JPS59231407A - Detecting method of central position of tubular body - Google Patents

Detecting method of central position of tubular body

Info

Publication number
JPS59231407A
JPS59231407A JP58107000A JP10700083A JPS59231407A JP S59231407 A JPS59231407 A JP S59231407A JP 58107000 A JP58107000 A JP 58107000A JP 10700083 A JP10700083 A JP 10700083A JP S59231407 A JPS59231407 A JP S59231407A
Authority
JP
Japan
Prior art keywords
matching
center
image
symmetry
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58107000A
Other languages
Japanese (ja)
Other versions
JPH037242B2 (en
Inventor
Eiichi Arakawa
荒川 栄一
Tetsuo Sumita
哲夫 住田
Hiroshi Terui
照井 弘
Shigeru Nakamura
茂 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP58107000A priority Critical patent/JPS59231407A/en
Publication of JPS59231407A publication Critical patent/JPS59231407A/en
Publication of JPH037242B2 publication Critical patent/JPH037242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means

Abstract

PURPOSE:To enable the detection of the central position with higher accuracy than unit elements, by calculating the degree of matching through template matching, by computing the position of the center of gravity with reference to the degree of matching, and by determining the position of the center of gravity thus computed as the central position of a steel-plate coil. CONSTITUTION:An apparatus employed comprises an ITV camera 1 which is an input device of an image, and a controller element 3 having a high-speed image processing device 2 and a microcomputer. The high-speed image processing device 2 performs a spatial differentiation operation, a symmetry operation, and an image operation including template matching, while the controller element 3 performs the control of the procedure of recognition, the determination of various parameters and a threshold value, the decision of a proposed central point of a coil, the formation of the data on a circle of a template, etc. A digital image is obtained from the ITV camera, a differential operator is made to operate for each picture element of the image, and thereby an edge map is obtained. The template matching of the circle is conducted with respect to the edge map by using a symmetry operator and a symmetry estimation function. A point at which the degree of matching is above a threshold level and at the maximum is determined to be the central point of the inside diameter of the steel-plate coil.

Description

【発明の詳細な説明】 本発明はITVカメラを用いた画像処理技術によシ、筒
状の対象物体の中心位置を検出する中心位置検出方法に
関し、特に1円筒形の鋼板コイルの中心位置検出方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a center position detection method for detecting the center position of a cylindrical object using an image processing technique using an ITV camera, and in particular to a method for detecting the center position of a cylindrical steel plate coil. Regarding the method.

一般に、鋼板コイル等の筒状物体を自動化天井クレーン
により吊9下げ、鋼板コイルの積載位置から他の位置ま
で搬送する場合、鋼板コイルの搬送中における落下環を
防止するために、鋼板コイルの中心位置を正、確に検出
し、天井クレーンを鋼板コイルに対して正しく位置付け
る必要がある。
Generally, when a cylindrical object such as a steel plate coil is suspended by an automated overhead crane and transported from the loading position of the steel plate coil to another position, the center of the steel plate coil is It is necessary to accurately detect the position and correctly position the overhead crane relative to the steel plate coil.

従来、鋼板コイル等の筒状物体の中心位置を検出する方
法として、 ITVカメラからの映像信号を処理する方
法が提案されている。この方法は鋼板コイルと背景との
コントラストが強い場合には。
Conventionally, a method of processing a video signal from an ITV camera has been proposed as a method of detecting the center position of a cylindrical object such as a steel plate coil. This method is useful when there is a strong contrast between the steel plate coil and the background.

鋼板コイルの中心を通る直線の線対称性を利用して比較
的簡単に、鋼板コイルの中心位置を検出できる(特開昭
56−82967号公報参照)。しかしながら、この方
法を実際に製鉄所の鋼板コイルヤード等に適用した場合
、鋼板コイルの中心位置を正確に検出できないことが多
い。これは2画像信号中に、対象物である鋼板コイルの
像のほかに1種々の像が不可避的に混入すると共に、対
象物と背景とのコントラストも小さいためである。
The center position of a steel plate coil can be detected relatively easily by utilizing the line symmetry of a straight line passing through the center of the steel plate coil (see Japanese Patent Laid-Open No. 82967/1983). However, when this method is actually applied to a steel plate coil yard in a steel mill, it is often impossible to accurately detect the center position of the steel plate coil. This is because, in addition to the image of the steel plate coil that is the object, one other image is inevitably mixed into the two-image signal, and the contrast between the object and the background is also small.

