JPS59232911A - Manufacture of silica gel - Google Patents

Manufacture of silica gel

Info

Publication number
JPS59232911A
JPS59232911A JP10673183A JP10673183A JPS59232911A JP S59232911 A JPS59232911 A JP S59232911A JP 10673183 A JP10673183 A JP 10673183A JP 10673183 A JP10673183 A JP 10673183A JP S59232911 A JPS59232911 A JP S59232911A
Authority
JP
Japan
Prior art keywords
reaction
surface area
specific surface
oil absorption
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10673183A
Other languages
Japanese (ja)
Other versions
JPH0131455B2 (en
Inventor
Hiromi Sasaki
広美 佐々木
Takao Miyoshi
三好 孝雄
Tadashi Tanaka
正 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP10673183A priority Critical patent/JPS59232911A/en
Publication of JPS59232911A publication Critical patent/JPS59232911A/en
Publication of JPH0131455B2 publication Critical patent/JPH0131455B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture silica gel having >=about 400m<2>/g specific surface area and absorbing oil by >=about 130ml/100g by reacting an alkali metallic silicate with a mineral acid under specified conditions in two steps. CONSTITUTION:An aqueous soln. of an alkali metallic silicate such as sodium silicate is reacted with a mineral acid such as sulfuric acid at 30-100 deg.C, 1.5- 5pH and 12-25wt% concn. of SiO2 in the reactive liq. for about 5-30min. An alkali metallic silicate soln. is further added, and they are reacted at 30-100 deg.C, 6-10pH and 12-25wt% concn. of SiO2 for about 5-30min. The resulting reaction product is separated by filtration, washed, dried, and pulverized to obtain silica gel.

Description

【発明の詳細な説明】 本発明はアルカリ珪酸塩と鉱酸との反応によシシリカゲ
ルを得る方法に関し、特に比表面積。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining silica gel by the reaction of an alkali silicate with a mineral acid, in particular its specific surface area.

吸油量ともに大きいシリカゲルを得る方法に関するもの
である。
The present invention relates to a method for obtaining silica gel with high oil absorption.

シリカゲルの化学式は5in2− XH2O(X=0.
1〜04)と表わすことができ、構造的にはホワイトカ
ーボンと同じくゲル状シリカとして分類され、種々の用
途に供されている。これらシリカゲルはそれぞれの用途
に合った所望の物性が要求されている。例えば、歯磨用
では研磨性、屈折率が、顔料用としてはチクソトロピツ
クな性質、見掛比重が、また、ゴム、プラスチックの充
填材としては当然のことながら物理的強度の向上が重視
され、乾燥剤用としては比表面積が物性の尺度とカリ、
これによってほぼ乾燥特性を調節することができる。こ
のように、ti々の用途に応じて要求される物性はそれ
ぞれ異なっているが、一般的に品質の良否は見掛比重1
表面積、吸油量などから判定される。
The chemical formula of silica gel is 5in2-XH2O (X=0.
1 to 04), and structurally it is classified as gel-like silica like white carbon, and is used for various purposes. These silica gels are required to have desired physical properties suitable for each use. For example, for toothpastes, emphasis is placed on abrasiveness and refractive index, for pigments, thixotropic properties and apparent specific gravity are important, and for fillers for rubber and plastics, of course, improvement of physical strength is important. For use, specific surface area is a measure of physical properties and potassium,
This allows approximately the drying properties to be adjusted. In this way, the physical properties required for each type of Ti are different depending on their use, but in general, quality is determined by the apparent specific gravity of 1.
Determined based on surface area, oil absorption, etc.

比表面積、吸油量をも含め前記した各物性を支配する主
要な因子としては1次の様なものがある。
There are primary factors that govern the physical properties described above, including specific surface area and oil absorption.

■ 原料濃度および反応液中のB102濃度O反応温度
、反応時のpH1反応終了時のpuO中和速度 O電解質の種類および濃度 ■ 攪拌速度 θ 反応方法 例えば比表面積の調節は、eD−○の因子のすべてが影
響をあたえるが、中でも@の項目の反応温度および反応
終了時のT)Hが大きく支配する。反応温度その他を同
一として反応終了時の’p、 I(をl〜2で終了する
と500〜700イ/S’ 。
■ Raw material concentration and B102 concentration in the reaction solution O Reaction temperature, pH during reaction 1 puO neutralization rate at the end of reaction O Type and concentration of electrolyte ■ Stirring speed θ Reaction method For example, adjusting the specific surface area is a factor of eD-○ All of these have an influence, but the @ items, reaction temperature and T)H at the end of the reaction, are particularly dominant. If the reaction temperature and other conditions are the same, and the reaction temperature and other conditions are the same, 'p' and 'I' at the end of the reaction are 500 to 700 I/S'.

