchanger main body 9 and fixed thereto. 14 is the central part inside the heat exchanger main body 9;
It is a flow path regulating body provided downstream from the substantially intermediate portion, and has a cylindrical shape with a crown protruding from the exhaust portion 8 . Reference numeral 15 denotes a plurality of ripple elements disposed between the internal fins 10 on the outer periphery of the flow path regulating body 14, which are composed of bent pieces having a plurality of bent parts 16, and are arranged from the ends of the internal fins 1o. 7 Insert as shown in Figure 7,
The constricted portions 17 and enlarged portions 18 are formed alternately. 19 is a combustion chamber configured on the upstream side of the heat exchanger main body 9, 20 is a flame formed in the combustion chamber 19, 21 is a gasket, 22 is an exhaust port, 23 is an ignition electrode provided in a part of the burner 7, 24 is a flame rod that performs combustion detection. 2
5 is a constant oil level device that supplies oil to the burner γ via an electromagnetic pump 26. 27 is a convection blower constituted by a cross flow fan or the like, 28 is a motor, 29 is a convection air flow, 3o is a combustion gas flow, and 31 is a housing.
上記構成において、バーナ7の燃焼ファンと電磁ポンプ
26を駆動してバーナ7内に燃料を供給し、これに点火
電極23により点火すると、燃焼火炎20を形成し燃焼
が持続される。燃焼室19内で発生した高温燃焼ガスは
矢印3oの如く流路規制体14の外周部を通過して排気
部8を介し排気022よシ外気に排出される。この過程
で熱交換器6の一部に設けたサーモスタット(図示せず
)により対流用送風機27が始動すると、燃焼室19内
で発生した800〜1200°Cの高温燃焼ガスは、燃
焼室19の内壁で一部吸熱された後、流路規制体14の
外周部に導かれる。この際、乱流体15の乱流促進によ
り内部フィン1o及び熱交換器本体9の内面で有効な熱
伝達が行なわれ、熱交換器6の外周部を通過する対流空
気流29と熱交換を行ない、燃焼ガス温度が150〜2
00’Cと大IJに低下し排気口より排出口より排出さ
れる。In the above configuration, when fuel is supplied into the burner 7 by driving the combustion fan and electromagnetic pump 26 of the burner 7 and ignited by the ignition electrode 23, a combustion flame 20 is formed and combustion is sustained. The high-temperature combustion gas generated within the combustion chamber 19 passes through the outer circumference of the flow path regulating body 14 as indicated by an arrow 3o, and is discharged to the outside air via the exhaust portion 8 through the exhaust gas 022. During this process, when the convection blower 27 is started by a thermostat (not shown) installed in a part of the heat exchanger 6, the high temperature combustion gas of 800 to 1200°C generated in the combustion chamber 19 is transferred to the combustion chamber 19. After a portion of the heat is absorbed by the inner wall, it is guided to the outer circumference of the flow path regulator 14 . At this time, effective heat transfer is performed between the internal fins 1o and the inner surface of the heat exchanger body 9 by promoting the turbulent flow of the turbulent fluid 15, and heat exchange is performed with the convection air flow 29 passing through the outer periphery of the heat exchanger 6. , combustion gas temperature is 150~2
It drops to 00'C and large IJ and is discharged from the exhaust port.
本実施例では波乱体15として複数個の屈曲部16を有
した折曲片の構成を示したが、この他、帯状の板片に多
数の切り起こし片を交互に設け、この板片をU字状に折
曲げ構成してもよい。In this embodiment, a structure of a bent piece having a plurality of bent parts 16 is shown as the ripple body 15, but in addition to this, a large number of cut and raised pieces are alternately provided on a band-shaped plate piece, and this plate piece is It may be bent into a letter shape.
さらに、他の波乱体としては、流路規制体14の外周に
多数の突起体を設は内部フィン1oとの間に位置せしめ
てもよい。Further, as other wave disturbance bodies, a large number of protrusions may be provided on the outer periphery of the flow path regulating body 14 and positioned between it and the internal fins 1o.
また、本実施例の流路規制体14として有頂筒状の円筒
を示したが、この他、耐火レンガ或はセラミック等で構
成することもできる。Furthermore, although a capped cylinder is shown as the flow path regulating body 14 in this embodiment, it may also be constructed of firebrick, ceramic, or the like.