更に1本発明者等は実用上の使用にも耐える鋼板コイル
等の筒状物体の中心位置検出方法として。
Furthermore, the present inventors have proposed a method for detecting the center position of a cylindrical object such as a steel plate coil, which can withstand practical use.

中心位置の候補点をいくつか求め、各候補点及びその近
傍の点におけるマツチング度合をテンプレートマツチン
グによシ算出し、最大のマツチング度合を有する点を中
心位置と決定する方法を提案した(住友重機械技報vo
1.301980第90号pp 52−57)。しかし
ながら、この方法で決定された中心位置、中心点は画素
単位の精度しか有していない。しだがって、鋼板コイル
の径が大きく。
We proposed a method in which several candidate points for the center position are found, the degree of matching at each candidate point and its neighboring points is calculated using template matching, and the point with the maximum degree of matching is determined as the center position (Sumitomo Heavy machinery technical report vo
1.301980 No. 90 pp 52-57). However, the center position and center point determined by this method have accuracy only in pixel units. Therefore, the diameter of the steel plate coil is large.

且つ、 ITVカメラと鋼板コイルとの間の距離が大き
い場合、即ち、単位画素に対応する鋼板コイルの領域が
大きい場合には、充分な精度で、鋼板コイルの中心位置
を決定できない。
Moreover, when the distance between the ITV camera and the steel plate coil is large, that is, when the area of the steel plate coil corresponding to a unit pixel is large, the center position of the steel plate coil cannot be determined with sufficient accuracy.

本発明の目的は単位画素よシも高い精度で中心位置を検
出することができ、信頼性の高い筒状物体の中心位置検
出方法を提供することである。
An object of the present invention is to provide a highly reliable method for detecting the center position of a cylindrical object, which is capable of detecting the center position with high precision even in unit pixels.

本発明によれば、鋼板コイル等の筒状物体を撮像するこ
とによって得られる映像信号を処理して。
According to the present invention, a video signal obtained by imaging a cylindrical object such as a steel plate coil is processed.

筒状物体の中心位置を検出する筒状物体の中心位置検出
方法において、映像信号に対して、予め定められた対称
度オペレータ及び対称度評価関数を用いて演算を施し、
中心位置に係る1次の候補点を求め、1次の候補点及び
その近傍における所定数の点におけるマツチング度合を
テンゾレートマッチングにより算出し、算出結果から最
大のマツチング度合を有する点を2次の候補点として定
め。
In a method for detecting the center position of a cylindrical object that detects the center position of a cylindrical object, a calculation is performed on a video signal using a predetermined symmetry operator and a symmetry evaluation function,
Find a primary candidate point related to the center position, calculate the degree of matching at the primary candidate point and a predetermined number of points in its vicinity by tensorate matching, and select the point with the maximum matching degree from the calculation results as a secondary candidate point. Established as a candidate point.

2次の候補点及びその近傍の所定数の点におけるマツチ
ング度合を参照して1重心位置を演算し。
A centroid position is calculated with reference to the degree of matching at the secondary candidate point and a predetermined number of points in its vicinity.

演算された重心位置を鋼板コイルの中心位置として定め
る筒状物体の中心位置検出方法が得られる。
A method for detecting the center position of a cylindrical object is obtained in which the calculated center of gravity position is determined as the center position of the steel plate coil.

以下1図面を参照して説明する。This will be explained below with reference to one drawing.

第1図を参照すると1本発明の一実施例に係る鋼板コイ
ルの中心位置検出方法がフローチャートの形で示されて
いる。以下、フローチャートに示された手順にしたがっ
て順次説明していく。
Referring to FIG. 1, a method for detecting the center position of a steel plate coil according to an embodiment of the present invention is shown in the form of a flowchart. Hereinafter, the process will be explained in sequence according to the steps shown in the flowchart.

(1)ディノタル画像の入力 ITVカメラから得られる映像信号を量子化し。(1) Input of Dinotal image Quantizes the video signal obtained from the ITV camera.

