JPS5923861B2 - Catalyst and its manufacturing method - Google Patents

Catalyst and its manufacturing method

Info

Publication number
JPS5923861B2
JPS5923861B2 JP51067318A JP6731876A JPS5923861B2 JP S5923861 B2 JPS5923861 B2 JP S5923861B2 JP 51067318 A JP51067318 A JP 51067318A JP 6731876 A JP6731876 A JP 6731876A JP S5923861 B2 JPS5923861 B2 JP S5923861B2
Authority
JP
Japan
Prior art keywords
metal
catalyst
chromium
layer
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51067318A
Other languages
Japanese (ja)
Other versions
JPS52150394A (en
Inventor
栄治 上條
松夫 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP51067318A priority Critical patent/JPS5923861B2/en
Publication of JPS52150394A publication Critical patent/JPS52150394A/en
Publication of JPS5923861B2 publication Critical patent/JPS5923861B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 現在一般に用いられる触媒は通常アルミナやシリカから
なる担体表面に触媒能力を有する1種類以上の金属や酸
化物を粉末の形で担持させるものである。
DETAILED DESCRIPTION OF THE INVENTION Catalysts commonly used at present are those in which one or more metals or oxides having catalytic ability are supported in the form of powder on the surface of a carrier usually made of alumina or silica.

また触媒には触媒能力を決定する重要な要因として寿命
の問題がある。第1図に示すような鉄、ニッケルなどの
金属からなる連通気孔を有する3次元不規則網目状多孔
体を用いると、空孔1も充分あり、骨格2の表明積も大
きく、アルミナやシリカに比し強度も大きく担体として
適している。しかし骨格2表面に触媒能力を有する金属
微粉末などを直接担持させて触媒として使用すると、触
媒反応に必要な外熱と触媒の反応熱などにより、骨格2
の金属と触媒金属間に拡散が起り、触媒能力が著しく低
下すると共に、触媒能力を有する金属粉末を担持してい
る3次元網目状多孔体の骨格2が脆化し、担体としての
役割を果たさなくなる。本発明は、これら金属担体の欠
点をなくし担体として充分使用に耐えうるようにする事
を目的としたものである。すなわち、第2図に示すよう
に連通気孔を有する金属3次元網目状多孔体の骨格2表
面に密着度の良いクロム層からなる拡散防止層3を形成
させ、更に、その上に触媒能力を有する金属粉末を焼き
付けて形成した触媒層4を担持させたものである。この
ように構成した触媒は担体金属と触媒能力を有する金属
粉末間にあるクロム層からなる拡散防止層3が、高温使
用時に、触媒層4が担体の骨格2に拡散することによる
性能劣化を防ぎ、触媒としての寿命を著しく向上させる
ことができる。クロム層形成には、一般に電気メッキ法
、クロム拡散浸透法(粉末法、気体法など)が考えられ
る。
Furthermore, the lifetime of catalysts is an important factor that determines their catalytic ability. When using a three-dimensional irregular network porous material with interconnected pores made of metals such as iron and nickel as shown in Figure 1, there are sufficient pores 1 and the surface area of the skeleton 2 is large, making it difficult to use alumina or silica. It has a high strength and is suitable as a carrier. However, if fine metal powder with catalytic ability is directly supported on the surface of the skeleton 2 and used as a catalyst, the external heat required for the catalytic reaction and the reaction heat of the catalyst will cause the skeleton to
Diffusion occurs between the metal and the catalyst metal, and the catalytic ability is significantly reduced, and the skeleton 2 of the three-dimensional network porous body supporting the metal powder with catalytic ability becomes brittle and no longer plays its role as a support. . The object of the present invention is to eliminate these drawbacks of metal carriers and to make them sufficiently usable as carriers. That is, as shown in FIG. 2, a diffusion prevention layer 3 made of a chromium layer with good adhesion is formed on the surface of the skeleton 2 of a metal three-dimensional network porous body having communicating pores, and furthermore, a diffusion prevention layer 3 made of a chromium layer with good adhesion is formed thereon. It supports a catalyst layer 4 formed by baking metal powder. In the catalyst configured in this way, the diffusion prevention layer 3 consisting of a chromium layer between the carrier metal and the metal powder having catalytic ability prevents performance deterioration due to diffusion of the catalyst layer 4 into the skeleton 2 of the carrier during high-temperature use. , the life of the catalyst can be significantly improved. Generally, an electroplating method and a chromium diffusion infiltration method (powder method, gas method, etc.) can be considered for forming the chromium layer.

