JPS59232267A - Surface treatment of iron and steel material - Google Patents

Surface treatment of iron and steel material

Info

Publication number
JPS59232267A
JPS59232267A JP10548183A JP10548183A JPS59232267A JP S59232267 A JPS59232267 A JP S59232267A JP 10548183 A JP10548183 A JP 10548183A JP 10548183 A JP10548183 A JP 10548183A JP S59232267 A JPS59232267 A JP S59232267A
Authority
JP
Japan
Prior art keywords
layer
base material
treatment
iron
boriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10548183A
Other languages
Japanese (ja)
Inventor
Toru Arai
新井 透
Yoshihiko Sugimoto
義彦 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10548183A priority Critical patent/JPS59232267A/en
Publication of JPS59232267A publication Critical patent/JPS59232267A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/78Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/58Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in more than one step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To prevent the decrease in the hardness of an iron or steel base material right under a boriding layer by subjecting preliminarily the surface of the base material to a nitriding treatment when a concd. Si layer is formed at the boundary between the boriding layer and the base material in the stage of subjecting the surface of the base material to a boriding treatment. CONSTITUTION:The surface of an iron or steel material is nitrided by a gas nitriding, gas soft nitriding, salt bath soft nitriding or glow discharge method to form an Fe-N solid soln. layer and an Fe-N compd. layer having 5-30mu thickness. Said material is then dipped in a B-contg. molten salt bath or is treated by an electrolyzing, powder or gas method, by which the surface is borided. The boriding layer contg. boron and having excellent resistance to wear, seizure and molten Al is formed on the surface of the iron or steel member. The formation of a concd. Si layer right under the boriding layer and consequent decrease in the hardness of the iron or steel base material right under the boriding layer are obviated according to the above-mentioned method.

Description

【発明の詳細な説明】 本発明は鉄鋼材料の表面処理方法、特に浸ポロン処理に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface treatment of steel materials, particularly to poron immersion treatment.

鉄鋼材料に浸ポロン処理を施してその表面に硼化鉄(F
eB、 FexB )などの浸ボロン層を形成すること
により、鉄鋼材料の耐摩耗性、耐焼付性、耐溶融アルミ
ニウム性を向上せしめることは知られている。
Ferrous boride (F) is applied to the surface of the steel material by applying poron treatment.
It is known that the wear resistance, seizure resistance, and molten aluminum resistance of steel materials can be improved by forming a boron-immersed layer such as eB, FexB).

しかしながら鉄鋼材料のシリコン(Sl)含有量が多く
、浸ポロン処理をすると浸ポロン層の形成によってシリ
コンが浸ボロン層直下に富化され、母材の焼入硬化に際
して硬化されないフェライト相が生じる。このように浸
ポロン層直下に軟化部分が存在すると鉄鋼材料を大きな
応力が負荷される用途に使用した場合、使用中にへたり
や層剥離の問題が生じ、材料の寿命が短くなる。
However, the steel material has a high silicon (Sl) content, and when subjected to poron immersion treatment, silicon is enriched directly under the boron immersion layer due to the formation of an immersion poron layer, and a ferrite phase that is not hardened during quench hardening of the base material is generated. When a steel material is used in an application where a large stress is applied when a softened portion exists directly under the impregnated poron layer, problems such as settling and layer peeling occur during use, which shortens the life of the material.

そこで本発明は、シリコンを含む鉄鋼材料の浸ボロン層
直下の母材硬さが低下することのない浸ボロン層形成表
面処理方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a surface treatment method for forming a boron-immersed layer in which the hardness of the base material directly under the boron-immersed layer of a steel material containing silicon does not decrease.

しかして本発明は、浸ボロン処理に対して浸ポロン層と
母材との境界部にシリコン濃縮層を形成する鉄鋼材料表
面に予め窒化処理を施し、然る後に浸ポロン処理を施す
ことによシ上記の目的を達成するものである。
Therefore, in contrast to the boron-immersion treatment, the present invention is advantageous in that the surface of the steel material that forms a silicon-concentrated layer at the boundary between the poron-immersion layer and the base material is nitrided in advance, and then the poron-immersion treatment is performed. This is to achieve the above objectives.