pH6〜7では300〜400 m/?、pH8〜9で
終了すると200〜300 mi’/fIとなる。これ
らの値は反応終了時、pH以外の因子を変ることによっ
て若干具なった値となるが、大体において酸性で反応を
終了すると高い比表面積が、中性付近では中庸であり、
アルカリ側では低い比表面積のシリカが得られる。これ
は酸性側で製造したものは、非常に小さな一次粒子の集
合した緻密なシリカが得られ、この−欠粒子どうしの接
点に小さな細孔ができるものと考えられる。また。
300-400 m/? at pH 6-7? , it becomes 200-300 mi'/fI when finished at pH 8-9. These values vary slightly depending on factors other than pH at the end of the reaction, but in general, the specific surface area is high when the reaction is completed in an acidic state, while it is moderate when the reaction is completed in an acidic state.
On the alkali side, silica with a low specific surface area is obtained. This is thought to be due to the fact that when produced on the acidic side, dense silica containing very small primary particles is obtained, and small pores are formed at the contact points between these missing particles. Also.

アルカリ側で製造したものは、酸性側で製造したシリカ
より大きな一次粒子ができ、それらが集合し二次粒子を
形成するものと考えられる。
It is thought that the silica produced on the alkaline side produces larger primary particles than the silica produced on the acidic side, and these aggregate to form secondary particles.

従って、単位重量あたりでは、酸性側の方が細孔の数も
多くなり必然的に比表面積の大きいシリカが得られるも
のと考えられる。
Therefore, it is considered that the number of pores is greater on the acidic side per unit weight, and silica with a larger specific surface area is inevitably obtained.

以上の考えをもとにこの比表面積とシリカの性質を左右
する物性である、吸油量について考えると同一粒子径な
らば比表面積の大きいシリカは吸油量は少ないだろうと
容易に推察できる。
Based on the above considerations, when considering oil absorption, which is a physical property that affects the specific surface area and the properties of silica, it can be easily inferred that silica with a larger specific surface area will have less oil absorption if the particle size is the same.

即ち、比表面積の大きいシリカは細孔径が小さいために
、油その他の液体分子が吸着できず。
In other words, silica with a large specific surface area has a small pore diameter, so oil and other liquid molecules cannot be adsorbed.

単に二次粒子の表面を濡らすために吸油量も高くなるも
のと思われる。
It is thought that the oil absorption amount increases simply because the surface of the secondary particles is wetted.

このことは、市販されている各睡シリカの比表面積と吸
油量の関係を調べた結果を示した第1図により明確であ
る。すなわち、比表面積と吸油量の関係はかならずしも
相関性は無いが吸油量140m1/ 100f以上とな
ると比表面積は250〜550m’/グとなっている。
This is clearly shown in FIG. 1, which shows the results of an investigation of the relationship between the specific surface area and oil absorption of each commercially available silica. That is, although there is not necessarily a correlation between the specific surface area and the oil absorption amount, when the oil absorption amount is 140 m1/100f or more, the specific surface area is 250 to 550 m'/g.

また、特公昭56−22809号によると珪酸塩の多価
金属成分尚ジ当景以上の一塩基性酸とを両者の混合開始
時点から混合終了時布の時間の大部分にわたって混合系
のpHが1.3〜5となるような条行下に反応させて、
水溶性多価金属塩を含有する溶液と不溶性の微粉末ケイ
酸とを生成させ1次いで不溶性の微粉末を分離し必要に
より洗浄する方法が示されているが、これによって得ら
れたシリカの物性は比表面積130〜250rr?/Y
で吸油量は105〜l85d/1009となっており吸
油量は比較的大ではあるが、比表面積の小さいものとな
っている。
In addition, according to Japanese Patent Publication No. 56-22809, the pH of the mixed system remains constant for most of the time from the start of mixing of the silicate to the monobasic acid above the current level. 1. React under conditions such as 3 to 5,
A method has been shown in which a solution containing a water-soluble polyvalent metal salt and insoluble finely powdered silicic acid are generated, and then the insoluble finely powder is separated and washed if necessary.The physical properties of the silica obtained by this method are Is the specific surface area 130~250rr? /Y
The oil absorption amount is 105 to 185 d/1009, and although the oil absorption amount is relatively large, the specific surface area is small.

