JPS5923445A - Ion mass separator - Google Patents

Ion mass separator

Info

Publication number
JPS5923445A
JPS5923445A JP57131118A JP13111882A JPS5923445A JP S5923445 A JPS5923445 A JP S5923445A JP 57131118 A JP57131118 A JP 57131118A JP 13111882 A JP13111882 A JP 13111882A JP S5923445 A JPS5923445 A JP S5923445A
Authority
JP
Japan
Prior art keywords
ion
ion beam
pinhole
electrode
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57131118A
Other languages
Japanese (ja)
Other versions
JPS6364857B2 (en
Inventor
Eizo Miyauchi
宮内 栄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57131118A priority Critical patent/JPS5923445A/en
Publication of JPS5923445A publication Critical patent/JPS5923445A/en
Publication of JPS6364857B2 publication Critical patent/JPS6364857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass

Abstract

PURPOSE:To obtain a compact ion mass separator for an ion injection device with excellent chromatic aberration by controlling the strength of an axisymmetric magnetic lens, converging only the desired ion beam on the electrode of a pinhole, and selectively passing through it. CONSTITUTION:A mixed ion beam 10 consisting of a number of elements is emitted from the emitter chip 2 of a field emission type ion beam generation section 1 and is guided into an ion mass separator 4 through a diaphragm 3. A separated ion is converged by an ion beam convergence system 7 and a selective ion beam 11 is guided into the specified position of a semiconductor crystal substrate 9 by an ion beam deflection system 8. The separator 4 consists of an annular axisymmetric magnetic lens 5 and a pinhole electrode 6. The mixed ion beam between the diaphragm 3 and the electrode 6 is sequentially converged with an ion with small mass by a magnetic field and an ion with large mass is converged at a farer position than a field lens. As a result, a separation with excellent chromatic aberration can be performed by controlling the field strength of the lens 5, concentrating only the desired ion, and passing it through the electrode 6.

Description

【発明の詳細な説明】 この発明は電界放出型イオンビーム発生部より複数の混
合イオンを発射し、半導体結晶基板へ直接所定のイオン
のみな選択的に注入するマー コ − スフレスイオン注入装置におけるイオンの分離に好適に
使用することのできるイオン質量分離器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an ion implantation system for use in a Marcos fresse ion implantation device that emits a plurality of mixed ions from a field emission type ion beam generator and selectively implants only predetermined ions directly into a semiconductor crystal substrate. The present invention relates to an ion mass separator that can be suitably used for separation.

従来のイオン質量分離器としてウィンフィルタ型分離器
が知られており1分解能も優れているが、光学系が軸対
称でないため、軸対称の光学系な用いた上述のイオン注
入装置のイオンビーム加速収束系に組込んだ場合は収差
が生じ、光軸の調整に複雑な操作な必要とする。更に装
置が大型であり、基本的に軌道が不安定であって、長時
間の使用には信頼性が乏しいと思われる。このようにウ
ィンフィルタ型イオン質量分離器は分解能が優れている
が、イオン注入装置に組込むことに問題があった。
The Winn filter type separator is known as a conventional ion mass separator and has an excellent resolution of 1, but since the optical system is not axially symmetrical, the ion beam acceleration of the above-mentioned ion implantation device using an axially symmetrical optical system is difficult. When incorporated into a focusing system, aberrations occur and complex operations are required to adjust the optical axis. Furthermore, the device is large and the orbit is fundamentally unstable, making it unreliable for long-term use. As described above, the Winfilter type ion mass separator has excellent resolution, but there are problems in incorporating it into an ion implanter.

この発明は上述のマスクレスイオン注入装置に好適に組
込み、イオンな分離することのできる光学系を軸対称と
した小凰で重線な構造のイオン質量分離器を提供するこ
とな目的とするものであって、以下−示の実施例を参照
して説明する。
An object of the present invention is to provide an ion mass separator that can be suitably incorporated into the above-mentioned maskless ion implantation device and has an axially symmetrical optical system that can separate ions and has a small, double-line structure. This will be explained below with reference to the embodiments shown below.