本発明において窒化処理はガス窒化、ガス軟窒化、塩浴
軟窒化、グロー放電窒化など如何なる方法でもよい。処
理条件は常法に従えばよく、450℃ないし600°C
,10分ないし2時間程度である。形成される組織とし
てはFe−N固溶体層のほかに5μないし30μ程度の
厚さのFe−N化合物層が形成されていることが望まし
い。窒化処理後に浸ポロン処理を行なう場合には、浸ポ
ロン処理中に材料中の窒素が内部深くに拡散移動して拐
料表面部の窒素が減少するので、窒化処理は十分に深く
、窒素濃度が高くなるように行なわれるべきである。ま
た、窒化処理した鉄鋼材料に施す浸ポロン処理は硼砂(
Na2B404)などポロン(B)を含む物質の溶融浴
中に鉄鋼材料を浸漬して行なう浸漬法および電解して行
なう電解法、硼弗化カリウム(K B F4 )などの
粉末中に材料を埋設する粉末法、Bを含むガス雰囲気中
に保持して行なうガス法などが用いられ得る。処理温度
は、600’C程度以上、材料の融点以下で行ない、実
用上800〜1200℃程度が望ましい。処理時間は3
0分〜5時間程度である。
In the present invention, the nitriding treatment may be any method such as gas nitriding, gas soft nitriding, salt bath soft nitriding, glow discharge nitriding, etc. Processing conditions may be according to conventional methods, 450°C to 600°C.
, about 10 minutes to 2 hours. As for the structure to be formed, in addition to the Fe-N solid solution layer, it is desirable that an Fe-N compound layer with a thickness of about 5 μm to 30 μm is formed. When performing Poron dipping treatment after nitriding, the nitrogen in the material diffuses deep into the material during Poron dipping treatment, reducing the nitrogen on the surface of the material. It should be done in such a way that it will be high. In addition, the borax (borax) treatment applied to nitrided steel materials
The immersion method involves immersing the steel material in a molten bath of a substance containing poron (B) such as Na2B404), the electrolytic method involving electrolysis, and the embedding of the material in powder such as potassium borofluoride (K B F4 ). A powder method, a gas method performed in a gas atmosphere containing B, etc. may be used. The treatment temperature is approximately 600° C. or higher and lower than the melting point of the material, preferably approximately 800 to 1200° C. in practice. Processing time is 3
It is about 0 minutes to 5 hours.

本発明における鉄鋼材料は、単に浸ポロン処理を行った
のみでは浸ボロン層と母材との境界部に81濃縮層を形
成する性質を有するものである。かかる鉄鋼材料として
は、5KD4.5KD5.5KD61.5KD62.5
UP6.5UP7、鋳鉄などSi。
The steel material in the present invention has a property of forming an 81 concentrated layer at the boundary between the boron-immersed layer and the base material if it is simply subjected to the poron-immersed treatment. Such steel materials include 5KD4.5KD5.5KD61.5KD62.5
UP6.5UP7, Si such as cast iron.

含有量が0.3〜3%のものが該当する。This applies to those with a content of 0.3 to 3%.

本発明によれば、浸ボロン処理に際して予め窒化処理を
行うことによって鉄鋼材料表面に窒素(N)を含む耐摩
耗性、耐焼付性、および耐浴融アルミニウム性にすぐれ
た浸ボロン層が形成され、かつ、鉄鋼材料のシリコン含
有量が多い場合でも層直下にフェライト相を生じること
なく、浸ポロン層直下の母材硬さは低下しない。
According to the present invention, by performing nitriding treatment in advance during the boron-immersion treatment, a boron-immersion layer containing nitrogen (N) and having excellent wear resistance, seizure resistance, and bath-melting aluminum resistance is formed on the surface of the steel material. In addition, even when the silicon content of the steel material is high, no ferrite phase is generated directly below the layer, and the hardness of the base material directly below the impregnated poron layer does not decrease.