さらに本実施例では熱交換器本体9をアルミ押出形材で
一体的に構成し、この周囲にアルミ板の外部フィンを機
械的に圧入して固着せしめ、熱交換器6を構成するもの
を示したが、他の手段としては、内部フィン10を含む
熱交換器本体9と、外部フィン12を一体的にアルミダ
イキャストテ構成することも可能である。Furthermore, in this embodiment, the heat exchanger main body 9 is integrally constructed from an extruded aluminum section, and external fins of an aluminum plate are mechanically press-fitted and fixed around the main body 9, thereby constructing the heat exchanger 6. However, as another means, it is also possible to configure the heat exchanger body 9 including the internal fins 10 and the external fins 12 integrally using aluminum die-casting.
本実施例では、流路規制体14の外周部の内部フィン1
0間に位置せしめた波乱体16の乱流促進により、伝熱
面における温度境界層の発達を防止し、熱接触を向上さ
せることで高度の熱効率(93%以上)を達成できる。In this embodiment, the internal fins 1 on the outer periphery of the flow path regulator 14 are
By promoting turbulent flow by the turbulent body 16 positioned between 0 and 0, a high thermal efficiency (93% or more) can be achieved by preventing the development of a temperature boundary layer on the heat transfer surface and improving thermal contact.
また、内部フィン1oの円周ピッチが比較的大きく構成
し、熱交換器本体9の下流側で上記の如く乱流促進で熱
効率を確保する構成であるから、上流側のガス側伝熱面
積を少なくなくすることが可能となり、燃焼室190周
壁における輻射熱等による吸熱を抑制し、熱交換器の部
品的な異常カロ熱が防止できるため、熱交換器6の全域
においてアルミ常用限界温度すなわち250〜300’
Cに保持でき、長期に亘って耐久性を確保することがで
きる。In addition, since the circumferential pitch of the internal fins 1o is configured to be relatively large and the thermal efficiency is ensured by promoting turbulence as described above on the downstream side of the heat exchanger main body 9, the gas side heat transfer area on the upstream side is This makes it possible to suppress heat absorption due to radiant heat, etc. on the peripheral wall of the combustion chamber 190, and prevent abnormal calorific heat in parts of the heat exchanger. 300'
C, and durability can be ensured over a long period of time.
さらに熱交換器本体9を内部フィン10を含め一体的に
構成し、比較的格安なアルミ押出形材にて構成し、しか
も前記熱交換器温度の低下することで外部フィン12を
機械的な圧入加工のみで固着でき、従来のように巻付は
加工や、炉中ろう付加下が不要となるため、熱交換器の
製造コストが大巾に低減できる。Furthermore, the heat exchanger main body 9 is integrally constructed including the internal fins 10, and is constructed from a relatively inexpensive aluminum extrusion, and when the temperature of the heat exchanger decreases, the external fins 12 are mechanically press-fitted. It can be fixed only by processing, and there is no need for processing for winding or brazing in a furnace as in the past, so the manufacturing cost of the heat exchanger can be significantly reduced.
さらにバーナ7と排気部8との間に熱交換器6を介在し
一体的に連設することで、温風機としての温風吹出温度
の均一化が可能となり快適性を向上することができる。Furthermore, by interposing the heat exchanger 6 between the burner 7 and the exhaust section 8 and arranging them integrally, it is possible to equalize the hot air blowing temperature as a hot air fan, thereby improving comfort.
発明の効果
以上の説明から明らかなように、本発明の熱交換器は
1 内面軸方向に内部フィンを形成した熱交換器本体内
の下流側に流路規制体を配設し、この外周部の内部フィ
ン間に乱流体を配設することで、燃焼ガスの乱流促進と
流速増大により伝熱面へのガス側熱伝達を向上し、高度
の熱効率(93係以上)を達成できる。Effects of the Invention As is clear from the above explanation, the heat exchanger of the present invention includes: 1. A flow path regulating body is disposed on the downstream side of the heat exchanger body in which internal fins are formed in the axial direction of the inner surface, and this outer peripheral portion By disposing turbulent fluid between the internal fins of the combustion gas, the gas side heat transfer to the heat transfer surface is improved by promoting the turbulence of the combustion gas and increasing the flow velocity, and a high degree of thermal efficiency (coefficient of 93 or higher) can be achieved.
