JPS5923566B2 - Electric discharge graft polymerization method - Google Patents

Electric discharge graft polymerization method

Info

Publication number
JPS5923566B2
JPS5923566B2 JP9726079A JP9726079A JPS5923566B2 JP S5923566 B2 JPS5923566 B2 JP S5923566B2 JP 9726079 A JP9726079 A JP 9726079A JP 9726079 A JP9726079 A JP 9726079A JP S5923566 B2 JPS5923566 B2 JP S5923566B2
Authority
JP
Japan
Prior art keywords
monomer
chamber
discharge
gas
graft polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9726079A
Other languages
Japanese (ja)
Other versions
JPS5622313A (en
Inventor
研司 畑田
三好 与倉
弘明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9726079A priority Critical patent/JPS5923566B2/en
Publication of JPS5622313A publication Critical patent/JPS5622313A/en
Publication of JPS5923566B2 publication Critical patent/JPS5923566B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は放電グラフト重合(共重合)法における単量体
供給方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for supplying monomers in a discharge graft polymerization (copolymerization) method.

放電グラフト重合(共重合)法とは基材表面を放電によ
つて活性化し、該活性点を重合開始点としてラジカル重
合可能な単量体を該基材表面へグラフト重合(共重合)
する方法であり、該方法により該基材表面へ新たな特性
を付与することのできる優れた表面改質方法である。
The discharge graft polymerization (copolymerization) method is a method in which the surface of a base material is activated by electrical discharge, and a radically polymerizable monomer is grafted onto the surface of the base material using the active site as a polymerization initiation point.
This method is an excellent surface modification method that can impart new properties to the surface of the substrate.

本発明者らは該方法により、基材の親水化あるいは撥水
撥油化、永久的な帯電防止効果の付与、接着性の向上、
物質の拡散促進あるいは阻止、生体適合化、繊維の色の
深み感の向上など優れた特性が新らたに得られることを
既に見出している。
By this method, the present inventors made the base material hydrophilic, made it water and oil repellent, imparted a permanent antistatic effect, improved adhesiveness,
It has already been discovered that new excellent properties can be obtained, such as promoting or blocking the diffusion of substances, biocompatibility, and improving the depth of the color of fibers.

ところで従来の放電グラフト重合方法は、まず放電活性
室において基材表面を活性化し、次いで単量体室におい
て加熱により生成、供給された単量体蒸気にふれさせグ
ラフト重合させる方法が一般的であつた。しかしながら
、本発明者らは放電グラフト重合により織布の色の深み
感を向上させる研究を進めている際に、従来の単量体の
供給方法では織布の色の深み感に斑が生じる重大な欠点
が発生することを見出した。
By the way, in the conventional discharge graft polymerization method, the base material surface is first activated in a discharge activation chamber, and then graft polymerized by being exposed to monomer vapor generated and supplied by heating in a monomer chamber. Ta. However, while conducting research on improving the depth of color of woven fabrics by electrical discharge graft polymerization, the present inventors found that the conventional monomer supply method caused unevenness in the depth of color of woven fabrics. It was discovered that some drawbacks occur.

単量体室は単量体の蒸気圧を高かめるため加温されてい
るが、単量体室内には基材搬送ロールその他の装置があ
り、これらすべての温度を均一化することは困難で、こ
のため生じた単量体室内の温度分布により単量体室内に
単量体の濃度分布が生じ、グラフト重合層の厚さなどに
不均一が生じるものと思われる。また基材の温度は単量
体室の温度より低いため、基材が単量体室へ入ると基材
表面に単量体の凝縮がおこる。この際単量体室内に濃度
分布があると基材表面への単量体の凝縮量に分布が生じ
、グラフト重合層の厚さが不均一になり、このため色の
深み感に斑が生じる。通常グラフト重合層が厚くなると
紫色を帯びた色の深みとなり、逆にグラフト重合層が薄
い場合は赤色を帯びた色の深みとなるため、グラフト重
合層の厚さに顕著な不均一が生じると色の深み感に斑が
生じてくる。特に基材布はグラフト重合により色の深み
感が向上しているため、この斑はより顕著になり、重大
な欠点となる。基材表面での単量体濃度分布によるグラ
フト重合層の厚さの不均一は、前述の織布の色の深み感
の向上の用途のみにかかわらず全ての用途において好ま
しいこととは言えない。
The monomer chamber is heated to increase the vapor pressure of the monomer, but there are substrate transport rolls and other equipment in the monomer chamber, and it is difficult to equalize the temperature of all of them. It is thought that the resulting temperature distribution within the monomer chamber causes a monomer concentration distribution within the monomer chamber, resulting in non-uniformity in the thickness of the graft polymerized layer. Furthermore, since the temperature of the substrate is lower than the temperature of the monomer chamber, when the substrate enters the monomer chamber, condensation of the monomer occurs on the surface of the substrate. At this time, if there is a concentration distribution within the monomer chamber, there will be a distribution in the amount of monomer condensed onto the surface of the substrate, making the thickness of the graft polymerization layer uneven, resulting in uneven color depth. . Normally, when the graft polymerization layer becomes thicker, the color becomes deeper with a purplish tinge, and conversely, when the graft polymerization layer is thin, the color becomes deeper with a reddish tinge, so if there is significant non-uniformity in the thickness of the graft polymerization layer, Spots appear in the depth of color. In particular, since the depth of the color of the base fabric is improved by graft polymerization, these spots become more noticeable and become a serious drawback. Non-uniformity in the thickness of the graft polymerized layer due to the monomer concentration distribution on the surface of the substrate is not desirable in all applications, including the above-mentioned application of improving the depth of color of woven fabrics.