本発明により形成される浸ボロン層は、Nが存在するこ
とによシ、Fe2(B、 N )あるいはFe(B、 
N )とFe、 (B、 N) o層になっており、こ
の層は従来法によシ単に浸ボロン処理のみを施して得ら
れた層とは異る。
Due to the presence of N, the boron-immersed layer formed according to the present invention has Fe2(B, N) or Fe(B,
N), Fe, (B, N) o layer, and this layer is different from the layer obtained by simply performing boron immersion treatment according to the conventional method.

以下、本発明に関する実施例を比較例とともに説明する
Examples related to the present invention will be described below along with comparative examples.

実施例1゜ 直径20泪、厚さ5間のJ工5SKD61(シリコン含
有量1.0%)の試片、該試片にタフトライド処理(軟
蟹化処理)を施して表面に鼠化物層を形成させた試片を
準憎し、これ等を、浴全量11FLフェロマンガン1o
%、フェロアルミニウムIOXを添加した1000’C
の硼砂浴中に浸漬し、1時間および4時間保持後、取出
して油冷し、付着している処理剤を熱水で洗滌した。
Example 1 A specimen of J-5SKD61 (silicon content 1.0%) with a diameter of 20 mm and a thickness of 5 mm was subjected to tuftride treatment (soft crab treatment) to form a rat layer on the surface. The formed specimens were mixed with a bath of 11 FL and 1 O of ferromanganese.
%, 1000'C with addition of ferroaluminum IOX
The sample was immersed in a borax bath for 1 and 4 hours, then taken out and cooled in oil, and the adhering treatment agent was washed off with hot water.

試片を切断後、断面観察したところ、1時間処理した窒
化試片には約25μm厚さの、4時間処理した窒化試片
には約45μm厚さの被覆層が形成されていた。なお窒
化処理していない試片にもそれぞれ同じ厚さの被覆層が
形成されていた。
After cutting the specimen, cross-sectional observation revealed that a coating layer of about 25 μm thick was formed on the nitrided specimen treated for 1 hour, and about 45 μm thick on the nitrided specimen treated for 4 hours. Note that a coating layer of the same thickness was also formed on each specimen that had not been nitrided.

X線マイクロアナライザー分析を行なった結果、例えば
1時間処理した窒化試片では第1図に示す如く、被覆層
はFe、 B  およびNよシなることが確認された。
As a result of X-ray microanalyzer analysis, it was confirmed that, for example, in a nitrided specimen treated for one hour, the coating layer was composed of Fe, B, and N, as shown in FIG.

X線回折結果と綜合して、被覆層はFe2(B、 N)
の浸ボロン層であることが確められた。また、Nは被覆
層直下の母材中にも検出された。
Combined with the X-ray diffraction results, the coating layer is Fe2(B, N)
It was confirmed that this was a boron-soaked layer. Furthermore, N was also detected in the base material directly below the coating layer.

第2図は4時間処理した試片について被覆層直下の母材
硬さを測定した結果を示すもので、線Aは窒化処理試片
、線Bは窒化処理していない試片である。
FIG. 2 shows the results of measuring the hardness of the base material directly under the coating layer on specimens treated for 4 hours, where line A is the nitrided specimen and line B is the unnitrided specimen.

図よシ知られるように窒化処理をしていない試片に浸ボ
ロン処理を行なうと被覆層直下の母材硬さはHv 45
0と著しく低下するが、本発明によシ予め窒化処理した
試片に浸ボロン処理を行なったものは、層直下の母材硬
さはHV650で母材深部とほぼ同程度であった。
As is known from the figure, when boron immersion treatment is applied to a specimen that has not been nitrided, the hardness of the base material directly under the coating layer is Hv 45.
However, in the case where the boron immersion treatment was applied to the sample which had been previously nitrided according to the present invention, the hardness of the base material directly under the layer was HV650, which was almost the same as that in the deep part of the base material.