その他シリカの製造法については多数提案がなされてい
るが、大部分のシリカは吸油量の高い場合は比表面積は
小さくなっており、比表面積が大きく且、吸油量の高い
シリカは得られにくいとされていた。これらの2つの相
反する物性を同時にみたす製法は皆無ではなく1例えば
特開昭50−64198号では、比表面積30〜340
 rt/S’で吸油量110 yl/ 100 fのシ
リカ製造法が、また特公昭52−3640号には、吸油
量540肩J/1005’で比表面s541 m”/?
の高い吸油量と大きな比表面積のシリカを得る方法が開
示されているがこれらの製造方法は、工学的に非常に複
雑であったりあるいは高価格な有機溶媒を使用している
な5− どの欠点を有していた。そこで本発明者らは、高い吸油
量と大きな比表面積を同時にみたすシリカがアルカリ珪
酸塩と鉱酸の反応で簡単に製造出来ないかについて鋭意
検討した結果、意外にも反応液中の5102濃度12〜
25wt%の範囲で反応温度50℃以上で反応時のpH
を第一段目でpH1,5〜5.0に第二段目でpH6〜
10に2段階に調節する方法により比表面積400m”
/f以上、吸油量r3o7/1oof以上のシリカゲル
が容易に得られることを知見し1本発明に到達したもの
である。
Many other methods for producing silica have been proposed, but most silicas have a small specific surface area when their oil absorption is high, and it is difficult to obtain silica with a large specific surface area and high oil absorption. It had been. There is no manufacturing method that simultaneously satisfies these two contradictory physical properties.
A method for producing silica with an oil absorption of 110 yl/100 f at rt/S' and a specific surface of s541 m''/?
Although methods for obtaining silica with high oil absorption and large specific surface area have been disclosed, these manufacturing methods are technically very complex or use expensive organic solvents. It had Therefore, the present inventors conducted extensive research into whether silica that simultaneously has a high oil absorption amount and a large specific surface area could be easily produced by a reaction between an alkali silicate and a mineral acid, and found that the 5102 concentration in the reaction solution was 12. ~
In the range of 25 wt%, the reaction temperature is 50°C or higher, and the pH during the reaction is
pH 1.5-5.0 in the first stage and pH 6-5.0 in the second stage
The specific surface area is 400 m by adjusting the method in two steps.
The present invention was achieved by discovering that silica gel having an oil absorption of r3o7/1oof or more can be easily obtained.

本発明を詳述すればまずアルカリ金属珪酸塩溶液と鉱酸
とを反応液中のS1O,9度が12〜25wt%で且、
反応液のpHが1.5〜5.0になるように配合し温度
を50℃以上に保って混合攪拌して反応を行なわせる。
To explain the present invention in detail, first, an alkali metal silicate solution and a mineral acid are mixed in a reaction solution with an S1O of 9 degrees of 12 to 25 wt%,
The reaction mixture is blended so that the pH of the reaction solution is 1.5 to 5.0, and the reaction is carried out by mixing and stirring while keeping the temperature at 50° C. or higher.

5〜30分程度程度させたのちアルカリ金属珪酸塩溶液
を更に添加して反応液のpHを6〜10に調整し且、 
 5i02濃度が12〜25wt%の範囲となるように
調節しつつ混合攪拌を更に5〜30分間行なわせ、瀘過
水6− 洗したのち乾燥、粉砕して製品を得る。
After about 5 to 30 minutes, an alkali metal silicate solution is further added to adjust the pH of the reaction solution to 6 to 10, and
While adjusting the 5i02 concentration to be in the range of 12 to 25 wt%, mixing and stirring are continued for an additional 5 to 30 minutes, washed with filtered water, dried, and pulverized to obtain a product.

反応物の状態は最初粘稠なゲル状物が得られ。Initially, the reactant was in the form of a viscous gel.

これを攪拌混合すると次第におかゆ状のゲルとなってゆ
くが珪酸アルカリを追加して混合すると水分が減少した
パサパサ状のゲル状混合物となる。これに酸を添加すれ
ばまた最初の状態のおかゆ状のゲル状物となって水分が
浸出してくる。このように反応は粘稠なゲル状で推移し
てゆくため均一な混合を行うように捏和機、ダブルロー
ルスクリューミキサー、高速ミキサー等の捏和機タイプ
の強力な混合機を用いることが好ましい。
When this is stirred and mixed, it gradually becomes a porridge-like gel, but when an alkali silicate is added and mixed, it becomes a dry gel-like mixture with reduced water content. When acid is added to this, it becomes a porridge-like gel-like substance again, and water leaches out. In this way, the reaction progresses in a viscous gel-like state, so it is preferable to use a powerful mixer of the kneader type, such as a kneader, double roll screw mixer, or high-speed mixer, to ensure uniform mixing. .