密着度の良好なクロム層を設けないと、触媒能力を有す
る金属粉末を焼き付ける際および触媒として使用してい
る際などにクロム層が担体金属から剥離し、拡散防止層
としての役割を果たさなくなる。電気メッキ法を用いた
場合、金属担体に単にクロムが析出しているだけで、密
着性を持たせるために加熱処理を行なう必要があり、し
かもその処理を行なつても密着度は良好でない。気体法
では第1図に示す様な連通気孔を有する3次元不規則網
目状構造金属多孔体のような、複雑な形状をしているも
のにはクロム層を均一に析出させることがむずかしく、
また、生産性も低く、装置上の問題点が多くある。従来
から行なわれている粉末法は1000℃、5〜10時間
のような高温長時間を要し、得られた析出クロム層厚さ
が薄くなり、拡散防止層としての機能を有しない。本発
明はまた、これら欠点を補うクロム層の形成方法を供す
るものである。粉末法において、般的に基体表面へのク
ロムの析出過程と、析出クロムの基体への拡散過程があ
ることはよく知られているが、それら過程が平行して行
なわれているとしている。本発明は、主として1時間内
には析出過程、その後の時間には、拡散過程が、行なわ
れていることを明らかにし、その短時間における析出過
程を適用することに特徴を有するものである。すなわち
、拡散防止層としての役割を果たすのに必要なクロム層
厚を持ち、しかも密着性をもたせる数μの拡散層を有せ
しめる条件にて粉末法を適用することにある。以下その
粉末法の条件を説明する。
If a chromium layer with good adhesion is not provided, the chromium layer will peel off from the carrier metal when a metal powder with catalytic ability is baked or used as a catalyst, and it will no longer function as a diffusion prevention layer. When electroplating is used, chromium is simply deposited on the metal carrier, and heat treatment is required to provide adhesion, and even with that treatment, the degree of adhesion is not good. With the gas method, it is difficult to uniformly deposit a chromium layer on objects with complex shapes, such as three-dimensional irregular network structure porous metal bodies with communicating pores as shown in Figure 1.
In addition, productivity is low and there are many problems with the equipment. The conventional powder method requires a long period of time at a high temperature of 1000 DEG C. for 5 to 10 hours, resulting in a thin precipitated chromium layer that does not function as a diffusion prevention layer. The present invention also provides a method for forming a chromium layer that compensates for these drawbacks. It is well known that in the powder method, there is generally a process of precipitation of chromium on the substrate surface and a process of diffusion of the precipitated chromium into the substrate, but these processes are said to be carried out in parallel. The present invention is characterized in that it has been clarified that the precipitation process takes place mainly within one hour, and the diffusion process takes place in the subsequent time, and that the precipitation process is applied in such a short time. That is, the powder method is applied under the conditions that the chromium layer has the necessary thickness to function as a diffusion prevention layer and also has a diffusion layer of several micrometers that provides adhesion. The conditions of the powder method will be explained below.

第3図にニツケルの連通気孔を有する3次元不規則網目
状多孔体を用い、粉末の組成としてはクロム粉とアルミ
ナ粉を重量比1:1で、クロム粉とアルミナ粉の全重量
の3重量%の塩化アンモニウムを添加したものを容器内
に多孔体とともに入れ密閉し1000℃の水素雰囲気中
で処理した結果を示す。
Figure 3 shows a three-dimensional irregular network porous body made of nickel with continuous pores, and the powder composition is chromium powder and alumina powder in a weight ratio of 1:1, and the total weight of the chromium powder and alumina powder is 3%. % of ammonium chloride was placed in a container together with a porous material, sealed, and treated in a hydrogen atmosphere at 1000°C.

第3図かられかるように、1時間内にクロム層が厚く析
出しその後時間とともにそれが減少していくことがわか
る。第4図はニツケルの3次元網目状多孔体と、第3図
と同一組成の粉末を用い各温度で処理時間を1時間とし
た場合の析出層厚と拡散層厚を示す。これら図が示すよ
うに最も適当な条件は85『C〜1050℃、1時間で
ある。1時間以上や1050℃以上の高温になると拡散
層が厚くなつて好ましくない。
As can be seen from FIG. 3, a thick chromium layer was deposited within one hour and then decreased with time. FIG. 4 shows the thickness of the precipitated layer and the thickness of the diffusion layer when a three-dimensional network porous body of nickel and powder having the same composition as in FIG. 3 were used at each temperature for a treatment time of 1 hour. As these figures show, the most suitable conditions are 85°C to 1050°C for 1 hour. If the temperature is longer than 1 hour or at a high temperature of 1050° C. or higher, the diffusion layer becomes thicker, which is not preferable.