このため本発明者らは放電グラフト重合法におけるこれ
らの問題点を解決すべく鋭意研究した結果、本発明に至
つたものである。
Therefore, the present inventors conducted intensive research to solve these problems in the discharge graft polymerization method, and as a result, they arrived at the present invention.

しかしてその目的とするところは放電グラフト重合法に
おいて、素材表面へ均一な厚さのグラフト重合層を形成
するため、該基材表面へ単量体を均一に供給することに
ある。本発明とは、放電グラフト重合(共重合)におい
て、放電により基材を活性化後グラフト重合すべき単量
体にふれさせるに際し、該単量体を該単量体蒸気と外部
より導入したガスの混合物として供給、循環させながら
該基材にふれさせることを特徴とする放電グラフト重合
法である。
However, the purpose is to uniformly supply a monomer to the surface of a substrate in order to form a graft polymerization layer of uniform thickness on the surface of the material in the discharge graft polymerization method. The present invention refers to the method in which, in discharge graft polymerization (copolymerization), when a base material is activated by electric discharge and then brought into contact with a monomer to be grafted, the monomer is mixed with the monomer vapor and a gas introduced from the outside. This is a discharge graft polymerization method characterized by supplying the mixture as a mixture and contacting the base material while circulating it.

以下、本発明者らが放電グラフト重合法の研究のため製
作した放電グラフト重合装置の概略図、第1図を用いて
放電グラフト重合法について説明するとともに、本発明
の特徴である単量体の供給方法について詳細に説明する
Hereinafter, the discharge graft polymerization method will be explained using FIG. 1, a schematic diagram of the discharge graft polymerization apparatus manufactured by the present inventors for research on the discharge graft polymerization method, and the monomer The supply method will be explained in detail.

第1図で、1,2,3,4は各々放電活性室、低圧室、
単量体室、脱単量体室であり、各室の基材の搬入出口は
基材を通した状態で真空シールできるようになつており
、各室は独自の圧力を維持できる。
In Figure 1, 1, 2, 3, and 4 are a discharge activation chamber, a low pressure chamber, and
They are a monomer chamber and a monomer removal chamber, and the entrance and exit for the substrate in each chamber can be vacuum-sealed with the substrate passed through, so each chamber can maintain its own pressure.

放電活性室1において巻き出しドラム13より送り出さ
れた基材17は駆動ドラム14上で放電にさらされ、そ
の表面が活性化される。放電は電極18と駆動ドラム1
4との間でおこり、放電中でエネルギー的に励起された
活性粒子が基材表面へ達し、基材を活性化する。なお放
電を開始、維持するガスはガス導入孔10より放電活性
室内へ供給される。放電活性室内の圧力はガス導入量と
排気系6からの排気量によつて制御され、通常0.01
T0rrから10T0rrに保持されている。放電を開
始、持続させる電源は特に限定されるものではなく、直
流電源や、低周波、高周波、マイクロ波などの交流電源
が使用できる。
The base material 17 fed out from the unwinding drum 13 in the discharge activation chamber 1 is exposed to discharge on the drive drum 14, and its surface is activated. The discharge occurs between the electrode 18 and the drive drum 1.
The active particles energetically excited during the discharge reach the surface of the substrate and activate the substrate. Note that the gas for starting and maintaining the discharge is supplied into the discharge activation chamber through the gas introduction hole 10. The pressure inside the discharge activation chamber is controlled by the amount of gas introduced and the amount of exhaust from the exhaust system 6, and is normally 0.01.
It is maintained from T0rr to 10T0rr. The power source for starting and sustaining the discharge is not particularly limited, and a direct current power source or an alternating current power source such as a low frequency, high frequency, or microwave power source can be used.

また電極も第1図のような内部電極方式のもののほか外
部電極方式の電極を用いてもよい。
In addition to the internal electrode type electrodes shown in FIG. 1, external electrode type electrodes may also be used.

放電活性室1にて活性化された基材17は低圧室2を通
つて単量体室3に搬入される。低圧室は単量体室3から
放電活性室1への単量体の漏洩を防ぐために設けられた
もので、排気系7を通じ放電活性室1および単量体室3
より低圧になるよう排気されている。単量体室3におい
て基材17は単量体供給系5より供給された単量体とふ
れ、該単量体は基材表面の活性点をグラフト重合開始点
として基材17へグラフト重合していく。
The base material 17 activated in the discharge activation chamber 1 is carried into the monomer chamber 3 through the low pressure chamber 2. The low pressure chamber is provided to prevent monomer from leaking from the monomer chamber 3 to the discharge activation chamber 1, and is connected to the discharge activation chamber 1 and the monomer chamber 3 through the exhaust system 7.
It is vented to lower pressure. In the monomer chamber 3, the base material 17 comes into contact with the monomer supplied from the monomer supply system 5, and the monomer graft-polymerizes onto the base material 17 using the active sites on the surface of the base material as graft polymerization initiation points. To go.