反応は連続式でもバッチ式でもいずれも使用できる。The reaction can be carried out either continuously or batchwise.

本発明で用いられるアルカリ珪酸地としてはNa、 K
、 TJIがあげられるが一般的には珪酸ナトリウムが
使用される。又、鉱酸は硝酸、リン酸。
The alkali silicate base used in the present invention includes Na, K
, TJI are mentioned, but sodium silicate is generally used. Also, mineral acids are nitric acid and phosphoric acid.

塩酸、硫酸等があるが一般的には硫酸が使用される。There are hydrochloric acid, sulfuric acid, etc., but sulfuric acid is generally used.

また、使用する原料の濃度は特に規定しないが反応中の
SiO□濃度が12〜25wt%に々るように鉱酸及び
アルカリ珪酸塩を希釈して使用する。
Further, although the concentration of the raw materials used is not particularly specified, the mineral acid and the alkali silicate are diluted and used so that the SiO□ concentration during the reaction is 12 to 25 wt%.

この場合、鉱酸として硫酸のような希釈熱の大きな酸を
使用する場合は予め硫酸を希釈し冷却したものを使用し
た方が反応温度のコントロールが容易となる。反応時の
8102濃度は好ましくは、15〜20wt%になるよ
うにアルカリ珪酸塩。
In this case, when using an acid with a large heat of dilution such as sulfuric acid as the mineral acid, it is easier to control the reaction temperature if the sulfuric acid is diluted and cooled in advance. The concentration of 8102 during the reaction is preferably 15 to 20 wt% of the alkali silicate.

鉱酸を添加した方が良く、これ以上であっても以下であ
っても混合性が悪くなって品質が一定しなくなる。特に
、  12wt%以下の場合はpHによってはシリカゾ
ルとなQ1本発明の目的物であるシリカゲルができなく
なる。また、25wtチ以上には実質的に市販の鉱酸、
および珪酸アルカリの濃度では調節することができず、
この場合には特別に製造した原料が必要となり価格的に
高いものとなり好ましくない。
It is better to add mineral acid; if it is more or less than this, the mixability will be poor and the quality will not be constant. In particular, if it is less than 12 wt%, depending on the pH, silica gel, which is the object of the present invention, such as silica sol, cannot be produced. In addition, for 25wt or more, practically commercially available mineral acids,
and cannot be adjusted by the concentration of alkali silicate,
In this case, specially manufactured raw materials are required, resulting in high costs, which is not preferable.

本発明においてはpHの調節は、鉱酸とアルカリ珪酸塩
の調合割合によって行なうが、このpH調節はシリカの
物性を左右する最も重要な因子である。即ち1反応終了
時のpHが同一であっても、反応初期のpHが異なって
おれば異々つた比表面積、吸油量を示すシリカが得られ
る。又、逆に反応初期が同一であっても終了時pHが異
なる場合も同様である。例えば反応初期pHを1.5〜
2.0に調節し反応終了時のpuを6〜7にした場合と
9〜10にした場合を比較すると前者は比表面積680
 m”/fで吸油量130m1/100f後者は比表面
積540 mV?で吸油量260厘ノ/100 fとな
った。このpH調節と比表面積吸油量の関係を第2図、
第3図に示す。このように反応初期T)Hおよび反応終
了時pHはシリカ物性に大きく影響をあたえる。次に、
反応温度について述べる。本反応はアルカリと酸の中和
反応で発熱するため本発明のように高濃度で行なうと冷
却しなければならない。従ってあまり低温に設定して行
なう場合には反応装置の冷却面積を大きくとらなければ
ならないという工学上の問題がある。また、シリカ物性
面では反応時pH,5i02濃度にもよるが同−pH,
同−SiO□濃度では温度が30℃以下の場合の方が9
− BET表面積、吸油量も小さい傾向となる30〜40℃
と80〜90℃付近を比較すると他の条件が同一ならば
80〜90℃の方が吸油量の高い傾向にあ5BET表面
積は小さな傾向を示めしたこの関係を第4図、第5図に
示す。
In the present invention, pH adjustment is carried out by adjusting the mixing ratio of mineral acid and alkali silicate, and this pH adjustment is the most important factor that influences the physical properties of silica. That is, even if the pH at the end of one reaction is the same, if the pH at the beginning of the reaction is different, silicas exhibiting different specific surface areas and oil absorption amounts can be obtained. Conversely, the same applies when the pH at the end of the reaction is different even if the initial stage of the reaction is the same. For example, the initial reaction pH is 1.5~
Comparing the case where the pu was adjusted to 2.0 and the pu at the end of the reaction was 6 to 7 and the case where it was 9 to 10, the former had a specific surface area of 680.
The oil absorption amount was 130 m''/100 f at m''/f, and the latter had an oil absorption amount of 260 m/100 f at a specific surface area of 540 mV.The relationship between this pH adjustment and the specific surface area oil absorption is shown in Figure 2.
It is shown in Figure 3. As described above, T)H at the initial stage of the reaction and pH at the end of the reaction greatly influence the physical properties of silica. next,
Let's talk about reaction temperature. Since this reaction generates heat due to the neutralization reaction of alkali and acid, it must be cooled if it is carried out at a high concentration as in the present invention. Therefore, if the temperature is set too low, there is an engineering problem in that the cooling area of the reactor must be large. In addition, in terms of silica physical properties, the pH at the time of reaction, the same pH, depending on the 5i02 concentration,
At the same -SiO□ concentration, when the temperature is below 30℃, it is 9
- BET surface area and oil absorption tend to be small at 30-40℃
When comparing temperatures around 80 to 90℃, if other conditions are the same, the oil absorption tends to be higher at 80 to 90℃, and the 5BET surface area tends to be smaller.This relationship is shown in Figures 4 and 5. show.