ディノタル画像(以下0画像と呼ぶ)を得る。0画像の
大きさは縦120画素、横128画素、明暗度は4ビ、
 l−である。
A dinotal image (hereinafter referred to as 0 image) is obtained. 0 Image size is 120 pixels vertically and 128 pixels horizontally, brightness is 4 bits,
It is l-.

0画像の(i、j)画素の明暗度をG(i、j)で表す
。ここに 0≦G(i、j)<15 0<1<127.  O<j(119 (2)対象コイル内径の半径を0画像上での値に変換対
象コイル内径の半径の実際値、及び対象コイル上面とI
TVカメラのレンズ中心との鉛直方向の変位量より0画
像上でのコイル内径の半径R,が計算される。
The intensity of the (i, j) pixel of the 0 image is represented by G(i, j). Here, 0≦G(i,j)<15 0<1<127. 0
The radius R of the inner diameter of the coil on the zero image is calculated from the amount of displacement in the vertical direction with respect to the center of the lens of the TV camera.

(3)エツジマツプの作成 0画像の各画素に対して1次式(1)で定義される通常
の微分オペレータを作用させる。
(3) Creation of edge map A normal differential operator defined by linear equation (1) is applied to each pixel of the zero image.

grad(e)=l a+b+c−g−h−4l十lc
+f+i−a−d−gl  −−−−(1)ここに* 
a + b * e *・・・iは画素eを中心とじだ
3×3領域の各画素の明暗度であシ、その配置を第2図
に示す。この微分オペレータの値を利用して以下に定義
されるエツジマツプ(8画像と呼ぶ)を作成する。
grad(e)=l a+b+c-g-h-4l+lc
+f+i-a-d-gl ---(1) Here *
a+b*e*...i is the intensity of each pixel in a 3×3 area centered on pixel e, and its arrangement is shown in FIG. Using the value of this differential operator, an edge map (referred to as 8 images) defined below is created.

8画像−(E(i+ j ) IE(i r j)−1
if grad(i、j)>d;E(i、j)=Oif
 grad(i、j)(d)眞 ここにdはしきい値として設定されたl整数でありgr
ad(t、j)の定義よF) 、 1<i<126 、
1<j≦118である。
8 images-(E(i+j) IE(i r j)-1
if grad(i,j)>d;E(i,j)=Oif
grad (i, j) (d) where d is an integer set as a threshold and gr
The definition of ad(t,j) is F), 1<i<126,
1<j≦118.

(4)対称度オ被レークを用いた中心候補点の抽出対象
コイルの内径はE画像内で円図形となる。
(4) Extraction of the center candidate point using the symmetry angle The inner diameter of the coil has a circular shape in the E image.

この円の中心点は、2本の線対称の中心線の交点で得ら
れる。本システムでは以下に定義する対称度オペレータ
と対称度評価関数を用いてE画像内の1−要素(E(i
、j) = 1となる点(i、j))で構成される図形
の線対称の中心線となシ得る直線を水平垂直の2方向で
抽出する。これらの直線の交点が対象コイルの内径の中
心点の候補点となる。
The center point of this circle is obtained at the intersection of two symmetrical center lines. In this system, the symmetry operator and symmetry evaluation function defined below are used to calculate the 1-element (E(i
, j) = 1, a straight line that is the center line of line symmetry of the figure is extracted in two directions (horizontal and vertical). The intersection of these straight lines becomes a candidate point for the center point of the inner diameter of the target coil.

(a)対称度オペレータ 8画像の点(’0’ jo)を中心とし、i方向、j方
向の対称性を判定する対称度オペレータはW(正整数)
を幅として以下のように定義する。
(a) Symmetry operator 8 The symmetry operator that determines the symmetry in the i direction and j direction with the image point ('0' jo) as the center is W (positive integer)
Define the width as follows.