−3− 第1図はサブミクロンの微細収束イオンビームな結晶基
板に形成することのでらるマスクレスイオン注入装置の
光学系に本発明によるイオン質量分離器を組込んだ実施
例を示し、電界放出型イオンビーム発生部lのエミッタ
チップコの先端−′には直径1μm以下の放射面を備え
ており、二元或は三元の共晶合金が溶融して液体金属と
なった複数元素の混合イオンビーム10が発射され1発
射面前方光軸上にある絞り3な通ってイオン質量分離器
ダに導かれる。イオン質量分離器lについては後援詳し
く説明するが、この質量分離器では複数元素の混合イオ
ンより注入すべきイオンのみを選択的に分離、放射し、
イオンビーム収束系7でサブミクロンのオーダで収束し
、イオンビーム偏向系gにて収束された選択イオンビー
ム//は半導体結晶基板tの所定の位置に導かれパター
ンの描画な行う。
-3- Figure 1 shows an embodiment in which the ion mass separator according to the present invention is incorporated into the optical system of a maskless ion implanter that can form a submicron finely focused ion beam on a crystal substrate. The tip of the emitter tip of the emission-type ion beam generator l is equipped with a radiation surface with a diameter of 1 μm or less. A mixed ion beam 10 is emitted and guided to an ion mass separator through an aperture 3 located on the optical axis in front of the emitting surface. I will explain the ion mass separator l in detail, but this mass separator selectively separates and emits only the ions to be injected from the mixed ions of multiple elements.
The selected ion beam // focused on the order of submicrons by the ion beam focusing system 7 and focused by the ion beam deflection system g is guided to a predetermined position on the semiconductor crystal substrate t to draw a pattern.

イオンビーム発生部/の前方光軸上に設けられる本発明
によるイオン質量分離器ダは環状の軸対称磁気レンズS
とピンホール電極6よ多構成される。環状磁気レンズは
軸対称性をもつ磁界、一定速度の荷電粒子のビームな集
束させる性質を有し、焦点が質量M/l (Mはイオン
質量数、Cはイオンの電荷)に比例して異なることな利
用して、エミッタチップユの先端λ′より放出される複
数元素の混合イオンビームより所定のイオンビームな選
択的に分離する。
The ion mass separator according to the present invention, which is provided on the front optical axis of the ion beam generating section, has an annular axisymmetric magnetic lens S.
and pinhole electrodes 6. The annular magnetic lens has the property of focusing a beam of charged particles with an axially symmetrical magnetic field, and the focal point varies in proportion to the mass M/l (M is the ion mass number and C is the charge of the ion). Using various methods, a predetermined ion beam is selectively separated from the mixed ion beam of multiple elements emitted from the tip λ' of the emitter chip.

更に具体的に説明すると、イオン質量分離器すの絞り3
とピンホール電極6間の磁場の強さと電位は第2図に示
すように、磁場は磁気レンズタの中心が強く、また電位
は一定である。そして磁場の強さはレンズに印加する電
流によって変る。従って、□電極チップの先端より放射
される混合イオンビームは絞り3とピンホール電極6間
を等速で流れるが、磁界によって質量の小さいイオンよ
り順次収束され、質量の大きいイオンは磁界レンズより
遠い位置で収束される。従って、結晶基板りに注入すべ
きイオンのみなピンホール電極基のピンホールの位置に
収゛束するように磁気レンズSの磁界の強さな制御S 
 − することKよって所望のイオンのみが集中してピンホー
ルな通過することKなる。このときに用いられる磁気レ
ンズの磁界の強さは数千ガウス以上な必要とする。
To explain more specifically, the ion mass separator slot aperture 3
As shown in FIG. 2, the magnetic field strength and potential between the magnetic lens and the pinhole electrode 6 are strong at the center of the magnetic lens, and the potential is constant. The strength of the magnetic field changes depending on the current applied to the lens. Therefore, □The mixed ion beam emitted from the tip of the electrode tip flows between the aperture 3 and the pinhole electrode 6 at a constant velocity, but the ions with smaller mass are focused by the magnetic field in order, and the ions with larger mass are farther away than the magnetic field lens. converged at the position. Therefore, the strength of the magnetic field of the magnetic lens S is controlled so that only the ions to be implanted into the crystal substrate are focused on the pinhole position of the pinhole electrode base.
- By doing this, only the desired ions can be concentrated and pass through the pinhole. The strength of the magnetic field of the magnetic lens used at this time needs to be several thousand Gauss or more.