このように本発明方法によれば反応条件にわずかな工夫
を与えるだけで極めて容易に比表面積400m’/を以
上、吸油量1′30+u/Ion’以上と云う比表面積
、吸油量共に大きいシリカゲルが得られることになり、
極めて工業的にすぐれた発明である。本発明方法によシ
得られるシリカゲルは粉砕によりホワイトカーボン並の
粒度にまですることも可能であり吸着剤、乾燥剤、歯磨
基材、ゴムプラスチック充填剤、塗料インキの増粘剤1
紙のつや消し開環従来のシリカゲル。
As described above, according to the method of the present invention, silica gel having a specific surface area of 400 m'/ or more and an oil absorption amount of 1'30+u/Ion' or more can be produced very easily by making slight changes to the reaction conditions. You will be able to get
This is an extremely industrially excellent invention. The silica gel obtained by the method of the present invention can be crushed to a particle size comparable to that of white carbon, and can be used as an adsorbent, a desiccant, a toothpaste base material, a rubber plastic filler, and a thickener for paint and ink.
Paper matte ring-opening conventional silica gel.

ホワイトカーボンが用いられている分野のすべてに供す
ることが出来るものである。
It can be used in all fields where white carbon is used.

次に、実施例によp本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

−I〇− 実施例1 連続式ニーダ−(ジャケット付)前半部分に珪酸ナトリ
ウム(S i Os/Naz、Oモル比3. I 、 
Sin。
-I〇- Example 1 Sodium silicate (SiOs/Naz, O molar ratio 3.I,
Sin.

濃度29重量%)溶液と硫酸を連続的に供給した。この
時の硫酸濃度は1反応初期のSj、02スラリ一濃度が
16士2%になるように調節した。また、珪酸ナトリウ
ムと硫酸の添加割合を変えて1反応初期のpHが1.5
 、 3.0および5.0になるように添加した。そし
てそれぞれ連続式ニーダ−の後半部分に珪酸ナトリウム
を添加しT)Hを6〜7,7〜8,9〜10に々るよう
に添加してよく混合した。なお連続式ニーダーのジャケ
ット部に温水を流し反応温度は50℃になるようにした
The solution (concentration: 29% by weight) and sulfuric acid were continuously supplied. The sulfuric acid concentration at this time was adjusted so that the Sj, 02 slurry concentration at the beginning of one reaction was 16% and 2%. In addition, by changing the addition ratio of sodium silicate and sulfuric acid, the pH at the beginning of one reaction was 1.5.
, 3.0 and 5.0. Then, sodium silicate was added to the latter half of the continuous kneader, and T)H was added in amounts of 6 to 7, 7 to 8, and 9 to 10, and mixed well. Note that warm water was flowed through the jacket part of the continuous kneader to maintain a reaction temperature of 50°C.

このようにして連続式ニーダーより取り出される反応物
を濾過水洗、乾燥粉砕しシリカの比表面積、吸油量、見
掛比重を測定した結果を第1表および第2図、第3図に
示す。
The reaction product thus taken out from the continuous kneader was filtered, washed with water, dried and pulverized, and the specific surface area, oil absorption, and apparent specific gravity of the silica were measured. The results are shown in Table 1 and FIGS. 2 and 3.