ψ(W;1o、Jo)=O1fN1o二φψ(Wjo+
jo)=1 4f N1o4φここに N1o= (n11<n(w、E(io−n、jo)△
E(io+n、jo)=1)ψ(W;lo、Jo)二φ
 1fNjo=φψ(W:j、)+j。)=1  if
 Njo(φここに△は論理積また(i、 D叶((1
,Jll<1(126゜1<j<118 )ならばE(
1,J)=oとする。
ψ(W; 1o, Jo)=O1fN1o2φψ(Wjo+
jo) = 1 4f N1o4φ here N1o = (n11<n(w, E(io-n, jo)△
E(io+n,jo)=1)ψ(W;lo,Jo)2φ
1fNjo=φψ(W:j,)+j. )=1 if
Njo(φHere △ is logical product or (i, D Kano((1
, Jll<1 (126°1<j<118), then E(
1, J)=o.

(b)対称度評価関数 E画像内の任意の直線i−+  r j””J  がそ
れぞれE画像内の1−要素で構成される図形の線対称の
中心線となり得るが否かを評価するものである。
(b) Symmetry evaluation function Evaluate whether any straight line i−+r j””J in the E image can be the center line of line symmetry of a figure composed of 1-element in the E image. It is something.

あるしきい値Sに対して、Φj1j2(”:10)≧S
・F l 、12 (W;jo)≧S となるような直
線1−1o、j=j。
For a certain threshold value S, Φj1j2('':10)≧S
- Straight line 1-1o, j=j such that F l , 12 (W;jo)≧S.

は、線対称の中心線となり得るものと判定される。is determined to be the center line of line symmetry.

一方、Φ、Fの性質より1点(1o* J o )が円
の中心点である場合、 Fj1J2(V/;lo)’+
 ’1112(”yJO)は。
On the other hand, according to the properties of Φ and F, if one point (1o* J o ) is the center point of the circle, then Fj1J2(V/;lo)'+
'1112 ("yJO)" is.

それぞれl、J の近傍において局所的な単峰性のピー
ク点と々る。つ’ ” ’ C1oV’o2〕’C’o
VJo2〕を1゜IJOの適当な近傍として。
A local unimodal peak point is reached in the vicinity of l and J, respectively. TS' ” 'C1oV'o2〕'C'o
VJo2] as a suitable neighborhood of 1°IJO.

[’o1”02)に属するすべての1に対し、ΦJ、j
2(w; i )は上に凸の単峰性でかつΦj1J2(
w:1o)〉Φj1j2(w;i) 〔Jol ” o2−’に属するすべてのjに対し、F
i、12(W;J)は上に凸の単峰性でかつFt 1i
 2(w; j。)≧y、、12(w;j) が成立する。
For all 1s belonging to ['o1”02), ΦJ,j
2(w; i) is upwardly convex, unimodal, and Φj1J2(
w:1o)〉Φj1j2(w;i) [For all j belonging to Jol "o2-', F
i, 12 (W; J) is upwardly convex and unimodal, and Ft 1i
2(w; j.)≧y, 12(w; j) holds.

本システムでは、まずG画像内のコイル内径の半径R6
,1)、対称度オペレータの幅W、及び評価関数のしき
い値Sを決定する。次に、以下のように線対称の中心線
を抽出する。
In this system, first, the radius R6 of the inner diameter of the coil in the G image is
, 1), determine the width W of the symmetry operator and the threshold S of the evaluation function. Next, extract the center line of line symmetry as follows.

SV = (i=i olりjl j 2 (w:io
 )≧Sでかつ、Φj1 j2(w;i)が局所的なピ
ーク点) 5H=(j=jolFt1□2(w;j)≧Sでかつ’
+ 112(W: jO)が局所的なピーク点)コイル
内径の中心の候補点は、 SV 、 SHに属する直線
の交点として得られる・(5)円のテンプレートマツチ
ング 前段階で得られた中心候補点を(ip、i、) (p=
1゜・・・・、m、q=1・・・、n)とする。各点(
lp・r q )を中心とする半径R6の円を生成し、
8画像上でテンプレートマツチング 関数を以下のように定義する。
SV = (i=iolrijl j 2 (w:io
)≧S and Φj1 j2(w;i) is the local peak point) 5H=(j=jolFt1□2(w;j)≧S and'
+112 (W: jO) is the local peak point) The candidate point for the center of the coil inner diameter is obtained as the intersection of the straight lines belonging to SV and SH (5) Center obtained in the stage before circular template matching Set the candidate points to (ip, i,) (p=
1°..., m, q=1..., n). Each point (
Generate a circle with radius R6 centered at lp・r q ),
A template matching function is defined on 8 images as follows.