単量体室3においてグラフト重合した基材は次いで脱単
量体室4に搬入され、排気系9を通じての排気により未
反応単量体の真空脱着が行こなわれ、グラフト重合が終
了する。本発明者らは単量体を単量体蒸気と外部より導
入したガスとの混合物として単量体室3内へ供給、循環
させながら活性化された基材布へ供給する方法を試みた
ところ、厚さが均一なグラフト重合層となる極めて好ま
しい結果を得た。
The base material graft-polymerized in the monomer chamber 3 is then carried into the monomer removal chamber 4, where unreacted monomers are vacuum desorbed by exhaust through the exhaust system 9, and the graft polymerization is completed. The present inventors tried a method of supplying the monomer into the monomer chamber 3 as a mixture of monomer vapor and a gas introduced from the outside, and supplying it to the activated base fabric while circulating it. Very favorable results were obtained in which the graft polymerized layer had a uniform thickness.

単量体蒸気と外部より導入したガスとの混合方法および
該混合蒸気の単量体室内への供給、循環方法は特に限定
されるものではなく、本発明の骨子は単量体蒸気単独を
基材布へ供給するのではなく、単量体蒸気と外部より導
入したガスとの混合物を基材布へ供給することにある。
The method of mixing the monomer vapor with the gas introduced from the outside and the method of supplying and circulating the mixed vapor into the monomer chamber are not particularly limited, and the gist of the present invention is based on the monomer vapor alone. Instead of supplying the material to the fabric, a mixture of monomer vapor and an externally introduced gas is supplied to the base fabric.

単量体蒸気と外部より導入したガスとを混合するには、
例えば単量体液中へガスを導入し、生成した気泡が液面
で消滅する際におこるガスと単量体蒸気との混合を利用
してもよく、また超音波振動を利用し生成した単量体蒸
気とガスを混合する方法、あるいは超音波振動を利用し
単量体とガスを混合し気散させる方法などの方法を用い
ることができる。
To mix monomer vapor and gas introduced from the outside,
For example, it is possible to introduce gas into a monomer liquid and use the mixing of the gas and monomer vapor that occurs when the generated bubbles disappear on the liquid surface, or use ultrasonic vibration to generate a monomer vapor. Methods such as a method of mixing body vapor and a gas, or a method of mixing a monomer and a gas using ultrasonic vibration and diffusing the mixture can be used.

また単量体蒸気と外部より導入したガスとの混合物を供
給、循環させるには、例えば単量体室を排気することに
より、自動的に単量体供給系より単量体蒸気とガスの混
合物を単量体室に供給し、循環させることができる。
In addition, in order to supply and circulate a mixture of monomer vapor and gas introduced from the outside, for example, by evacuating the monomer chamber, the mixture of monomer vapor and gas is automatically supplied from the monomer supply system. can be supplied to the monomer chamber and circulated.

以下、第1図の概略図をもとに本発明者らの行なつた本
発明の単量体供給法の一方法についてより詳細に説明し
、本発明の意図するところを明らかにする。
Hereinafter, one method of the monomer supply method of the present invention carried out by the present inventors will be explained in more detail based on the schematic diagram of FIG. 1, and the intention of the present invention will be clarified.

第1図の装置において5は単量体供給系で、単量体導入
孔12より単量体が系内へ供給される。
In the apparatus shown in FIG. 1, reference numeral 5 denotes a monomer supply system, into which monomer is supplied into the system through a monomer introduction hole 12.

系内の単量体液中へはガス導入孔11よりガスが導入さ
れており、導入されたガスは気泡となり液中を上昇し、
液界面で消滅する際に単量体蒸気と混合する。このよう
にして混合された単量体蒸気とガスは供給量を制御する
バルブを通じ単量体室3へ供給される。単量体室3は排
気系8を通じ排気されているため、該混合物は自動的に
単量体室3内へ供給され、基材17へふれ排気系8へと
循環する。排気系8から排出された該混合物はコールド
トラツプ20で単量体を捕集、回収している。なお、図
示省略したが排気系8からの該混合物を自動的に単量体
供給系5へ帰還させることもできる。単量体室3へ供給
する該混合物はガス導入量、供給量を制御するバルブお
よび排気量で制御した。
Gas is introduced into the monomer liquid in the system through the gas introduction hole 11, and the introduced gas becomes bubbles and rises in the liquid.
When it disappears at the liquid interface, it mixes with the monomer vapor. The monomer vapor and gas thus mixed are supplied to the monomer chamber 3 through a valve that controls the supply amount. Since the monomer chamber 3 is evacuated through the exhaust system 8 , the mixture is automatically fed into the monomer chamber 3 and circulated to the substrate 17 and into the exhaust system 8 . The mixture discharged from the exhaust system 8 collects and recovers monomers in a cold trap 20. Although not shown, the mixture from the exhaust system 8 can also be automatically returned to the monomer supply system 5. The mixture supplied to the monomer chamber 3 was controlled by a valve for controlling the amount of gas introduced and the amount of supply, and an exhaust amount.