なお、吸油量の測定はASTM−D281−31の方法
で測定し、比表面積はBIT表面積を示し、測定機器は
島津−マイクロメリテイツクス比表面積自動測定装置2
200形で測定した。
The oil absorption was measured by the method of ASTM-D281-31, the specific surface area indicates the BIT surface area, and the measuring device was Shimadzu-Micromeritics specific surface area automatic measuring device 2.
Measured with a 200 model.

第1表 実施例2 容3/に211のニーダ7(ジャケット付)に珪酸ナト
リウム(S i O! /Na!、O−Eル比3.10
 SiO,濃度29重量%)と80チ硫酸を同時に添加
した。この時の珪酸ソーダと硫酸添加量の割合は反応生
成物のpHが2となるように添加した。反応生、放物が
約11となった時に珪酸ソーダ、硫酸の添加を一時中断
し、5分間混合を続けた。その後T)H9になるように
珪酸ナトリウムを添加した。この時の反応温度はジャケ
ットに冷水又は温水を流し、15℃、40℃、80℃に
なるように調節した。珪酸ナトリウムの添加が終了し2
0分間混合した後に反応生成物を取シ出して濾過、水洗
、乾燥、粉砕して、その時の物性を測定した結果を第2
表、第4図、第5図に示す。なお1反応生成物の一部を
採取し、  810.スラリー濃度を測定したところ2
5wt%であった。
Table 1 Example 2 Sodium silicate (S i O! /Na!, O-E ratio 3.10
SiO, concentration 29% by weight) and 80% thiosulfuric acid were added simultaneously. At this time, the proportion of sodium silicate and sulfuric acid added was such that the pH of the reaction product was 2. When the number of reactants reached approximately 11, the addition of sodium silicate and sulfuric acid was temporarily stopped, and mixing was continued for 5 minutes. Thereafter, sodium silicate was added to obtain T)H9. The reaction temperature at this time was adjusted to 15°C, 40°C, and 80°C by flowing cold water or hot water through the jacket. After the addition of sodium silicate is complete,
After mixing for 0 minutes, the reaction product was taken out, filtered, washed with water, dried, and crushed, and the physical properties at that time were measured.
It is shown in the table, FIGS. 4 and 5. In addition, a part of the reaction product was collected, and 810. When slurry concentration was measured 2
It was 5wt%.

第2表 実施例3 容量2I1.のニーダ−(ジャケット付)に珪酸カリ(
S 10./に20モル比:3.I、SiO,濃度25
チ)と98チ硫酸を連続的に添加した。
Table 2 Example 3 Capacity 2I1. Kneader (with jacket) and potassium silicate (
S 10. / to 20 molar ratio: 3. I, SiO, concentration 25
h) and 98 thiosulfuric acid were added continuously.

13− この時の珪酸カリと硫酸添加量の割合は反応生成物のP
Hが2となる様に添加した。反応生成物が約12となっ
た時珪酸カリと硫酸の添加を一時中断し5分間混合を続
けた。反応中の温度はジャケットに冷水を流し25℃に
保った。その後珪酸カリを添加して反応終了時のpHを
9.5に調節し、温度を90℃に保ち15分間反応をお
こなった。このときの反応生成物中のSin、スラリー
濃度は25wt%であった。しかる後、瀘鍋、水洗、乾
燥、粉砕して比表面積510靜/f、吸油量500w1
/ 100 f 。
13- The ratio of potassium silicate and sulfuric acid added at this time is P of the reaction product.
It was added so that H was 2. When the number of reaction products reached about 12, the addition of potassium silicate and sulfuric acid was temporarily stopped and mixing was continued for 5 minutes. The temperature during the reaction was maintained at 25° C. by flowing cold water through the jacket. Thereafter, potassium silicate was added to adjust the pH at the end of the reaction to 9.5, and the reaction was carried out for 15 minutes while keeping the temperature at 90°C. At this time, the concentration of Sin in the reaction product and the slurry was 25 wt%. After that, it was washed in a pot, washed with water, dried, and crushed to have a specific surface area of 510 m/f and an oil absorption amount of 500 w1.
/ 100 f.

見掛比重0 、15f’/Coのシリカゲルを得た。Silica gel with an apparent specific gravity of 0 and 15 f'/Co was obtained.