今、第3図に示すように、エミッタチップの先端より磁
気レンズの中心までの距離なα、磁気レンズの中心より
ピンホール電極6までの距離なI、ピンホールの孔径を
d、?、磁気レンズの焦点kf、イオンビームの拡り角
度をθ、磁気レンズにおけるイオンビームの拡い半径を
rL。
Now, as shown in Fig. 3, the distance from the tip of the emitter tip to the center of the magnetic lens is α, the distance from the center of the magnetic lens to the pinhole electrode 6 is I, and the diameter of the pinhole is d. , the focal point of the magnetic lens kf, the spread angle of the ion beam as θ, and the spread radius of the ion beam in the magnetic lens as rL.

磁気レンズの強さをk、イオンの質量なη(=M/、)
とすると、全放射イオン電流I、に対するピンホールな
通過するイオン電流1fは下式によって表わさられ、そ
の値がlK近い程、ピンホールを通過するイオン電流が
太いことになる。
The strength of the magnetic lens is k, and the mass of the ion is η (=M/,)
Then, the ion current 1f passing through the pinhole with respect to the total emitted ion current I is expressed by the following equation, and the closer the value is to lK, the thicker the ion current passing through the pinhole.

 6− (−=αの時、但し第3図におけるb〈bl又はh >
 h:の領域) 上記の式に於て、その値を1とするためにはりと1rが
等しくなるようにすればよい。ここでkは上述の如く磁
気レンズの強さを示すパラメータで第2図に従って。
6- (When -=α, however, b〈bl or h〉 in Fig. 3
Area of h:) In the above equation, in order to set the value to 1, the beam and 1r should be made equal. Here, k is a parameter indicating the strength of the magnetic lens as described above, and is calculated according to FIG.

1 kt=f=sηvo//  Bz(Z)d”  トナ’
)、O 即ち、 η=svo/f  BZ(Z)dZ  テ4ル。
1 kt=f=sηvo// Bz(Z)d"Tona'
), O ie, η=svo/f BZ(Z)dZ te4l.

O エミッタチップ先端より五つの質量の異なるイオンビー
ム電流rI l ”t I ”81 r4 、rIfが
同時に放射され、イオンビームr、がピンホールの位置
に収束点な結ぶよう磁気レンズへ供給する電流な制御し
たとすると、第3図に示すように質量の最も大急いイオ
ンビームrIはhの位置が収束点となり、r、より質量
の小さいイオンビームτb−7− はピンホールを越えた点す、で収束する。τ、より質量
の更に小さいイオンビームr4は光軸と平行となり、収
束はしない。更に最も小さい質量のイオンビームr、の
収束点は磁気レンズの手前の位置となる。従って、イオ
ン分布が均一とすると、イオンビームrI r ”8 
+ r4 + ”!lはピンホール電極を照射するイオ
ンビームの面積とピンホールの孔径の割合でイオンビー
ムr2に混入してピンホールな通過することになる。
O Ion beam currents rI l ``t I ''81 rIf of five different masses are simultaneously emitted from the tip of the emitter tip, and a current is supplied to the magnetic lens so that the ion beam r converges at the pinhole position. If controlled, as shown in Fig. 3, the ion beam rI with the highest mass will converge at the position h, and the ion beam τb-7- with the smaller mass will point beyond the pinhole. It converges. The ion beam r4, which has a smaller mass than τ, is parallel to the optical axis and does not converge. Furthermore, the convergence point of the ion beam r, which has the smallest mass, is located in front of the magnetic lens. Therefore, assuming that the ion distribution is uniform, the ion beam rI r ”8
+r4+''!l is mixed into the ion beam r2 and passes through the pinhole at a ratio of the area of the ion beam irradiating the pinhole electrode to the diameter of the pinhole.