これらの量は装置の大きさ、単量体液面の面積、単量体
および単量体室の温度、単量体の蒸気圧に依存するので
、各条件に応じてその量が決定される。室温で2mmH
g以上の蒸気圧を有する単量体では、単量体温度および
単量体室の温度は室温でも十分目的とする厚さのグラフ
ト重合層が得られたが、処理速度をあげるため、あるい
は低蒸気圧単量体の飽和蒸気圧を上げるため、または単
量体の蒸発潜熱を供給する目的で単量体、単量体室ある
いは導入ガスを加温してもよい。
These amounts depend on the size of the apparatus, the area of the monomer liquid surface, the temperature of the monomer and the monomer chamber, and the vapor pressure of the monomer, so the amounts are determined according to each condition. 2mmH at room temperature
When using a monomer with a vapor pressure of more than 100 g, a graft polymerized layer of the desired thickness was obtained even when the monomer temperature and the temperature of the monomer chamber were at room temperature. The monomer, the monomer chamber, or the introduced gas may be heated in order to increase the saturated vapor pressure of the monomer or to supply latent heat of vaporization of the monomer.

従来の方法では単量体供給系の単量体液界面近傍では単
量体の飽和蒸気圧が維持されているが、単量体室3内で
は飽和蒸気圧以下で、かつ単量体の圧力(濃度)分布が
生じていた。
In the conventional method, the saturated vapor pressure of the monomer is maintained near the monomer liquid interface in the monomer supply system, but in the monomer chamber 3, the saturated vapor pressure is below the saturated vapor pressure, and the monomer pressure ( concentration) distribution was occurring.

これを防ぐために単量体液の温度を上げると、単量体室
内および基材布へ単量体が凝縮した。これに対し本発明
の方法でぱ排気により単量体室内は飽和蒸気圧に近い圧
力に維持されているため、単量体の凝縮がおこることは
なく、また混合されたガスがキヤリアガスの役割を果す
ので単量体室内は全域で飽和蒸気圧に近い状態にあり、
圧力分布が生じることはない。また単量体は循環してい
るため単位時間に基材へ衝突する単量体が極めて多いの
も本発明の方法の特長である。さらに本発明の方法の優
れた特徴は2種以上の蒸気圧の異る単量体を任意の組成
で基材へ供給できることである。
To prevent this, when the temperature of the monomer liquid was raised, the monomer condensed in the monomer chamber and onto the base fabric. In contrast, in the method of the present invention, the monomer chamber is maintained at a pressure close to the saturated vapor pressure by exhaust gas, so condensation of the monomer does not occur, and the mixed gas plays the role of a carrier gas. As a result, the monomer chamber is in a state close to saturated vapor pressure throughout the area,
No pressure distribution occurs. Another feature of the method of the present invention is that because the monomers circulate, a very large amount of monomers collide with the substrate per unit time. Furthermore, an excellent feature of the method of the present invention is that two or more types of monomers having different vapor pressures can be supplied to the substrate in any desired composition.

従来の方法では単量体の組成は単量体室3の温度におけ
る各単量体の蒸気圧の比で決まつていたが、本発明の方
法では複数の単量体供給系をもうけ各単量体供給系にお
ける単量体液の温度、ガス導入量および単量体室への供
給量を変えることにより、任意の組成の単量体混合物を
基材へ供給でき、グラフト重合層の共重合比を変えるこ
とができる。外部より導入するガスはAr.N2、Ne
,.Heなどいかなるガスでもよいが、02のごとく活
性点を失活させるガスは好ましくない。
In the conventional method, the composition of the monomers was determined by the ratio of the vapor pressures of each monomer at the temperature of the monomer chamber 3, but in the method of the present invention, a plurality of monomer supply systems are provided and each monomer is By changing the temperature of the monomer liquid in the monomer supply system, the amount of gas introduced, and the amount of supply to the monomer chamber, a monomer mixture of any composition can be supplied to the base material, and the copolymerization ratio of the graft polymerization layer can be adjusted. can be changed. The gas introduced from the outside is Ar. N2, Ne
、. Any gas such as He may be used, but a gas that deactivates active sites like 02 is not preferred.

特に02を含むガス、例えば02、空気などの混入は極
めてきびしく影響するため、微量の酸素の混入をも極力
排除せねばならない。本発明の方法では単量体室3は常
に排気しているため、単量体供給系5および単量体室3
へ漏洩してくる空気を排除でき、活性点の失活を防ぐこ
とのできる利点がある。なおガスの外部より導入すると
の形容は単量体中に排除できずに残つた微量のガスと区
別するためである。臥上詳述したように、本発明は、活
性化した基材へ単量体蒸気をふれさせるに際し、外部か
らガスを供給して単量体蒸気と混合し、その混合蒸気を
排出せしめて混合蒸気を循環させるようにしたので、下
記のごとき優れた効果を奏するものである。
In particular, since the contamination of gases containing O2, such as O2 and air, has a very severe effect, it is necessary to eliminate even the slightest amount of oxygen contamination. In the method of the present invention, since the monomer chamber 3 is always evacuated, the monomer supply system 5 and the monomer chamber 3
This has the advantage of being able to eliminate air leaking into the air and preventing deactivation of active sites. Note that the description that the gas is introduced from the outside is to distinguish it from a trace amount of gas that remains in the monomer without being eliminated. As detailed above, in the present invention, when the monomer vapor is brought into contact with the activated base material, a gas is supplied from the outside and mixed with the monomer vapor, and the mixed vapor is discharged and mixed. Since the steam is circulated, the following excellent effects can be achieved.

第1は、前述のごとく基材へ均一な厚さのグラフト重合
層が形成され、従来の方法で見られるグラフト重合層の
厚み斑に伴う種々の弊害がないことである。
First, as mentioned above, a graft polymer layer of uniform thickness is formed on the base material, and there are no various disadvantages associated with uneven thickness of the graft polymer layer seen in conventional methods.