ガお1反応中の状態は実施例1,2と同様にpHの低い
時はミゾレ状となり、混合はを1ぼ良好であったが、T
rHを上昇させるにしたがって粘度が増加し、モチ状と
なシ混合性が悪くなった。従って、ニーダ−は充分混合
できるような滞在容量、滞在時間になるようにした。
As in Examples 1 and 2, the condition during the reaction of Gao 1 was like a mound when the pH was low, and the mixing was about 100% good.
As the rH was increased, the viscosity increased and the mixture became sticky and the mixability deteriorated. Therefore, the kneader was designed to have a residence capacity and residence time that would allow sufficient mixing.

14− 実施例4 反応終了時のSin、スラリー濃度が13チになるよう
に珪酸カリ、硫酸を希釈して用いた以外は実施例3と同
様の条件にて反応をおこなった結果、比表面積530 
m/f吸油吸油量2屑5 得られた。
14- Example 4 The reaction was carried out under the same conditions as in Example 3, except that potassium silicate and sulfuric acid were diluted so that the Sin and slurry concentration at the end of the reaction were 13%. As a result, the specific surface area was 530%.
m/f oil absorption 2 pieces 5 pieces were obtained.

比較例! 実施例3と同様に行なったが反応終了時のpHを11に
なる様に珪酸カリを添加した。
Comparative example! The reaction was carried out in the same manner as in Example 3, except that potassium silicate was added to adjust the pH to 11 at the end of the reaction.

この時の5t−O!スラリー濃度,吸油量,比表面積の
測定結果を示す。
5t-O at this time! The measurement results of slurry concentration, oil absorption, and specific surface area are shown.

S10,スラリー濃度   23 、 5 wt%比表
面積       350yl/f吸油量    3 
1 5 ml/100 f比較例2 21、のニーグーに珪酸ナトリウム(Sin,/N a
,、0モル比5.1,  EIiO,濃度15%)と1
0チ硫酸を同時に添加した。この時の珪酸ナトリウムと
硫酸の割合は反応生成物のpHが2.0になるようにし
た。また、反応温度は40℃として行なった。この時の
状態は,実施例とまったく異なり、反応開始時はシリカ
ゾルとなジ溶液状態であったが時間の経過とともにゲル
状となった。その後反応温度を40℃に保ちながら珪酸
ナトリウムを添加しpH8とし15分間混合を行なった
時の状態は水飴状であった。この場合のSin,スラリ
ー濃度は9wt%であった。
S10, slurry concentration 23, 5 wt% specific surface area 350yl/f oil absorption 3
1 5 ml/100 f Comparative Example 2 Sodium silicate (Sin,/N a
, 0 molar ratio 5.1, EIiO, concentration 15%) and 1
0.03 sulfuric acid was added at the same time. At this time, the ratio of sodium silicate and sulfuric acid was adjusted so that the pH of the reaction product was 2.0. Further, the reaction temperature was 40°C. The state at this time was completely different from that in the example; at the start of the reaction, it was in a di-solution state of silica sol, but as time passed, it became gel-like. Thereafter, while maintaining the reaction temperature at 40° C., sodium silicate was added to adjust the pH to 8, and the mixture was mixed for 15 minutes.The resulting mixture was starch syrup-like. In this case, the Sin slurry concentration was 9 wt%.

実施例と同様,渉過、水洗,乾燥、粉砕して比表面積,
吸油量を測定したところ,それぞれ450rr?/f 
、  120m/ 1oor テあった。
As in the example, the specific surface area was determined by wading, washing with water, drying, and pulverizing.
When I measured the oil absorption amount, it was 450rr each. /f
, 120m/1oor.