■( + p − ] q ) −N(A)ここにN(
A)は集合Aの要素数を表わす。
■( + p − ] q ) −N(A) Here N(
A) represents the number of elements in set A.

A= ((i,DI(i = )2+(j−jp)2=
R,’を満たし。
A= ((i, DI(i = )2+(j-jp)2=
R,' is satisfied.

かつE(i,j)−1) 対象コイルの内径の中心は■( ip 、j p )が
最大となる点として決定される。ただし、実際の処理に
おいてはコイル内径の中心点識別の信頼性と精度を上げ
るため,以下のような考慮を行っている。
and E(i,j)-1) The center of the inner diameter of the target coil is determined as the point where ■(ip, jp) is maximum. However, in actual processing, the following considerations are taken to improve the reliability and accuracy of identifying the center point of the coil inner diameter.

(a)マツチングの際の円の半径は’ RG−4 ’ 
RGI RGelの3種を用いる。対象コイルとITV
カメラのレンズ中心との間の距離の変動や,コイル内径
の半径がRGより少しずれる可能堆がある。
(a) The radius of the circle for matching is 'RG-4'
Three types of RGI and RGel are used. Target coil and ITV
There is a possibility that the distance from the center of the camera lens may vary, or the radius of the inner diameter of the coil may deviate slightly from RG.

(b)マツチング作業は上述の第1次中心候補点( i
p 、r q )それぞれに対し+ ( 1 p r 
1 q )自身とその8つの近傍の点計9点について行
い,第2次の中心候補点とする。
(b) The matching operation is performed using the above-mentioned first center candidate point (i
p , r q ) for each + ( 1 p r
1 q) Perform this on a total of 9 points, including itself and its 8 neighbors, and use them as secondary center candidate points.

(c)次にその中心候補点とその近傍8点における各マ
ツチング度数が規定の度数(つまりスレッショールドレ
ベル)以上の点を抽出し,それらの重心位置を求めて中
心位置とする。
(c) Next, extract points from the center candidate point and the eight points in its vicinity where each matching frequency is equal to or higher than a specified frequency (that is, a threshold level), and find their centroid positions and use them as the center position.

これによシ精度的に士上画素分以内で中心位置検知が可
能となる。
This makes it possible to detect the center position within an accuracy of the upper pixel.

重心位置(ig,jg)は次の様に求められる。スレッ
ショールドレベル以上の点の座標を(il,jl)・(
12,J2)・・・・・・(jN,jN)とN点得られ
,各マツチング度数をP 1J P 2・・・PNとす
れば以下余日 第4図にスレッショールドレベル以上(図では15以上
)の点3点得られその重心位置が求められた例を示す。
The center of gravity position (ig, jg) is determined as follows. The coordinates of the point above the threshold level are (il, jl)・(
12, J2) ...... (jN, jN), and if each matching frequency is P 1J P 2...PN, then the threshold level or higher is shown in Figure 4 below (Fig. Here, we will show an example in which three points (15 or higher) were obtained and their center of gravity positions were determined.

縦軸の矢印及びその上の数字(<〉内)がマツチング度
数を示すとする。また中心候補点座標を(81,66)
としている。
It is assumed that the arrow on the vertical axis and the number above it (inside <>) indicate the matching frequency. Also, the coordinates of the center candidate point are (81, 66)
It is said that

(11・ j+) −(80,67) 、 P1= 2
0(i2.j2) = (8L66) 、 P2= 3
6(i5.js) −(8L67) 、 p3= 35
となるから 従って中心点は (i、、 jg) −(80,8,66、’)となる。
(11・j+) −(80,67), P1= 2
0(i2.j2) = (8L66), P2= 3
6(i5.js) −(8L67), p3=35
Therefore, the center point is (i,, jg) - (80, 8, 66,').

(第3図のX印の点) 以下余白 以上、示したような作業手順を行う視覚センサのハード
ウェア構成を第4図にもとづいて以下に説明する。
(Points marked with X in FIG. 3) In the following margin, the hardware configuration of a visual sensor that performs the work procedure shown will be described below based on FIG. 4.