次に、前述の式や第3図に示した質量分離特性に基いて
計算した質量パラメータ(2にη/α)とイオン電流透
過率(If/ L )の関係な第4図に示す。この図示
の作成に用いた実際のパラメータとしてエミッタチップ
の先端より磁界レンズ中心までの距離α及び磁界レンズ
中心よりピンホール電極までの距離Iないずれも30餌
、イオンビームの拡り角度θk 10 m rad  
とし、孔径10 pm 、 50 pm 、 100 
pm のピンホール電極な用いる場合を示す。
Next, FIG. 4 shows the relationship between the mass parameter (η/α in 2) and the ion current transmittance (If/L) calculated based on the above-mentioned formula and the mass separation characteristics shown in FIG. The actual parameters used to create this diagram are the distance α from the tip of the emitter tip to the center of the magnetic field lens, and the distance I from the center of the magnetic field lens to the pinhole electrode, both of which are 30 meters, and the spread angle of the ion beam θk is 10 m. rad
and the pore diameters are 10 pm, 50 pm, 100
The case where a pm pinhole electrode is used is shown.

例えば、イオンビーム発生部よりAtLBe液体金属イ
オン電流が放射された場合、Au −B。
For example, when an AtLBe liquid metal ion current is emitted from the ion beam generating section, Au-B.

金属イオンはAu、+イオ/、A、L丑イオン、Be+
イオン、Be+イオンより構成され、B、+イオンな透
過率の最大の点1に位置させると、即ち、B#イオンな
ピンホール電極より選択的に透過させる場合、8g+イ
オンはB−イオンの2倍の質量であり、A1L廿イオン
は8g+イオンに対し、約40倍の質量であり、Act
+イオンは約80倍の質量であるので、それぞれのイオ
ンの位置関係は図示の如くとなる( Au+イオンは示
してない)。そして、Be+イオン電流のピンホール電
極の透過率すると約、□となり、更に孔径を10 pm
 とすると約□となることが判る。AtL廿の場合は孔
000 径が100μmでも透過率か]篩であることが判る。
Metal ions are Au, + ion/, A, L ox ion, Be +
ion, Be+ ion, and if it is located at point 1 where the transmittance of B,+ ion is maximum, that is, if it is selectively transmitted through the pinhole electrode of B# ion, 8g+ ion will be 2 of B- ion. Act
Since the + ion has about 80 times the mass, the positional relationship of each ion is as shown in the figure (the Au+ ion is not shown). The transmittance of the pinhole electrode for Be+ ion current is approximately □, and the hole diameter is further increased to 10 pm.
It turns out that it is approximately □. In the case of AtL, it can be seen that it is a sieve even if the pore diameter is 100 μm.

また、AtL  B%金合金場合も同様であって、S−
イオンが1のとき、Be+イオンの質量は2であり、S
i+に対するAtL妊イオ/の質量は約7倍であるので
、それぞれ図示の如き位置関係となり、孔径50μmの
ピンホール電極な用いた場 9− 1であることが判る。実際には共晶合金イオ00 ン源より放出される各イオン原子数の比率も併せて考慮
する必要があるが、上記の場合Sj+。
Moreover, the same is true for the case of AtL B% gold alloy, and S-
When the ion is 1, the mass of the Be+ ion is 2, and S
Since the mass of AtL pregnant ion/ is about 7 times that of i+, the positional relationship is as shown in the figure, and it can be seen that the case where a pinhole electrode with a hole diameter of 50 μm is used is 9-1. In reality, it is also necessary to consider the ratio of the number of atoms of each ion emitted from the eutectic alloy ion source, but in the above case Sj+.