比較例3 比較例2と同様であるが1反応終了時のpHを5.0と
した。このときのSin,スラリー濃度は8.7俤であ
り,比表面積,吸油量を測定したところ,それぞれ64
9m7f, 110d/100IFであった。
Comparative Example 3 Same as Comparative Example 2, but the pH at the end of one reaction was set to 5.0. At this time, the Sin and slurry concentrations were 8.7 t, and when the specific surface area and oil absorption were measured, they were 64.
It was 9m7f, 110d/100IF.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は市販シリカの比表面積と吸油量の関係を示すグ
ラフ、第2図は比表面積と反応pHの関係を示すグラフ
、第3図は吸油量゛と反応pHの関係を示すグラフ、第
4図は反応温度と比表面積の関係を示すグラフ、第5図
は反応温度と吸油量の関係を示すグラフである。 特許出願人  セントラル硝子株式会社17− 第1図 市販シリカの比表面積と吸油量の関係 ・ A社シリカ 吸 2由 量 (正柄009) 吹IIL尉四誓屯□ ”VruLiWMa□
Figure 1 is a graph showing the relationship between specific surface area and oil absorption of commercially available silica, Figure 2 is a graph showing the relationship between specific surface area and reaction pH, Figure 3 is a graph showing the relationship between oil absorption and reaction pH, and Figure 3 is a graph showing the relationship between oil absorption and reaction pH. FIG. 4 is a graph showing the relationship between reaction temperature and specific surface area, and FIG. 5 is a graph showing the relationship between reaction temperature and oil absorption. Patent applicant: Central Glass Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] アルカリ金属珪酸塩と鉱酸との反応によシシリカゲルを
製造する方法において、反応時のB10.濃度12〜2
5wtチ1反応温度50〜!00℃にて反応をおこない
1反応液pHが前段1.5〜5.0゜後段6〜10とな
るよう2段階調整することを特徴とするシリカゲルの製
造方法。
In a method for producing silica gel by the reaction of an alkali metal silicate and a mineral acid, B10. Concentration 12-2
5wt Chi 1 reaction temperature 50~! A method for producing silica gel, which comprises carrying out the reaction at 00°C and adjusting the pH of each reaction solution in two stages such that the pH of each reaction solution is 1.5 to 5.0° in the first stage and 6 to 10 in the second stage.
JP10673183A 1983-06-16 1983-06-16 Manufacture of silica gel Granted JPS59232911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10673183A JPS59232911A (en) 1983-06-16 1983-06-16 Manufacture of silica gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10673183A JPS59232911A (en) 1983-06-16 1983-06-16 Manufacture of silica gel

Publications (2)

Publication Number Publication Date
JPS59232911A true JPS59232911A (en) 1984-12-27
JPH0131455B2 JPH0131455B2 (en) 1989-06-26

Family

ID=14441075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10673183A Granted JPS59232911A (en) 1983-06-16 1983-06-16 Manufacture of silica gel

Country Status (1)

Country Link
JP (1) JPS59232911A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427264B1 (en) * 2001-03-20 2004-04-17 한국화학연구원 Powdery humidity self control material and its preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323787A (en) * 1976-08-13 1978-03-04 Intaa Patsuku Kk Device for automatically wrapping cylindrical product by shrinkage
JPS5622810A (en) * 1979-07-31 1981-03-04 Bridgestone Corp Pressure controller for rubber weir
JPS56108532A (en) * 1980-02-04 1981-08-28 Hitachi Ltd Iodine adsorbing material and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323787A (en) * 1976-08-13 1978-03-04 Intaa Patsuku Kk Device for automatically wrapping cylindrical product by shrinkage
JPS5622810A (en) * 1979-07-31 1981-03-04 Bridgestone Corp Pressure controller for rubber weir
JPS56108532A (en) * 1980-02-04 1981-08-28 Hitachi Ltd Iodine adsorbing material and preparation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427264B1 (en) * 2001-03-20 2004-04-17 한국화학연구원 Powdery humidity self control material and its preparation method

Also Published As

Publication number Publication date
JPH0131455B2 (en) 1989-06-26

Similar Documents

Publication Publication Date Title
KR910009572B1 (en) Process for producing a precipituted silica
US3872217A (en) Process for the manufacture of substantially spherical, silica-containing hydrogels
US2765242A (en) Process of making reinforced silica gel and esterified silica gel
KR910009573B1 (en) Process for the production silica
US3208823A (en) Finely divided silica product and its method of preparation
CN101979443B (en) Method for producing modified white carbon black
JPS6131313A (en) Amophous sedimented silicon dioxide and manufacture
US2588853A (en) Method of producing silica powder
US5647903A (en) Microporous high structure precipitated silicas and methods
ES445959A1 (en) Novel precipitated siliceous products
NO143162B (en) PROCEDURE FOR THE MANUFACTURE OF AMORPHE, DEPOSITED SILICONE ACID PIGMENTS
JPS6140812A (en) Silica colloid and spherical silica and manufacture thereof
US3977893A (en) Amorphous precipitated siliceous pigments and improved process for producing such pigments
CN104925817B (en) The preparation method of nanometer grade silica
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
US3846537A (en) Process of preparing silica xerogels
JPS6046915A (en) Synthetic amorphous silicate bonded with zirconium and its production
CN1318300C (en) Inorganic oxide
US2679463A (en) Process for producing calcium-silicon oxide pigment and product obtained thereby
CN110482559A (en) Modified acidic silicasol of a kind of aluminium and its preparation method and application
US3428425A (en) Method of preparing silica materials
JPS59232911A (en) Manufacture of silica gel
US2974105A (en) Silica organosols and their preparation
US2921913A (en) Silica organosols
JPS5913620A (en) Manufacture of silica gel