第2は、本方法では多種の単量体をその蒸気圧に関係な
く任意の組成で供給でき、特定の共重合組成の重合体を
グラフト重合できることである。
Second, in this method, various types of monomers can be supplied in arbitrary compositions regardless of their vapor pressures, and a polymer having a specific copolymerization composition can be graft-polymerized.

このため従来の方法では得られなかつた特性のグラフト
重合層を基材表層へ形成できる優れた利点を有している
。第3は、驚くべきことに従来の方法に比ベ本発明の方
法の方がより厚いグラフト重合層を形成することができ
、かつホモポリマが形成されないことである。
Therefore, it has the excellent advantage of being able to form a graft polymer layer on the surface layer of the base material with characteristics that cannot be obtained by conventional methods. Third, surprisingly, compared to conventional methods, the method of the present invention allows for the formation of thicker graft polymerization layers, and no homopolymers are formed.

従来の方法では、例えば繊維の色の深み感の向上を目的
としで放電グラフト重合した場合、単量体室では単量体
の基材布への凝縮がおこり、極めて高い水準の深み感が
得られているが、巻き取り室で真空脱気されると未反応
の多量の単量体が脱着され深み感の水準が低下する現象
が見られ、色の深みを表わす指数L値では12程度のも
のしか得られない。またこうして得たグラフト重合布を
溶媒で抽出するとグラフト率の低下が見られ、従来の方
法ではグラフト重合と同時にホモ重合もおこつているこ
とが明らかである。これに対し本発明の方法ではこのよ
うな現象は見られず、L値10程度の極めて高い水準の
深み感が得られ、ホモポリマの生成もほとんど見られな
かつた。一般のラジカル重合では重合度は単量体濃度に
比例する。この方則に従えば、基材布への単量体の凝縮
が見られる従来の方法による物が本発明の方法による物
に比べ重合度の大きな、いわゆる厚いグラフト重合層が
形成されるはずであるが、そのような結果が得られない
ことからして、放電グラフト重合の動力学は一般のラジ
カル重合の動力学とは異つているものと考えられる。以
下、実施例にて本発明の方法をより詳細に説明する。
In conventional methods, for example, when electrical discharge graft polymerization is performed to improve the depth of color in fibers, the monomer condenses on the base fabric in the monomer chamber, resulting in an extremely high level of depth. However, when vacuum degassing is carried out in the winding chamber, a large amount of unreacted monomer is desorbed and the level of depth is reduced, and the index L value, which expresses the depth of color, is about 12. You can only get things. Further, when the graft polymerized fabric thus obtained is extracted with a solvent, a decrease in the grafting ratio is observed, and it is clear that homopolymerization occurs simultaneously with graft polymerization in the conventional method. On the other hand, in the method of the present invention, such a phenomenon was not observed, and an extremely high level of depth feeling with an L value of about 10 was obtained, and almost no homopolymer formation was observed. In general radical polymerization, the degree of polymerization is proportional to the monomer concentration. If this method is followed, a so-called thick graft polymerization layer should be formed with a higher degree of polymerization than that produced by the method of the present invention in the case of the conventional method in which condensation of monomers is seen on the base cloth. However, since such results were not obtained, it is thought that the dynamics of discharge graft polymerization are different from those of general radical polymerization. Hereinafter, the method of the present invention will be explained in more detail in Examples.

なお本発明を遂行するための装置は当然のことながら第
1図の概略図の装置のみに限定されるものではない。実
施例 1 黒色に染色したポリエステル織布の表層の染料を還元脱
色処理後水洗し、風乾した。
Note that the apparatus for carrying out the present invention is not limited to the apparatus schematically shown in FIG. 1, as a matter of course. Example 1 The dye on the surface of a polyester woven fabric dyed black was subjected to reduction decolorization treatment, washed with water, and air-dried.

該織布を第1図の装置に組みこみ、該装置内の全室を排
気したのち、放電活性室1をArガスで1T0rrに保
持した。また単量体供給系5に十分脱気された1・1ζ
3ヒドロパーフルオロプロピルアクリレート(CH2=
CHCOOCH2CF2CF2H)を導入するとともに
、ガス導入孔11よりArガスを4cc/Mm導入し、
単量体界面で該単量体と該ガスを混合し単量体室3に導
入した。単量体室3は排気系8よりわずかづつ排気され
ており、単量体室3内が導入されたArガスで単量体の
飽和蒸気圧以上にならないようになつている。次いで該
織布は巻き出しロール13より連続的に巻き出され、駆
動ドラム14上で電源19より電極18へと印加された
高電圧によつて開始、維持されているArガスの放電に
さらされ表層が活性化される。活性化された該織布は単
量体室3に導入され該室において該単量体および該導入
ガスの混合物にふれ、該単量体のグラフト重合層が形成
された後、脱単量体室4に導入され巻き取りロール16
に巻き取られ処理を終了した。このようにして得られた
織布の色の深み感を表わす指数L値を測定した結果、表
1の値を得た。
The woven fabric was assembled into the apparatus shown in FIG. 1, and after all chambers in the apparatus were evacuated, the discharge activation chamber 1 was maintained at 1T0rr with Ar gas. In addition, the monomer supply system 5 has a sufficiently degassed 1.1ζ
3hydroperfluoropropyl acrylate (CH2=
At the same time, 4 cc/Mm of Ar gas was introduced from the gas introduction hole 11,
The monomer and the gas were mixed at the monomer interface and introduced into the monomer chamber 3. The monomer chamber 3 is evacuated little by little by the exhaust system 8, so that the introduced Ar gas does not cause the inside of the monomer chamber 3 to exceed the saturated vapor pressure of the monomer. The woven fabric is then continuously unwound from the unwinding roll 13 and exposed to an Ar gas discharge initiated and maintained on the drive drum 14 by a high voltage applied from the power source 19 to the electrode 18. The surface layer is activated. The activated woven fabric is introduced into the monomer chamber 3, where it is exposed to a mixture of the monomer and the introduced gas, and after a graft polymerization layer of the monomer is formed, the monomer is removed. The winding roll 16 is introduced into the chamber 4.
It was wound up and processing ended. As a result of measuring the index L value representing the depth of color of the woven fabric thus obtained, the values shown in Table 1 were obtained.