2 熱交換器本体の上流側の受熱面積を減少し下流側で
熱伝達を促進する構成であるから、熱効率を維持し、し
かも熱交換器温度の局部力ロ熱を防止し、250〜30
0°Cの低温度で且つ、均一な温度を保持することで熱
交換器の耐久性が向上できる。2. The structure reduces the heat receiving area on the upstream side of the heat exchanger body and promotes heat transfer on the downstream side, so it maintains thermal efficiency and prevents localized heat loss in the heat exchanger temperature.
The durability of the heat exchanger can be improved by maintaining a uniform temperature at a low temperature of 0°C.
3 複数個の屈曲部を有する折返片からなる波乱体内部
フィンの2ピツチ毎に配設することで、燃焼ガスの膨張
と収縮流を繰返してガス側熱伝達の向上による高効率化
が達成できる。また加工性と組立性に優れ安価に作製で
きる。3 By arranging every two pitches of the internal fins of the waver body consisting of folded pieces with multiple bends, high efficiency can be achieved by repeating the expansion and contraction flow of combustion gas and improving gas side heat transfer. . Furthermore, it has excellent workability and assemblability and can be manufactured at low cost.
4 有頂筒状の流路規制体を排気部より突出して設ける
ことで、流路規制体外周部の伝熱面へ均一的に高温燃焼
ガス今導き、且つ排気部に於ける環状流路を構成し乱流
を促進して高熱効率が得られる。4 By providing the crested cylindrical flow path regulating body protruding from the exhaust section, the high temperature combustion gas is uniformly guided to the heat transfer surface of the outer periphery of the flow channel regulating body, and the annular flow path in the exhaust section is This structure promotes turbulent flow and provides high thermal efficiency.
等の優れた効果を奏するものである。It has excellent effects such as:
第1図は従来の熱交換器の縦断面図、第2図は第1図の
A−A’線断面図、第3図は本発明の一実施例の熱交換
器の温風機組込み状態を示す断面図、第4図は同熱交換
器の縦断面図、第5図は第4図のB−B’線断面図、第
6図は同熱交換器の波乱体の斜視図、第7図は同熱交換
器における内部フィンへの波乱体の装着状態を示す正面
図である0
6・・・・・・熱交換器、7・・・・・・バーナ、8・
・・・・・排気部、9・・・・・・熱交換器本体、10
・・・・・・内部フィン、12・・・・・・外部フィン
、14・・・・・・流路規制体、15・・・・・・波乱
体、16・・・・・・屈曲部。
代理人の氏名 弁理士 中 尾 敏 列 ほか1名第1
図
ハ
ハ
第2図
第5図
第6図Fig. 1 is a longitudinal cross-sectional view of a conventional heat exchanger, Fig. 2 is a cross-sectional view taken along the line A-A' in Fig. 1, and Fig. 3 shows a heat exchanger according to an embodiment of the present invention with a hot air fan installed. 4 is a vertical sectional view of the heat exchanger, FIG. 5 is a sectional view taken along the line B-B' in FIG. 4, FIG. 6 is a perspective view of the ripple body of the heat exchanger, and FIG. The figure is a front view showing how the ripple elements are attached to the internal fins of the heat exchanger.0 6... Heat exchanger, 7... Burner, 8...
...Exhaust section, 9...Heat exchanger body, 10
...Internal fin, 12...External fin, 14...Flow path regulating body, 15...Wipple body, 16...Bending part . Name of agent Patent attorney Satoshi Nakao and 1 other person 1st
Figure Haha Figure 2 Figure 5 Figure 6
Claims (4)
一体的に連設し、高温流体とを熱交換する手段を設け、
この熱交換器本体の内面軸方向に複数個構成した内部フ
ィンと、外周面円周方向に複数設けた外部フィンと、前
記熱交換本体の下流側に流路規制体外周部の内部フィン
間に波乱体を配設した熱交換器。(1) A burner is integrally connected to one end of the heat exchanger body and an exhaust part is connected to the other end, and a means for exchanging heat with the high-temperature fluid is provided.
Between a plurality of internal fins arranged in the axial direction of the inner surface of the heat exchanger main body, a plurality of external fins provided in the circumferential direction of the outer peripheral surface, and an internal fin of the outer peripheral part of the flow path regulator on the downstream side of the heat exchanger main body. A heat exchanger equipped with a ripple element.