本構成は画像の入力ディバイスであるITVカメラ1と
高速画像処理装置2およびマイクロコンピュータを有す
るコントローラ部3とよりなる。このうち、高速画像処
理装置2は空間微分演算対称度演算テンプレートマツチ
ングなどの画像演算を担当し、コントローラ部3は認識
手順の制御、各種・ぐラメータやしきい値の決定、コイ
ルの中心候補点の決定、テンプレートである円データの
生成などを担当している。
This configuration includes an ITV camera 1 as an image input device, a high-speed image processing device 2, and a controller section 3 having a microcomputer. Among these, the high-speed image processing device 2 is in charge of image calculations such as spatial differential calculation, symmetry calculation, template matching, etc., and the controller unit 3 is responsible for controlling the recognition procedure, determining various parameters and threshold values, and determining coil center candidates. Responsible for determining points and generating template circle data.

本発明によればITVカメラからディジタル画像を得、
該画像の各画素に対して微分オペレータを作用させ、エ
ツジマツプを得、該エツジマツプに対し、対称度オペレ
ータと対象度評価関数を用いて円のテンプレートマツチ
ングを行い、該マツチング度数がスレッショールドレベ
ル以上および最大度数の点を鋼板コイルの内径の中心点
としたため、対象物の他の種々の像が画像上にあられれ
だシ、また対象物と背景とのコントラスト差が大きい場
合でも画像の信頼性を上げることができるという効果を
奏する。
According to the invention, obtaining a digital image from an ITV camera,
A differential operator is applied to each pixel of the image to obtain an edge map, and circular template matching is performed on the edge map using a symmetry operator and a symmetry evaluation function, and the matching frequency is set to a threshold level. Since the above point and the point of maximum frequency are set as the center point of the inner diameter of the steel plate coil, various other images of the object appear on the image, and the reliability of the image is improved even when there is a large contrast difference between the object and the background. It has the effect of increasing sex.

上記した説明では、鋼板コイルとして1円形形状のもの
について説明しだが2本発明は何等これに限定されるこ
となく、角形形状のコイルにも適用できる。更に、鋼板
リグ(のコイルにも本発明は適用可能である。
In the above description, a steel plate coil having a circular shape has been described, but the present invention is not limited to this in any way, and can also be applied to a rectangular shaped coil. Furthermore, the present invention is also applicable to coils of steel plate rigs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼板コイルの中心の認識手順のフロー。 第2図は画素の微分オペレータ、第3図はマツチング度
数と工座標の関係を示すグラフ、第4図は視覚センサの
ハードウェア構成を示す図である。 1・・・ITVカノラ、2用高速度画像処理装置。 3・・・コントローラ部
Figure 1 shows the flow of the procedure for recognizing the center of a steel plate coil. FIG. 2 is a pixel differential operator, FIG. 3 is a graph showing the relationship between matching frequency and power coordinates, and FIG. 4 is a diagram showing the hardware configuration of the visual sensor. 1... High-speed image processing device for ITV Canora and 2. 3...Controller part

Claims (1)

【特許請求の範囲】[Claims] 1、筒状物体を撮像することによって得られる映像信号
を処理して、筒状物体の中心位置を検出する筒状物体の
中心位置検出方法において、前記映像信号に対して、予
め定められた対称度オペレータ及び対称度評価関数を用
いた演算を施し、前記中心位置に係る1次の候補点を求
め、1次の候補点及びその近傍における所定数の点にお
けるマツチング度合をテンプレートマツチングによhx
出し、算出結果から最大のマツチング度合を有する点を
2次の候補点として定め、該2次の候補点及びその近傍
の所定数の点におけるマツチング度合を参照して1重心
位置を演算し、該演算された重心位置を筒状物体の中心
位置として定めることを特徴とする筒状物体の中心位置
検出方法。
1. In a method for detecting the center position of a cylindrical object, in which a video signal obtained by imaging the cylindrical object is processed to detect the center position of the cylindrical object, a predetermined symmetry is detected with respect to the video signal. A calculation using a degree operator and a symmetry degree evaluation function is performed to obtain a first-order candidate point related to the center position, and the degree of matching at the first-order candidate point and a predetermined number of points in its vicinity is calculated by template matching hx
The point with the highest degree of matching is determined from the calculation results as a secondary candidate point, and the position of the center of gravity is calculated by referring to the degree of matching at the secondary candidate point and a predetermined number of points in its vicinity. A method for detecting the center position of a cylindrical object, characterized in that the calculated center of gravity position is determined as the center position of the cylindrical object.
JP58107000A 1983-06-15 1983-06-15 Detecting method of central position of tubular body Granted JPS59231407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107000A JPS59231407A (en) 1983-06-15 1983-06-15 Detecting method of central position of tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107000A JPS59231407A (en) 1983-06-15 1983-06-15 Detecting method of central position of tubular body