なお比較のため、放電処理条件は同じで、単量体供給を
従来の加熱蒸気供給法(単量体室温度40℃・単量体加
熱温度45℃)で行なつた織布につノ いても同様にL
値を測定し、表1の結果を得た。なおL値の測定はデジ
タル測色色差計算機AUD一SCH−2 (スガ試験機
)を用いた。表1のごとく本発明の方法ではL値、つま
り色の深み感のばらつきが極めて少ない。
For comparison, the discharge treatment conditions were the same, and the monomer was supplied using the conventional heated steam supply method (monomer chamber temperature 40°C, monomer heating temperature 45°C). Similarly, L
The values were measured and the results shown in Table 1 were obtained. Note that the L value was measured using a digital colorimetric color difference calculator AUD-SCH-2 (Suga Test Instruments). As shown in Table 1, the method of the present invention has extremely little variation in the L value, that is, the depth of color.

このことは極めて均一な厚さのグラフト重合層が形成さ
れていることを示している。これに対し従来の方法では
L値のばらつきが大きく、色の深み感が向上しているに
もかかわらず、色の深み感が斑となつて生じており商品
価値を逸している。実施例 2 未染色のポリエステル織布を実施例1と同じ装置を用い
、同一の条件で放電活性化後、単量体室にて、3つの単
量体供給系からのアクリル酸とN2ガスの混合物、グリ
シジルメタクリレートとN2ガスの混合物、および1・
「・2・2′テトラヒドロパーフルオロヘキシルアクリ
レート(CH2一CHCOOC2H4C3F6CF3)
とN2ガスの混合物を混合し供給された混合物にふれさ
せ、該単量体の共重合牧をグラフト重合した。
This indicates that a graft polymer layer with an extremely uniform thickness was formed. On the other hand, in the conventional method, the variation in L value is large, and although the depth of color is improved, the depth of color is uneven and the product value is lost. Example 2 Using the same equipment as in Example 1, an undyed polyester woven fabric was activated by discharge under the same conditions, and then acrylic acid and N2 gas from the three monomer supply systems were mixed in the monomer chamber. mixture, a mixture of glycidyl methacrylate and N2 gas, and 1.
"・2,2'Tetrahydroperfluorohexyl acrylate (CH2-CHCOOC2H4C3F6CF3)
A mixture of N2 gas and N2 gas was mixed and brought into contact with the supplied mixture to graft-polymerize the copolymerized monomer.

次いで脱単量体室にて巻き取り、処理を終了した。なお
アクリル酸、グリシジルメタクリレート、1・1′・2
・2′テトラヒドロパーフルオロヘキシルアクリレート
の蒸気の混合比は各々10モル%、30モル%、60モ
ル%になるように各々のArガス量、単量体供給系5の
温度および単量体室3への供給量を調節した。比較例と
して同一放電条件で活性化した織布を、単量体室にて前
述の混合比で混合された単量体混合物を60℃に加熱し
生成した混合蒸気にふれさせグラフト重合した。
Then, it was wound up in a monomer removal chamber to complete the treatment. Acrylic acid, glycidyl methacrylate, 1, 1', 2
- The amount of Ar gas, the temperature of the monomer supply system 5, and the temperature of the monomer chamber 3 are adjusted so that the mixing ratio of the vapor of 2' tetrahydroperfluorohexyl acrylate is 10 mol%, 30 mol%, and 60 mol%, respectively. The supply amount was adjusted. As a comparative example, a woven fabric activated under the same discharge conditions was graft-polymerized by being brought into contact with a mixed vapor generated by heating a monomer mixture at the above-mentioned mixing ratio to 60° C. in a monomer chamber.

単量体室の温度は56℃に保持した。なお該単量体混合
物の温度が60℃以下ではグリシジルメタクリレートの
飽和蒸気圧が不足で求めるような特性を持つた放電グラ
フト重合布は得られなかつた。このようにして得られた
各々の放電グラフト重合布を160℃で1分間加熱処理
後通常の方法で黒色に染色した。
The temperature of the monomer chamber was maintained at 56°C. Note that when the temperature of the monomer mixture was 60° C. or lower, the saturated vapor pressure of glycidyl methacrylate was insufficient, and a discharge graft polymerized fabric having the desired properties could not be obtained. Each of the discharge graft polymerized fabrics thus obtained was heat treated at 160° C. for 1 minute and then dyed black using a conventional method.