した特許請求の範囲第1項記載の熱交換器。(2) The heat exchanger according to claim 1, wherein the wave disrupting body is constituted by a bent piece having a plurality of bent parts.
内部フィンを介在して、フィン端部より挿入した特許請
求の範囲第1項または第2項記載の熱交換器。(3) The heat exchanger according to claim 1 or 2, wherein the ripple body is inserted from the fin end through the internal fins at every two pitches of the circumferential pitch of the internal fins.
突出して設けた特許請求の範囲第1項記載の熱交換器。(4) The heat exchanger according to claim 1, wherein a capped intermediate cylinder is provided as a flow path regulating body so as to protrude from the exhaust portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13341782A JPS5924140A (en) | 1982-07-29 | 1982-07-29 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13341782A JPS5924140A (en) | 1982-07-29 | 1982-07-29 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5924140A true JPS5924140A (en) | 1984-02-07 |
JPS63707B2 JPS63707B2 (en) | 1988-01-08 |
Family
ID=15104280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13341782A Granted JPS5924140A (en) | 1982-07-29 | 1982-07-29 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5924140A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2424695A (en) * | 2005-03-24 | 2006-10-04 | Modine Mfg Co | A heat exchanger tube of a gas fired heater |
JP2009109176A (en) * | 2008-05-07 | 2009-05-21 | Eto Zosenjo:Kk | Hot air blower |
JP2011145064A (en) * | 2011-03-18 | 2011-07-28 | Eto Zosenjo:Kk | Radiating fin |
EP2374538A1 (en) | 2003-02-20 | 2011-10-12 | Nippon Kayaku Kabushiki Kaisha | Process for producting an heterophosphoromolybdic catalyst using cesium acetate as an additive |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5526375A (en) * | 1978-08-16 | 1980-02-25 | Tokyo Shibaura Electric Co | Simple assembled and fixed tent |
-
1982
- 1982-07-29 JP JP13341782A patent/JPS5924140A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5526375A (en) * | 1978-08-16 | 1980-02-25 | Tokyo Shibaura Electric Co | Simple assembled and fixed tent |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2374538A1 (en) | 2003-02-20 | 2011-10-12 | Nippon Kayaku Kabushiki Kaisha | Process for producting an heterophosphoromolybdic catalyst using cesium acetate as an additive |
GB2424695A (en) * | 2005-03-24 | 2006-10-04 | Modine Mfg Co | A heat exchanger tube of a gas fired heater |
JP2009109176A (en) * | 2008-05-07 | 2009-05-21 | Eto Zosenjo:Kk | Hot air blower |
JP2011145064A (en) * | 2011-03-18 | 2011-07-28 | Eto Zosenjo:Kk | Radiating fin |
Also Published As
Publication number | Publication date |
---|---|
JPS63707B2 (en) | 1988-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1318362B1 (en) | Compact high efficiency clam shell heat exchanger | |
US20100116226A1 (en) | Boiler with a combustion head cooling system | |
CA2314844C (en) | Water-tube boiler | |
US4216759A (en) | Auxiliary heater for vehicles | |
CA1223784A (en) | Insulated heater module | |
JPS5924140A (en) | Heat exchanger | |
US5915468A (en) | High-temperature generator | |
KR20000008536U (en) | Heat exchanger with heat transfer fin | |
JPS637798Y2 (en) | ||
JPS5966648A (en) | Heat exchanger | |
JPS6350621B2 (en) | ||
JP4165097B2 (en) | Water tube boiler | |
JPS59134496A (en) | Heat exchanger | |
JPS5944543A (en) | Heat exchanger | |
GB2095816A (en) | Gas turbine combustor | |
JPS5824117Y2 (en) | Combustor for hot air fan | |
JPH07332113A (en) | Gas turbine and gas turbine combustor | |
JPS58178141A (en) | Heat exchanger | |
JPS5944544A (en) | Water heating boiler | |
JP4134453B2 (en) | Water tube boiler | |
EP0356735A1 (en) | A heat exchanger | |
RU2188983C2 (en) | Combustion chamber | |
JPS59173654A (en) | Heat exchanger | |
JPH0412324Y2 (en) | ||
JPH0219374B2 (en) |