Publications (2)

Publication Number Publication Date
JPS59231407A true JPS59231407A (en) 1984-12-26
JPH037242B2 JPH037242B2 (en) 1991-02-01

Family

ID=14447936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107000A Granted JPS59231407A (en) 1983-06-15 1983-06-15 Detecting method of central position of tubular body

Country Status (1)

Country Link
JP (1) JPS59231407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113304A (en) * 1986-06-30 1988-05-18 Mitsubishi Electric Corp Microorganism recognizing apparatus
JPH01131429A (en) * 1987-11-17 1989-05-24 Anzen Jidosha Kk Device for detecting contour of luminous flux
CN102346086A (en) * 2011-09-01 2012-02-08 中联重科股份有限公司 Method and device for measuring gravity centre height of tracked vehicle
CN102359847A (en) * 2011-09-01 2012-02-22 中联重科股份有限公司 Determining method of height of gravity center of object and determining device
CN106395638A (en) * 2016-11-08 2017-02-15 芜湖市长江起重设备制造有限公司 Bridge crane for production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113304A (en) * 1986-06-30 1988-05-18 Mitsubishi Electric Corp Microorganism recognizing apparatus
JPH01131429A (en) * 1987-11-17 1989-05-24 Anzen Jidosha Kk Device for detecting contour of luminous flux
CN102346086A (en) * 2011-09-01 2012-02-08 中联重科股份有限公司 Method and device for measuring gravity centre height of tracked vehicle
CN102359847A (en) * 2011-09-01 2012-02-22 中联重科股份有限公司 Determining method of height of gravity center of object and determining device
CN106395638A (en) * 2016-11-08 2017-02-15 芜湖市长江起重设备制造有限公司 Bridge crane for production

Also Published As

Publication number Publication date
JPH037242B2 (en) 1991-02-01

Similar Documents

Publication Publication Date Title
US10970566B2 (en) Lane line detection method and apparatus
US8290213B2 (en) Method of locating license plate of moving vehicle
CN103279765A (en) Steel wire rope surface damage detection method based on image matching
CN107192716A (en) A kind of workpiece, defect quick determination method based on contour feature
CN108907526A (en) A kind of weld image characteristic recognition method with high robust
CN105279512A (en) Tilt vehicle license plate recognition method and device
US20140119609A1 (en) Image recognizing apparatus and method
JPS59231407A (en) Detecting method of central position of tubular body
CN108108656B (en) Vehicle window corner detection and multidirectional projection-based vehicle window accurate positioning method
CN115082509B (en) Method for tracking non-feature target
JPH05157518A (en) Object recognizing apparatus
JPH0953915A (en) Method for recognizing overlapping state
Yinka et al. Performance of drivable path detection system of autonomous robots in rain and snow scenario
JP4552409B2 (en) Image processing device
CN112508947A (en) Cable tunnel abnormity detection method
RU2289111C2 (en) Method of adaptive graduation of radial distortion of optical subsystem of technical vision system
CN110310239A (en) It is a kind of to be fitted the image processing method for eliminating illumination effect based on characteristic value
Bouain et al. An extrinsic sensor calibration framework for sensor-fusion based autonomous vehicle perception
JPH05164569A (en) Run road detector of traveling vehicle
JPS59230994A (en) Method of detecting central position of circular coil in automatic crane
JPH1115975A (en) Appearance inspecting method
KR101092133B1 (en) Method of Detecting Area and Measuring Distance of Container
JPH0383474A (en) Car detector
JPH0981726A (en) Pattern matching method
CN115393800A (en) Environmental anomaly detection method based on dynamic dual-feature pool target detection