こうして得られた織布のL値は表2のとおりで、本発明
の方法で作られた織布は極めて均一な、かつ極めて優れ
た色の深み感を有しており商品価値の極めて高いもので
あつた。
The L value of the woven fabric thus obtained is shown in Table 2. The woven fabric made by the method of the present invention is extremely uniform and has an extremely excellent depth of color, and has extremely high commercial value. It was hot.

このことからして本発明の方法によつて放電グラフト重
合された布は極めて均一な厚さのグラフト重合層が形成
されていることは明白である。これに対し従来の方法に
よつて得られた布はL値のばらつきが極めて大きく、商
品価値を完全に喪失していた。
From this, it is clear that the cloth subjected to discharge graft polymerization by the method of the present invention has a graft polymer layer having an extremely uniform thickness. In contrast, fabrics obtained by conventional methods had extremely large variations in L value and had completely lost their commercial value.

本実施例のごとく3種の単量体を共重合グラフト重合さ
せた場合、グラフト重合層の耐摩耗性が向上し、商品価
値の水準が向上する。
When three types of monomers are copolymerized and graft polymerized as in this example, the abrasion resistance of the graft polymer layer is improved and the level of commercial value is improved.

学振型染色物摩擦堅牢度試験器を用い300回の摩擦を
行なつた場合、実施例1によつて得られた放電グラフト
重合布のL値が11.0から13,0程度に増大するの
に対し、本実施例の布では10.5から12.0へとわ
ずかに変化するのみで、目で見た色の深み感には変化は
観察できなかつた。比較例 実施例1で用いた黒染めのポリエステル織布を第1図の
装置に組みこみ、該装置内の全室を排気した。
When rubbing was performed 300 times using a Gakushin type dyeing rub fastness tester, the L value of the discharge graft polymer fabric obtained in Example 1 increased from 11.0 to about 13.0. On the other hand, in the fabric of this example, there was only a slight change from 10.5 to 12.0, and no change was observed in the visual depth of color. Comparative Example The black-dyed polyester woven fabric used in Example 1 was assembled into the apparatus shown in FIG. 1, and all chambers in the apparatus were evacuated.

次いで、15℃に冷却したアクリル酸容器をアルゴンガ
スでバブリングすることによつて発生したアクリル酸と
アルゴンガスの混合ガスをガス導入孔10より放電活性
室1に導入し、該室内を1T0rrに保持した。他の条
件は実施例1と全く同一にして高電圧を印加し、該織布
に実施例1と同様にして1・1′・3ヒドロパーフルオ
ロプロピルアクリレートのプラズマ重合を行なつた。こ
のようにして得られた織布の色の深み感を測定したとこ
ろ表3の結果が得られた。表3の結果のごとく本実験で
得られた織布の色の深み感は確かに向上するが、長さ方
向、幅方向のL値のばらつきが著しく大きかつた。
Next, a mixed gas of acrylic acid and argon gas generated by bubbling argon gas into the acrylic acid container cooled to 15° C. is introduced into the discharge activation chamber 1 through the gas introduction hole 10, and the inside of the chamber is maintained at 1T0rr. did. Other conditions were exactly the same as in Example 1, high voltage was applied, and 1,1',3 hydroperfluoropropyl acrylate was subjected to plasma polymerization on the woven fabric in the same manner as in Example 1. When the depth of color of the woven fabric thus obtained was measured, the results shown in Table 3 were obtained. As shown in the results in Table 3, the depth of color of the woven fabric obtained in this experiment was certainly improved, but the variation in L value in the length direction and width direction was extremely large.

これは放電活性室にアクリル酸モノマを導入し、放電し
たために織布上にアクリル酸のプラズマ重合物が不均一
に堆積したためと思われる。プラズマ重合の最も大きな
問題点は、大面積に均一な厚さの重合膜を形成すること
で、本実験で用いた織布のように巾60d、長さ50m
の大きな基材に均一な膜厚のプラズマ重合膜をつけた例
はなく、現在の技術では不可能と思われる。また該処理
布をこすると容易に色の深みが失われ、白化した。
This is thought to be because the acrylic acid monomer was introduced into the discharge activation chamber and the plasma polymerization of acrylic acid was non-uniformly deposited on the fabric due to the discharge. The biggest problem with plasma polymerization is that it requires forming a polymer film with a uniform thickness over a large area.
There is no example of applying a plasma polymerized film of uniform thickness to a large base material, and it seems impossible with current technology. Furthermore, when the treated cloth was rubbed, the depth of color was easily lost and it turned white.