Si+ 、 ku+或はBg” 、 B、+ 、 At
1.+はいずれも略々同じ原子数であるので、問題はな
い。
Si+, ku+ or Bg", B, +, At
1. There is no problem because + has approximately the same number of atoms.

このように、第4図のグラフを用い、混合イオンビーム
中の透過させるイオンビームに対スる他のイオンビーム
の質量、原子数が判れば、それぞれなグラフに位置させ
、所望の透過率とするには孔径がいくつのピンホール電
極を用いれば良いか容易に判断することかで籾る。更に
このイオン分離器な二段、三段と連結してイオンビーム
な複数回ピンホール電極な通過させるようにするとイオ
ンビームの選択的透過率は飛躍的に向上する。
In this way, using the graph in Figure 4, if you know the mass and number of atoms of the other ion beams in the mixed ion beam, which correspond to the ion beam to be transmitted, you can position them on the respective graphs to obtain the desired transmittance. The key is to easily judge how many pinhole electrodes should be used to achieve this. Furthermore, if the ion separator is connected to two or three stages so that the ion beam passes through the pinhole electrode multiple times, the selective transmittance of the ion beam can be dramatically improved.

上記の説明においては、絞シとピンホール電極間の電位
な一定として磁界の強さな制御して所望のイオン電流の
みをピンホール電極より透過させる実施例を述べたが、
絞りとピンホール1O− tffi間の電位な変化させて生じる静電レンズ作用を
磁界作用と併用して用いてもよい。
In the above explanation, an example has been described in which only the desired ion current is transmitted through the pinhole electrode by controlling the strength of the magnetic field with the potential between the diaphragm and the pinhole electrode being constant.
An electrostatic lens effect produced by changing the potential between the aperture and the pinhole 1O-tffi may be used in combination with a magnetic field effect.

収束イオンビーム注入装置ではイオン質量分1IIi器
出口で生ずる収差が問題となる。そのうち影響の大きい
のは色収差であるが、この発明によるイオン質瞼分lt
l器においては、従来のクイ/フィルタ型イオン質量分
離器よりも色収差について一桁以上優れてお抄、軸対称
であり、小型であるため、マスクレスイオン注入装置へ
組み込んでも整合性がよく、共晶会金型液体金域源の質
歇分虐に有効であり、微細イオンビーム形成に何ら支障
がない上、イオン注入等KM影響が考えられる中性イオ
ンの除去をも行うことができる。
In a focused ion beam implanter, aberrations occurring at the exit of the ion mass 1IIi device pose a problem. Of these, chromatic aberration has a large effect, but the ionic eyelid component according to this invention
The ion mass separator is more than an order of magnitude better in terms of chromatic aberration than the conventional filter/filter type ion mass separator, is axially symmetrical, and is small, so it has good consistency even when incorporated into a maskless ion implanter. It is effective in controlling the quality of a eutectic mold liquid metal source, does not cause any problem in forming a fine ion beam, and can also remove neutral ions that may be affected by KM such as ion implantation.

【図面の簡単な説明】[Brief explanation of the drawing]

741図は本発明によるイオン質量分離器をマスクレス
イオン注入装置1に組込んだ状態な示す説明図、第2図
はイオン質を分1lfi器の電位及び磁場の状態を示す
グー)7.第3図は本発明のイオン質敬分醗器の原理説
明図、第4図は本発明−//− のイオン質量分離器の質量パラメータとイオン′f11
流透過率の関係を示すグラフ。 図中、lはイオンビーム発生部、2はエミッタチップ、
3は絞り、グはイオン質量分離器、倉は磁気Vンズ、6
はピ/ホール゛峨極、ヂは結晶基板な示す。
741 is an explanatory diagram showing the ion mass separator according to the present invention incorporated into the maskless ion implanter 1, and FIG. Fig. 3 is an explanatory diagram of the principle of the ion quality separator of the present invention, and Fig. 4 is a diagram showing the mass parameters and ion 'f11' of the ion mass separator of the present invention.
Graph showing the relationship between flow permeability. In the figure, l is an ion beam generation part, 2 is an emitter chip,
3 is the aperture, G is the ion mass separator, C is the magnetic V lens, 6
indicates a pin/hole peak, and ji indicates a crystal substrate.