実施例2゜ 直径15龍、厚さ5鯖のJ工5SKD5(シリコト ン含有量0.4%)の試片、該試片にタ高イド処理によ
り表面に窒化物層を形成させた試片を準備し、これ等を
浴全量に対して、ボロンカーバイド(B4C)粉末40
%を添加した1000°Cの硼砂浴中に浸漬し、4時間
保持後、取出して油冷した。
Example 2 A specimen of J-5SKD5 (silicone content 0.4%) with a diameter of 15mm and a thickness of 5mm, a specimen on which a nitride layer was formed on the surface by ta-hydride treatment was prepared. Prepare 40 boron carbide (B4C) powder for the total amount of bath.
% in a borax bath at 1000°C, and after holding for 4 hours, it was taken out and cooled in oil.

実施例1と同じ方法で断面観察を行なったところ、窒化
処理および窒化処理していない両試片とも約80μm厚
さの被覆層が形成されていた。
When cross-sectional observation was performed in the same manner as in Example 1, it was found that a coating layer with a thickness of about 80 μm was formed in both the nitrided and non-nitrided specimens.

X線マイクロアナライザー分析、X線回折および母材硬
さ測定を行なった結果、窒化処理していない試片では、
FeBとFe、 B  とよシなる浸ポロン層が確認さ
れたが、浸ポロン層と鋼母材との境界にはS5−の濃猫
した部分が見られ、硬さの低いフェライト相が形成して
いた。
As a result of X-ray microanalyzer analysis, X-ray diffraction, and base material hardness measurements, the specimens that were not nitrided showed:
A strong immersed Poron layer between FeB, Fe, and B was confirmed, but a dark S5- layer was observed at the boundary between the immersed Poron layer and the steel base metal, indicating that a ferrite phase with low hardness was formed. was.

本発明の予め窒化処理した試片では、被覆層は浸ポロン
層であるが、層中にはNが存在し、Fe(B、 N)と
Few (B、 N)よシなっていた。また、浸ポロン
層と母相との境界にはフェライト相はみられず、層面下
の母材硬さも内部の硬さとほぼ同じであシ、浸ボロン処
理によって低下することはなかった。
In the pre-nitrided sample of the present invention, the coating layer was a poron immersion layer, but N was present in the layer and it was similar to Fe (B, N) and Few (B, N). Furthermore, no ferrite phase was observed at the boundary between the impregnated boron layer and the matrix, and the hardness of the matrix below the layer surface was almost the same as the hardness inside, and was not reduced by the impregnated boron treatment.

以上説明したように本発明によシ鉄鋼材料に予め窒化処
理を行ない、然る後に浸ポロン処理を行なうときは、単
に浸ボロンのみを行なう処理では浸ボロン層直下の母材
硬さが低下する鉄鋼材料の場合でも母材硬さは低下せず
、かつ実用上充分な厚さの浸ボロン層が形成される。
As explained above, when a steel material according to the present invention is previously nitrided and then subjected to a boron-immersion treatment, the hardness of the base material immediately below the boron-immersion layer decreases if only the boron-immersion treatment is performed. Even in the case of steel materials, the hardness of the base material does not decrease, and a practically sufficient thickness of the boron-immersed layer is formed.

従って本発明により処理された鉄綱材料は耐摩耗性、耐
焼付性および耐溶融アルミニウム性にすぐれ、かつS1
含有量の多い鉄鋼材料でも大きな応力が負荷される用途
に好適に用いら′it得る。
Therefore, the steel material treated according to the present invention has excellent wear resistance, seizure resistance, and molten aluminum resistance, and has S1
Even steel materials with a high content can be suitably used in applications where large stresses are applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によシ鉄鋼材料に形成された浸ボ
ロン層のXiマイクロアナライ″v’ −分析結果を示
す図、第2図は本発明の方法および従来法により処理し
た材料の浸ボロン層直Fの母材硬さの測定結果を示す図
である。
Fig. 1 shows the results of Xi microanalyzer ``v'-analysis of a boron-soaked layer formed on a steel material by the method of the present invention, and Fig. 2 shows a material treated by the method of the present invention and a conventional method. It is a figure which shows the measurement result of the base material hardness of the straight F of the boron immersion layer.