また粉末中のクロム量を増せば、更に低温度で処理可能
であることはいうまでもない。このような条件で第2図
に示した拡散防止層3としてのクロム層を設け、触媒能
力を有する金属粉末などを担持させ、触媒として著しく
寿命を向上させることができた。
It goes without saying that by increasing the amount of chromium in the powder, it is possible to process at even lower temperatures. Under these conditions, a chromium layer as the diffusion prevention layer 3 shown in FIG. 2 was provided, supporting metal powder having catalytic ability, and the life of the catalyst could be significantly improved.

幅50m7!LS長さ100mm.厚さ10mms密度
0.52電のニツケルからなる3次元不規則網目状構造
を有する金属多孔体を、Al2O38O重量%.Crl
8重量?、HN4Cl2重量?の混合粉に埋設置J.H
2気流中1000℃で、0.5時間保持し、網目状骨格
全表面に約201Dnの厚さの金属クロム層を形成させ
た。
Width 50m7! LS length 100mm. A metal porous body having a three-dimensional irregular network structure made of nickel having a thickness of 10 mm and a density of 0.52 densities was coated with Al2O38O by weight. Crl
8 weight? , HN4Cl2 weight? Embedded in the mixed powder of J. H
This was maintained at 1000° C. for 0.5 hours in two air streams to form a metallic chromium layer with a thickness of about 201Dn on the entire surface of the network skeleton.

比較材として金属クロム層形成処理をしなかつた前記多
孔体、金属クロム層の代りにAlf)3層を形成させた
前記多孔体を用意した。そしてこれら触媒担体の骨格表
面に触媒金属として白金を担持させ、自動車排気ガスの
浄化触媒として、排気ガス温度を850℃に設定して寿
命試験を行なつた。その結果は次表の如くであつた。比
較材(2)の寿命は、触媒金属の担体への拡散により減
少している。
As comparison materials, the porous body without the metal chromium layer formation treatment and the porous body with an Alf) 3 layer formed instead of the metal chromium layer were prepared. Platinum was supported as a catalytic metal on the skeletal surface of these catalyst carriers, and a life test was conducted with the exhaust gas temperature set at 850° C. as a catalyst for purifying automobile exhaust gas. The results were as shown in the table below. The life of comparative material (2) is reduced due to diffusion of the catalytic metal into the carrier.

担体引張強さは寿命後のものであるが、比較材(2)は
もちろん、Al2O3層を形成した比較材(1)は脆化
が激しく、本発明触媒よりも著しく強度が低下していた
。本発明による触媒は多孔率が90%以上であるため、
極端に軽量で、表面積も大であり、触媒性能も良好でし
かも従来にない強度を有するものとなる。
The tensile strength of the carrier is after the life, and not only the comparative material (2) but also the comparative material (1) in which an Al2O3 layer was formed had severe embrittlement, and the strength was significantly lower than that of the catalyst of the present invention. Since the catalyst according to the present invention has a porosity of 90% or more,
It is extremely lightweight, has a large surface area, has good catalytic performance, and has unprecedented strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用する連通気孔を有する金属3次元
不規則網目状多孔体の透視図、第2図は本発明による触
媒の骨格の断面図、第3図はクロム拡散浸透法の粉末法
による析出クロム層厚さおよび拡散層厚さの時間による
変化を示す図、第4図はクロム拡散浸透法の粉末法によ
る析出クロム層および拡散層の各温度における厚さを示
す図である。 1・・・・・・空ム 2・・・・・・骨格、3・・・・
・・拡散防止層、4・・・・・・触媒層。
Fig. 1 is a perspective view of a metal three-dimensional irregular network porous body with communicating pores used in the present invention, Fig. 2 is a cross-sectional view of the catalyst skeleton according to the present invention, and Fig. 3 is a powder obtained by chromium diffusion infiltration method. FIG. 4 is a diagram showing changes over time in the thickness of the chromium layer precipitated by the chromium diffusion method and the thickness of the diffusion layer, and FIG. 1...Empty 2...Skeleton, 3...
...Diffusion prevention layer, 4...Catalyst layer.