Claims (1)

【特許請求の範囲】 電界放出型イオンビーム発生部より混合イオンビームを
発射し、イオンビーム収束系にて収束して半導体結晶基
板へ直接所望のイオンのみな選択的に注入するイオン注
入装置において。 軸対称磁気レンズとピンホール電極とから成るイオン質
量分離器な該イオンビーム発生部とイオンビーム収束系
の間の光軸上に設け、磁気レンズの強さを制御して所望
のイオンビームのみをピンホール電極のピンホールに収
束し1選択的に通過させることな特徴とするイオン質量
分離器。
[Scope of Claim] An ion implantation apparatus in which a mixed ion beam is emitted from a field emission type ion beam generator, focused by an ion beam focusing system, and selectively implanted directly into a semiconductor crystal substrate. An ion mass separator consisting of an axially symmetrical magnetic lens and a pinhole electrode is installed on the optical axis between the ion beam generator and the ion beam focusing system, and the strength of the magnetic lens is controlled to produce only the desired ion beam. An ion mass separator characterized by focusing on a pinhole of a pinhole electrode and selectively passing one ion.
JP57131118A 1982-07-29 1982-07-29 Ion mass separator Granted JPS5923445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131118A JPS5923445A (en) 1982-07-29 1982-07-29 Ion mass separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131118A JPS5923445A (en) 1982-07-29 1982-07-29 Ion mass separator

Publications (2)

Publication Number Publication Date
JPS5923445A true JPS5923445A (en) 1984-02-06
JPS6364857B2 JPS6364857B2 (en) 1988-12-13

Family

ID=15050402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131118A Granted JPS5923445A (en) 1982-07-29 1982-07-29 Ion mass separator

Country Status (1)

Country Link
JP (1) JPS5923445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002306A (en) * 2008-06-20 2010-01-07 National Institute Of Advanced Industrial & Technology Mass analyzer of neutral particles and analyzing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010002306A (en) * 2008-06-20 2010-01-07 National Institute Of Advanced Industrial & Technology Mass analyzer of neutral particles and analyzing method

Also Published As

Publication number Publication date
JPS6364857B2 (en) 1988-12-13

Similar Documents

Publication Publication Date Title
US4649316A (en) Ion beam species filter and blanker
US4912326A (en) Direct imaging type SIMS instrument
US7381949B2 (en) Method and apparatus for simultaneously depositing and observing materials on a target
JP2001015055A (en) Charged particle beam column
JPH0737536A (en) Electronic energy filter for image formation
JPH04242060A (en) Reflecting electronic microscope
JP2020047589A (en) Multi-electron beam imaging device with improved performance
JP2004165146A (en) Electron microscope system
JP2004134389A (en) Beam induction construction, image forming method, electronic microscope system, and electronic lithography system
JP2007280966A (en) Electrooptic lens system
US6878936B2 (en) Applications operating with beams of charged particles
JPH11195396A (en) Corpuscular beam device having energy filter
JPS5923445A (en) Ion mass separator
JPS60232653A (en) Charged particle optical system
JPS60185352A (en) Charged particle optical system
KR20040034600A (en) Slit lens arrangement for particle beams
US8952339B2 (en) Chromatic aberration corrector and method of controlling same
JP2002216690A (en) Method and device for controlling charged beam
JPH01295419A (en) Method and apparatus for electron beam lithography
JPS62177849A (en) Focusing ion beam device
JP2004335433A (en) Aberration correcting electronic optical apparatus
JPH05128985A (en) Microbeam generating device
JP2960955B2 (en) Charged particle exposure method and apparatus for performing the method
JPS62172650A (en) Focusing ion beam device
JPH0629198A (en) Charged particle beam lithography