Claims (1)

【特許請求の範囲】[Claims] 浸ボロン処理に対して浸ポロン層と母材との境界部にシ
リコン濃縮層を形成する鉄鋼材料に、予め窒化処理を施
し、然る後浸ポロン処理を施して鉄鋼材料の表面に浸ポ
ロン層を形成することを特徴とする鉄鋼材料の表面処理
方法。
The steel material that forms a silicon-enriched layer at the boundary between the poron layer and the base material is subjected to a nitriding treatment in advance and then subjected to a post-boron treatment to form a silicon-concentrated layer on the surface of the steel material. A method for surface treatment of steel materials, characterized by forming.
JP10548183A 1983-06-13 1983-06-13 Surface treatment of iron and steel material Pending JPS59232267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10548183A JPS59232267A (en) 1983-06-13 1983-06-13 Surface treatment of iron and steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10548183A JPS59232267A (en) 1983-06-13 1983-06-13 Surface treatment of iron and steel material

Publications (1)

Publication Number Publication Date
JPS59232267A true JPS59232267A (en) 1984-12-27

Family

ID=14408775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10548183A Pending JPS59232267A (en) 1983-06-13 1983-06-13 Surface treatment of iron and steel material

Country Status (1)

Country Link
JP (1) JPS59232267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027183A (en) * 2014-06-30 2016-02-18 国立大学法人群馬大学 Hardening treatment method of metal
CN112522715A (en) * 2020-12-03 2021-03-19 许昌海洋机械有限公司 Automobile die forming and surface strengthening treatment process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027183A (en) * 2014-06-30 2016-02-18 国立大学法人群馬大学 Hardening treatment method of metal
CN112522715A (en) * 2020-12-03 2021-03-19 许昌海洋机械有限公司 Automobile die forming and surface strengthening treatment process

Similar Documents

Publication Publication Date Title
US3719518A (en) Process of forming a carbide layer of vanadium, niobium or tantalum upon a steel surface
US6127046A (en) Formation of a graphite-free surface in a ferrous material to produce an improved intermetallic bond
US3748172A (en) Magnesium based coating for the sacrificial protection of metals
US3824134A (en) Metalliding process
JPS59232267A (en) Surface treatment of iron and steel material
CA2016843A1 (en) Thermochemical treatment of machinery components for improved corrosion resistance
US3058206A (en) Aluminum coating of ferrous metal and resulting product
EP0043742B1 (en) Method of gas-chromizing steels
US5653822A (en) Coating method of gas carburizing highly alloyed steels
US2788302A (en) Nitriding stopoff
US3885064A (en) Method for forming a chromium carbide layer on the surface of an iron, ferrous alloy or cemented carbide article
JPH08319557A (en) Method for modifying surface of steel utilizing diffusing dilution of aluminum
An et al. Study of boronizing of steel AISI 8620 for sucker rods
JP3636394B2 (en) Pretreatment method for steel members forming passive layer before carbonitriding in salt bath
JPS59190355A (en) Method for hardening surface of iron alloy material
US3475291A (en) Method of electrolytically sulfiding ferrous parts in a thiocyanate bath
US3969157A (en) Method of providing decarbonization protection for metallic surfaces
EP0063386B1 (en) Method for forming a carbide layer on the surface of a ferrous alloy article or a cemented carbide article
US3144359A (en) Method for sulphurizing the surface of ferrous metal
US2304371A (en) Bearing
US3623919A (en) Method for treating the surface of a ferrous material
JPS6143429B2 (en)
US4230507A (en) Method for sulfurizing cast iron
US1720815A (en) Brake drum
BAŞYİĞİT et al. Hard anodic oxidation of A356 aluminum alloy