Claims (1)

【特許請求の範囲】 1 連通気孔を有する3次元不規則網目状構造を有する
金属多孔体の網状骨格全表面に金属クロムよりなる拡散
防止層を形成し、その上に活性触媒能力を有する金属及
びまたは酸化物が焼付け担持されてなる事を特徴とする
触媒。 2 1050℃以下、1時間以内の条件で粉末法による
拡散浸透法を適用し、連通気孔を有する3次元不規則網
目状構造を有する金属多孔体の網状骨格全表面にクロム
からなる拡散防止層を形成し、その上に活性触媒能力を
有する金属及びまたは酸化物を焼付け担持させる事を特
徴とする触媒の製造法。
[Scope of Claims] 1. A diffusion prevention layer made of metallic chromium is formed on the entire surface of the network skeleton of a porous metal body having a three-dimensional irregular network structure with continuous pores, and a diffusion prevention layer made of metal chromium and a metal having active catalytic ability are formed on the entire surface of the network skeleton of a porous metal body having a three-dimensional irregular network structure with continuous pores. Or a catalyst characterized by being baked and supported with an oxide. 2 Applying a diffusion infiltration method using a powder method under the conditions of 1050°C or less and within 1 hour, a diffusion prevention layer made of chromium is applied to the entire surface of the network skeleton of a metal porous body having a three-dimensional irregular network structure with communicating pores. 1. A method for producing a catalyst, which comprises forming a catalyst and baking and supporting a metal and/or oxide having an active catalytic ability thereon.
JP51067318A 1976-06-09 1976-06-09 Catalyst and its manufacturing method Expired JPS5923861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51067318A JPS5923861B2 (en) 1976-06-09 1976-06-09 Catalyst and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51067318A JPS5923861B2 (en) 1976-06-09 1976-06-09 Catalyst and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS52150394A JPS52150394A (en) 1977-12-14
JPS5923861B2 true JPS5923861B2 (en) 1984-06-05

Family

ID=13341538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51067318A Expired JPS5923861B2 (en) 1976-06-09 1976-06-09 Catalyst and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5923861B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677799A (en) * 1979-11-30 1981-06-26 Tanaka Precious Metal Ind Method of preprocessing nuclear fuel reprocessing gaseous waste
JPS5684302A (en) * 1979-12-08 1981-07-09 Tanaka Kikinzoku Kogyo Kk Oxygen-hydrogen recombining apparatus
JPS57119833A (en) * 1981-01-16 1982-07-26 Sumitomo Electric Ind Ltd Catalyst carrier and its production

Also Published As

Publication number Publication date
JPS52150394A (en) 1977-12-14

Similar Documents

Publication Publication Date Title
US4247422A (en) Metallic supported catalytic system and a method of making it
JPH10500893A (en) Metal foil catalyst member by aqueous electrodeposition
CA1180165A (en) Plate catalyst body for denitration
JPH06126192A (en) Production of metallic foil coated with oxide
KR100739409B1 (en) Silicon carbide-based catalytic body and process for producing the same
EP0348575B1 (en) Catalyst carriers and a process for producing the same
KR910009401B1 (en) Production process of ferrite stainless steel covered with oxide whisker
JP3414794B2 (en) Catalyst production method
US3947340A (en) Method for forming γ-alumina coating on refractory article
JPS5923861B2 (en) Catalyst and its manufacturing method
JPH04215853A (en) Heat resisting metal monolith and manufacture thereof
US4021373A (en) Method of preparing a catalytic structure
US4783436A (en) Carrier material for catalysts method for producing it and platinum group metal catalyst supported on the carrier
JP2004169111A (en) Metal foil, and honeycomb structure
JPH08197B2 (en) Substrate for catalyst converter
JP2731562B2 (en) Catalyst carrier and method for producing the same
JPS62237945A (en) Plate-shaped catalyst
JPS62140643A (en) Production of porous catalyst for purifying exhaust gas
JPH0356147A (en) Preparation of catalyst carrier
JPH0226643A (en) Catalyst carrier
JPS6295142A (en) Surface treatment for metallic foil used for catalytic carrier
JPS62144750A (en) Preparation of platinum group oxidizing catalyst
JP2502201B2 (en) Metal carrier for gas purification catalyst and method for producing the same
JPH054048A (en) Catalyst for treatment of exhaust gas and its production
JPS58139743A (en) Production of metallic nickel catalyst