本発明者らは以前1−1!・3ヒドロパーフルオロプロ
ピルアクリレートのプラズマ重合による繊維の色の深み
の改良を試みたことがあるが、摩擦によつて容易に色の
深みが失われることから、繊維自身に該7ツ素モノマを
グラフト重合する本発明のグラフト重合法を検討してき
た。これらのことから判断して本実験で摩擦によつて色
の深みが失われるのは、該フツ素モノマがアクリル酸の
プラズマ重合膜が摩擦によつて繊維から剥離するためと
思われる。なお、実施例1の処理布では該フツ素モノマ
が繊維自身にグラフト重合しているため、摩擦によつて
このように極端に色の深みが失われることはなかつた。
The inventors previously reported 1-1! - Attempts have been made to improve the color depth of fibers by plasma polymerization of 3-hydroperfluoropropyl acrylate, but the depth of color was easily lost due to friction, so it was necessary to add the 7-component monomer to the fibers themselves. The graft polymerization method of the present invention has been studied. Judging from these facts, it seems that the reason why the color depth is lost due to friction in this experiment is that the plasma polymerized film of acrylic acid, the fluorine monomer, is peeled off from the fibers due to friction. In addition, in the treated fabric of Example 1, since the fluorine monomer was graft-polymerized to the fiber itself, the color depth was not drastically lost due to friction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するための放電処理装置の
概略断面図である。 1:放電活性室、2:低圧室、3:単量体室、4:脱単
量体室、5:単量体供給系、6,7,8,9:真空排気
系、10,11:ガス導入11−.12:単量体導入孔
、13:巻き出しロール、14,15:駆動ドラム、1
6:巻き取りロール、17:基材、18:放電電極、1
9:高圧電源、20:コールドトラツプ、21:真空ポ
ンプ。
FIG. 1 is a schematic sectional view of a discharge treatment apparatus for carrying out the method of the present invention. 1: Discharge activation chamber, 2: Low pressure chamber, 3: Monomer chamber, 4: Monomer removal chamber, 5: Monomer supply system, 6, 7, 8, 9: Vacuum exhaust system, 10, 11: Gas introduction 11-. 12: Monomer introduction hole, 13: Unwinding roll, 14, 15: Drive drum, 1
6: Winding roll, 17: Base material, 18: Discharge electrode, 1
9: High voltage power supply, 20: Cold trap, 21: Vacuum pump.

Claims (1)

【特許請求の範囲】[Claims] 1 放電グラフト重合(共重合)において、放電により
基材を活性化後グラフト重合すべき単量体にふれさせる
に際し、該単量体を該単量体蒸気と外部より導入したガ
スとの混合物として供給、循環させながら該基材にふれ
させることを特徴とする放電グラフト重合法。
1 In discharge graft polymerization (copolymerization), when the base material is activated by electric discharge and then brought into contact with the monomer to be grafted, the monomer is mixed with the monomer vapor and a gas introduced from the outside. A discharge graft polymerization method characterized in that the base material is brought into contact with the base material while being supplied and circulated.
JP9726079A 1979-08-01 1979-08-01 Electric discharge graft polymerization method Expired JPS5923566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9726079A JPS5923566B2 (en) 1979-08-01 1979-08-01 Electric discharge graft polymerization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9726079A JPS5923566B2 (en) 1979-08-01 1979-08-01 Electric discharge graft polymerization method

Publications (2)

Publication Number Publication Date
JPS5622313A JPS5622313A (en) 1981-03-02
JPS5923566B2 true JPS5923566B2 (en) 1984-06-02

Family

ID=14187567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9726079A Expired JPS5923566B2 (en) 1979-08-01 1979-08-01 Electric discharge graft polymerization method

Country Status (1)

Country Link
JP (1) JPS5923566B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182302A (en) * 1981-05-06 1982-11-10 Shuzo Hattori Apparatus for forming polymer film by plasma polymerization
JPS62262705A (en) * 1986-05-07 1987-11-14 Agency Of Ind Science & Technol Hydrophilic porous membrane, its production and serum separator using said membrane

Also Published As

Publication number Publication date
JPS5622313A (en) 1981-03-02

Similar Documents

Publication Publication Date Title
US3600122A (en) Method of grafting ethylenically unsaturated monomer to a polymeric substrate
Tsafack et al. Plasma-induced graft-polymerization of flame retardant monomers onto PAN fabrics
US4267202A (en) Method for modifying the surface properties of polymer substrates
Wakida et al. Dyeing properties of wool treated with low-temperature plasma under atmospheric pressure
JPS6135309B2 (en)
KR900000237B1 (en) Sheet like structure and process for producing the same
US3281263A (en) Method for modifying polymeric substances with high energy radiation
JPS5923566B2 (en) Electric discharge graft polymerization method
US3449154A (en) Poly-alpha-olefins coated with lactams or lactones and methods for producing same
Zubaidi et al. Graft polymerization of hydrophilic monomers onto textile fibers treated by glow discharge plasma
JPH01207475A (en) Production of polyester cloth
Seto et al. Surface modification of synthetic fiber nonwoven fabrics with poly (acrylic acid) chains prepared by corona discharge induced grafting
JPH041774B2 (en)
JPH01111072A (en) Fiber structure and its production
JPH0693568A (en) Fiber structure
KR20160011037A (en) Acrylic Color Deepening Agent, and Method for Manufacturing the Same
JPH073032B2 (en) Fiber structure and manufacturing method thereof
JP2674806B2 (en) Synthetic leather and manufacturing method thereof
CA1276586C (en) Applying thin film plasma polymerisation to sheet of coloured polyester fibres
JPS5933132B2 (en) Surface modification method
JPS6245784A (en) Sheet like structure and its production
JPS59152913A (en) Surface modification of polymeric material
JPH05230779A (en) Uniform dying of wool fabric
KR100424417B1 (en) Fiber class deepen the color apparatus and method thereof for using high pressure dielectric barrier discharge
JPH0434083A (en) Coated and processed cloth of polyester fiber and production thereof